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Abstract. For a commutative semigroup S with 0, the zero-divisor graph

of S denoted by Γ(S) is the graph whose vertices are nonzero zero-divisor

of S, and two vertices x, y are adjacent in case xy = 0 in S. In this paper

we study median and center of this graph. Also we show that if Ass(S)

has more than two elements, then the girth of Γ(S) is three.
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1. Introduction

In [8] Beck introduced the concept of a zero-divisor graph G(R) of a commu-
tative ring R. However, he lets all elements of R be vertices of the graph and
his work was mostly concerned with coloring of rings. Later, D. F. Anderson
and Livingston in [6] studied the subgraph Γ(R) of G(R) whose vertices are the
nonzero zero-divisors of R. The zero-divisor graph of a commutative ring has
been studied extensively by several authors, e.g. [1], [5], [7], [9], [11], [17]–[20],
[23], and etc.
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This notion has also been extended to (commutative) semigroups with zero,
e.g. [13], [14], [24], and [25]. Throughout S denotes a commutative semigroup
with 0. According to [14], the zero-divisor graph, Γ(S), is an undirected graph
with vertices Z(S)∗ = Z(S)\{0}, the set of nonzero zero-divisors of S, where for
distinct x, y ∈ Z(S)∗, the vertices x and y are adjacent if and only if xy = 0. In
this paper we study commutative semigroups and compare the algebraic struc-
ture of commutative semigroup S with the combinatorial structure of Γ(S).

For the sake of completeness, we state some definitions and notions used
throughout to keep this paper as self contained as possible.

For a graph G, the set of vertices of G is denoted by V(G). The degree of
a vertex v in G is the number of edges of G incident with v. For a nontrivial
connected graph G and a pair u, v of vertices of G, the distance d (u, v) between
u and v is the length of shortest path from u to v in G. If d (u, v) < k for an
integer k and for any u, v ∈ V(G), then the eccentricity e(v) of a vertex v in
graph G is the distance from v to a vertex farthest from v, that is,

e(v) = max{d (x, v)|x ∈ V(G)}.

The radius rad(G) of a connected graph is defined as

rad(G) = min{e(v)|v ∈ V(G)},

and the diameter diam (G) of a connected graph G is defined as

diam (G) = max{e(v)|v ∈ V(G)}.

It is known that (e.g. [10, Theorem 4.3])

rad(G) ≤ diam (G) ≤ 2 rad(G).

A graph in which each pair of distinct vertices is joined by an edge is called
a complete graph. We use Kn for the complete graph with n vertices. An
r-partite graph is a graph whose vertex set can be partitioned into r subsets
so that no edge has both ends in any one subset. A complete r-partite graph is
one in which each vertex is joined to every vertex that is not in the same subset
as the given vertex. The complete bipartite (i.e., complete 2-partite) graph is
denoted by Km,n where the set of partition has sizes m and n. The girth of a
graph G is the length of a shortest cycle in G and is denoted by girth (G). We
define a coloring of a graph G to be an assignment of colors (elements of some
set) to the vertices of G, one color to each vertex, so that adjacent vertices are
assigned distinct colors. If n colors are used, then the coloring is referred to
as an n-coloring. If there exists an n-coloring of a graph G, then G is called
n-colorable. The minimum n for which a graph G is n-colorable is called the
chromatic number of G, and is denoted by χ(G). A clique of a graph is a
maximal complete subgraph and the number of vertices in the largest clique
of graph G, denoted by ω(G), is called the clique number of G. Obviously
χ(G) ≥ ω(G) for general graph G (see [10, page 289]).
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Suppose that S is a commutative semigroup with zero. For ideal theory in
commutative semigroup we refer to the survey of D.D. Anderson and Johnson
[3] (also see [2]). Here we just recall some of the notions. A non-empty subset
I of S is called ideal if xS ⊆ I for any x ∈ I. An ideal p of a commutative
semigroup is called a prime ideal of S if for any two element x, y ∈ S, xy ∈ p

implies x ∈ p or y ∈ p. Let Z(S) be its set of zero-divisors of S. In order that
Γ(S) be non empty, we usually assume S always contains at least one nonzero
zero divisor. In [14] DeMeyer, McKenzie, and Schneider observe that Γ(S) (as
in the ring case) is always connected, and the diameter of Γ(S) ≤ 3. If Γ(S)
has a cycle then girth (Γ(S)) ≤ 4. They also show that the number of minimal
ideals of S gives a lower bound to the clique number of S. In [26] Zue and
Wu studied a graph Γ(S) where the vertex set of this graph is Z(S)∗ and for
distinct elements x, y ∈ Z(S)∗, if xSy = 0, then there is an edge connecting
x and y. Note that Γ(S) is a subgraph of Γ(S). Recently, F. DeMeyer and
L. DeMeyer studied further the graph Γ(S) and its extension to a simplicial
complex, cf. [13]. Clearly for any prime ideal p if x and y are adjacent in Γ(S),
then x ∈ p or y ∈ p. So for every prime ideal p and every edge e, one of the
end points of e belongs to p.

