Median and Center of Zero-Divisor Graph of Commutative Semigroups

Hamid Reza Maimani】
Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran
E-mail: maimani@ipm.ir

Abstract

For a commutative semigroup S with 0 , the zero-divisor graph of S denoted by $\Gamma(S)$ is the graph whose vertices are nonzero zero-divisor of S, and two vertices x, y are adjacent in case $x y=0$ in S. In this paper we study median and center of this graph. Also we show that if $\operatorname{Ass}(S)$ has more than two elements, then the girth of $\Gamma(S)$ is three.

Keywords: Commutative semigroup; Zero-divisor graph; Center of a graph; Median of a graph.

2000 Mathematics subject classification: 20M14, 13A99.

1. Introduction

In [8] Beck introduced the concept of a zero-divisor graph $\mathrm{G}(R)$ of a commutative ring R. However, he lets all elements of R be vertices of the graph and his work was mostly concerned with coloring of rings. Later, D. F. Anderson and Livingston in 6] studied the subgraph $\Gamma(R)$ of $\mathrm{G}(R)$ whose vertices are the nonzero zero-divisors of R. The zero-divisor graph of a commutative ring has been studied extensively by several authors, e.g. [1], 5], 7], [9], [11, [17]-20], [23], and etc.
H. R. Maimani was supported in part by a grant from Shahid Rajaee Teacher Training University (No. 37651/7).
Received 5 February 2009; Accepted 7 May 2009
(C)2008 Academic Center for Education, Culture and Research TMU

This notion has also been extended to (commutative) semigroups with zero, e.g. [13], [14, [24], and [25]. Throughout S denotes a commutative semigroup with 0 . According to [14, the zero-divisor graph, $\Gamma(S)$, is an undirected graph with vertices $\mathrm{Z}(S)^{*}=\mathrm{Z}(S) \backslash\{0\}$, the set of nonzero zero-divisors of S, where for distinct $x, y \in \mathrm{Z}(S)^{*}$, the vertices x and y are adjacent if and only if $x y=0$. In this paper we study commutative semigroups and compare the algebraic structure of commutative semigroup S with the combinatorial structure of $\Gamma(S)$.

For the sake of completeness, we state some definitions and notions used throughout to keep this paper as self contained as possible.

For a graph G, the set of vertices of G is denoted by $\mathrm{V}(G)$. The degree of a vertex v in G is the number of edges of G incident with v. For a nontrivial connected graph G and a pair u, v of vertices of G, the distance $\mathrm{d}(u, v)$ between u and v is the length of shortest path from u to v in G. If $\mathrm{d}(u, v)<k$ for an integer k and for any $u, v \in \mathrm{~V}(G)$, then the eccentricity $\mathrm{e}(v)$ of a vertex v in graph G is the distance from v to a vertex farthest from v, that is,

$$
\mathrm{e}(v)=\max \{\mathrm{d}(x, v) \mid x \in \mathrm{~V}(G)\}
$$

The radius $\operatorname{rad}(G)$ of a connected graph is defined as

$$
\operatorname{rad}(G)=\min \{\mathrm{e}(v) \mid v \in \mathrm{~V}(G)\}
$$

and the diameter $\operatorname{diam}(G)$ of a connected graph G is defined as

$$
\operatorname{diam}(G)=\max \{\mathrm{e}(v) \mid v \in \mathrm{~V}(G)\}
$$

It is known that (e.g. [10, Theorem 4.3])

$$
\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)
$$

A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We use K_{n} for the complete graph with n vertices. An r-partite graph is a graph whose vertex set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset as the given vertex. The complete bipartite (i.e., complete 2-partite) graph is denoted by $K_{m, n}$ where the set of partition has sizes m and n. The girth of a graph G is the length of a shortest cycle in G and is denoted by girth (G). We define a coloring of a graph G to be an assignment of colors (elements of some set) to the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct colors. If n colors are used, then the coloring is referred to as an n-coloring. If there exists an n-coloring of a graph G, then G is called n-colorable. The minimum n for which a graph G is n-colorable is called the chromatic number of G, and is denoted by $\chi(G)$. A clique of a graph is a maximal complete subgraph and the number of vertices in the largest clique of graph G , denoted by $\omega(G)$, is called the clique number of G. Obviously $\chi(G) \geq \omega(G)$ for general graph G (see [10, page 289]).