One may address three major problems in this area: characterization of
the resulting graphs, characterization of the commutative semigroups with iso-
morphic graphs and realization of the connections between the structures of a
commutative semigroup and the corresponding graph. In this paper we focus
on the third problem.

The organization of this paper is as follows:
In Section 2, it is shown that if the set of associated primes of S, Ass (S), has

more than two elements then the girth of Γ(S) (i.e. the length of the shortest
cycle in Γ(S)) is three.

2. Some special ideals and girth of Γ(S)

Let S be a commutative semigroup with 0. It is known that the following
hold:

(a) Z(S) is an ideal of S;
(b) S′ = S \ Z(S) and S′ ∪ 0 are subsemigroup of S with no nonzero

zero-divisors.

Let T be a non-empty set of vertices of the graph G. The subgraph induced
by T is the greatest subgraph of G with vertex set T , and is denoted by G[T ],
that is, G[T ] contains precisely those edges of G joining two vertices of T .

The following result is an elementary statement about algebraic semigroup
but expressed in graph-theoretical term.
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Proposition 2.1. Let N be the set of nilpotent elements of S. If N∗ = N \{0}
is a non-empty set, then Γ(S)[N∗] is a connected subgraph of Γ(S) of diameter
at most 2.

Proof. Since N is a commutative semigroup we have that Γ(N) = Γ(S)[N∗]
is connected, see [14, Theorem 1.2]. In addition, N is nilpotent commutative
semigroup and so diam Γ(N) ≤ 2, see [13, Theorem 5].

�

The distance d (v) of a vertex v in a connected finite graph G is the sum of
the distances v to each vertex of G. The median M(G) of a graph G is the
subgraph induced by the set of vertices having minimum distance.

Let G be a connected graph, and T ⊆ V(G). We say T is a cut vertex set if
G \ T is disconnected. Also the cut vertex set T is called a minimal cut vertex
set for G if no proper subset of T is a cut vertex set. In addition, if T = {x},
then x is called a cut vertex.

Theorem 2.2. The set of vertices of M(Γ(S))
⋃
{0} is an ideal of S. In ad-

dition, if T is a minimal cut vertex set of Γ(S), then T ∪ {0} is an ideal of
S.

Proof. Let x be a vertex of M(Γ(S)) and y ∈ S. Suppose that xy 6= 0. Let z
be a vertex of Γ(S) and d (x, z) = t. Then there is a shortest path from x to z
of length t,

x—x1—x2—· · ·—xt−1—z

and so

xy—x1—x2—· · ·—xt−1—z,

is a walk of length t from xy to z. Thus d (xy, z) ≤ d (x, z). Since d (r, r) = 0,
we have the following (in)equalities:

d (xy) =
∑

z∈V(Γ(S))

d (xy, z) ≤
∑

z∈V(Γ(S))

d (x, z) = d (x).

Since x ∈M(Γ(S)), we have d (xy) = d (x), and hence xy belongs to the vertex
set of M(Γ(S)).

Now let T be a minimal cut vertex set of Γ(S), and x ∈ T , r ∈ S. Since
T \{x} is not a cut vertex of Γ(S), there exist two vertices z, y of the graph Γ(S)
such that y—x—z is a path in Γ(S), and y, z belong to two distinct connected
components of Γ(S) \ T . Now if rx 6= 0, and rx /∈ T , then rx is a vertex of
Γ(S) \ T . Therefore we have the following path in Γ(S) \ T ;

y—rx—z,

which is a contradiction. Thus rx ∈ T ∪ {0} and so T ∪ {0} is an ideal of S.
�
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The techniques of the proof of Theorem 2.2 can be applied to obtain the
following result.

Corollary 2.3. Let x be a cut vertex of Γ(S). Then {0, x} is an ideal of S.
In this case either x is adjacent to every vertex of Γ(S) or x ∈ Sx.

The center C(G) of a connected finite graph G is the subgraph induced by
the vertices of G with eccentricity equal the radius of G.

Theorem 2.4. For a finite commutative semigroup S, the set V(C(Γ(S)))∪{0}
is an ideal of S.

Proof. Let x ∈ V(C(Γ(S))), and r ∈ S. Suppose that rx 6= 0. Then

e(rx) = max{d (u, rx)|u ∈ V(G)} ≤ max{d (u, x)|u ∈ V(G)} = e(x).

Thus e(rx) = e(x), and so rx ∈ V(C(Γ(S))) ∪ {0}. �

A subgraph H of a graph G is a spanning subgraph of G if V(H) = V(G).
If U is a set of edges of a graph G, then G \ U is the spanning subgraph of G
obtained by deleting the edges in U from E(G). A subset U of the edge set of
a connected graph G is an edge cutset of G if G \ U is disconnected. An edge
cutset of G is minimal if no proper subset of U is edge cutset. If e is an edge of
G, such that G \ {e} is disconnected, then e is called a bridge. Note that if U
is a minimal edge cutset, then G \ U has exactly two connected components.

Theorem 2.5. Let e = xy be a bridge of Γ(S) such that the two connected
components G1, G2 of Γ(S) \ {e} have at least two vertices. Then Sx = {0, x}
and Sy = {0, y} are two minimal ideals of S. Also if G1 or G2 has only one
vertex (i.e. deg x = 1 or deg y = 1), then {0, x, y} is an ideal.

Proof. Since G1 and G2 have at least two vertices, there exists vertices g1 and
g2 of Γ(S) with g1 ∈ V(G1), g2 ∈ V(G2), and x adjacent to g1 (in G1) and
y adjacent to g2 (in G2). Suppose that r ∈ S and rx 6= 0. Then rx ∈ Z(S).
If rx ∈ G2, then rx is adjacent to g1 in Γ(S) \ {e}, which is a contradiction.
Therefore rx ∈ G1. We claim that rx = x. In the other case rx is adjacent to
y in Γ(S) \ {e}, which is a contradiction. Since g2x 6= 0 we have that g2x = x

and so Sx = {0, x} is a minimal ideal of S. Similarly Sy = {0, y} is a minimal
ideal of S. The last part follows by a similar argument. �

The techniques of the proof of Theorem 2.5 can be applied to obtain the
following result.

Corollary 2.6. Let T be the minimal edge cutset of Γ(S), and G1, G2 are two
parts of G \ T . Then the following hold.

(a) For any i = 1, 2, (V(Gi)∩V(T ))∪ {0} is ideal of S provided Gi has at
least two vertices.
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(b) V(T ) ∪ {0} is an ideal if G1 or G2 has only one vertex.

A commutative semigroup is called reduced if for any x ∈ S, xn = 0 implies
x = 0. The annihilator of x ∈ S is denoted by Ann (x) and it is defined as

Ann (x) = {a ∈ S|ax = 0}.

In [22] Satyanarayana gave some characterization of semigroups satisfying the
a.c.c. for right ideals possesses zero divisors. In the following we bring a
necessarily condition for a commutative and reduced semigroup to satisfying
the a.c.c on annihilators.

Proposition 2.7. Let S be a commutative and reduced semigroup in which
Γ(S) does not contain an infinite clique. Then S satisfies the a.c.c on annihi-
lators.

Proof. Suppose that Annx1 < Annx2 < · · · be an increasing chain of ideals.
For each i ≥ 2, choose ai ∈ Annxi \ Annxi−1. Then each yn = xn−1an is
nonzero, for n = 2, 3, · · · . Also yiyj = 0 for any i 6= j. Since S is a commutative
and reduced semigroup, we have yi 6= yj when i 6= j. Therefore we have an
infinite clique in S. This is a contradiction and so the assertion holds. �

Lemma 2.8. Let S be a commutative semigroup and let Ann a be a maximal
element of {Annx : 0 6= x ∈ S}. Then Ann a is a prime ideal.

Proof. Let xSy ⊆ Ann a, and x, y /∈ Ann a. Then xxy ∈ Ann a, and so x2ya =
0. Since ya 6= 0 and Ann a ⊂ Ann ya, we have Ann a = Ann ya. Thus x2 ∈
Ann a and hence x ∈ Annxa = Ann a. This is a contradiction. �

Recall that the set of associated primes of a commutative semigroup S is
denoted by Ass (S) and it is the set of prime ideals p of S such that there exists
x ∈ S with p = Ann (x). The next result gives some information of Γ(S).

Theorem 2.9. Let S be a commutative semigroup. Then the following hold:

(a) If |Ass (S)| ≥ 2 and p = Ann (x), q = Ann (y) are two distinct elements
of Ass (S), then xy = 0.

(b) If |Ass (S)| ≥ 3, then girth (Γ(S)) = 3.
(c) If |Ass (S)| ≥ 5, then Γ(S) is not planar (A graph G is planar if it can

be drawn in the plane in such a way that no two edges meet except at
vertex with which they are both incident).

Proof. (a). We can assume that there exists r ∈ p \ q. Then rx = 0 and so
rSx = 0 ∈ q. Since q is a prime ideal, x ∈ q and hence xy = 0.

(b). Let p1 = Ann (x1), p2 = Ann (x2), and p3 = Ann (x3) belong to Ass (S).
Then x1—x2—x3—x1 is a cycle of length 3.

(c). Since |Ass (S)| ≥ 5, K5 is a subgraph of Γ(S), and hence by Kuratowski’s
Theorem Γ(S) is not planar.

�
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