Suppose that S is a commutative semigroup with zero. For ideal theory in commutative semigroup we refer to the survey of D.D. Anderson and Johnson [3] (also see [2]). Here we just recall some of the notions. A non-empty subset I of S is called ideal if $x S \subseteq I$ for any $x \in I$. An ideal \mathfrak{p} of a commutative semigroup is called a prime ideal of S if for any two element $x, y \in S, x y \in \mathfrak{p}$ implies $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. Let $\mathrm{Z}(S)$ be its set of zero-divisors of S. In order that $\Gamma(S)$ be non empty, we usually assume S always contains at least one nonzero zero divisor. In [14] DeMeyer, McKenzie, and Schneider observe that $\Gamma(S)$ (as in the ring case) is always connected, and the diameter of $\Gamma(S) \leq 3$. If $\Gamma(S)$ has a cycle then girth $(\Gamma(S)) \leq 4$. They also show that the number of minimal ideals of S gives a lower bound to the clique number of S. In [26] Zue and Wu studied a graph $\bar{\Gamma}(S)$ where the vertex set of this graph is $\mathrm{Z}(S)^{*}$ and for distinct elements $x, y \in \mathrm{Z}(S)^{*}$, if $x S y=0$, then there is an edge connecting x and y. Note that $\Gamma(S)$ is a subgraph of $\bar{\Gamma}(S)$. Recently, F. DeMeyer and L. DeMeyer studied further the graph $\Gamma(S)$ and its extension to a simplicial complex, cf. [13. Clearly for any prime ideal \mathfrak{p} if x and y are adjacent in $\Gamma(S)$, then $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. So for every prime ideal \mathfrak{p} and every edge e, one of the end points of e belongs to \mathfrak{p}.

One may address three major problems in this area: characterization of the resulting graphs, characterization of the commutative semigroups with isomorphic graphs and realization of the connections between the structures of a commutative semigroup and the corresponding graph. In this paper we focus on the third problem.

The organization of this paper is as follows:
In Section 2, it is shown that if the set of associated primes of S, Ass (S), has more than two elements then the girth of $\Gamma(S)$ (i.e. the length of the shortest cycle in $\Gamma(S))$ is three.

2. Some special ideals and girth of $\Gamma(S)$

Let S be a commutative semigroup with 0 . It is known that the following hold:
(a) $Z(S)$ is an ideal of S;
(b) $S^{\prime}=S \backslash Z(S)$ and $S^{\prime} \cup 0$ are subsemigroup of S with no nonzero zero-divisors.

Let T be a non-empty set of vertices of the graph G. The subgraph induced by T is the greatest subgraph of G with vertex set T, and is denoted by $G[T]$, that is, $G[T]$ contains precisely those edges of G joining two vertices of T.

The following result is an elementary statement about algebraic semigroup but expressed in graph-theoretical term.

Proposition 2.1. Let N be the set of nilpotent elements of S. If $N^{*}=N \backslash\{0\}$ is a non-empty set, then $\Gamma(S)\left[N^{*}\right]$ is a connected subgraph of $\Gamma(S)$ of diameter at most 2 .

Proof. Since N is a commutative semigroup we have that $\Gamma(N)=\Gamma(S)\left[N^{*}\right]$ is connected, see [14, Theorem 1.2]. In addition, N is nilpotent commutative semigroup and so $\operatorname{diam} \Gamma(N) \leq 2$, see [13, Theorem 5].

The distance $\mathrm{d}(v)$ of a vertex v in a connected finite graph G is the sum of the distances v to each vertex of G. The median $M(G)$ of a graph G is the subgraph induced by the set of vertices having minimum distance.

Let G be a connected graph, and $T \subseteq \mathrm{~V}(G)$. We say T is a cut vertex set if $G \backslash T$ is disconnected. Also the cut vertex set T is called a minimal cut vertex set for G if no proper subset of T is a cut vertex set. In addition, if $T=\{x\}$, then x is called a cut vertex.

Theorem 2.2. The set of vertices of $M(\Gamma(S)) \bigcup\{0\}$ is an ideal of S. In addition, if T is a minimal cut vertex set of $\Gamma(S)$, then $T \cup\{0\}$ is an ideal of S.

Proof. Let x be a vertex of $M(\Gamma(S))$ and $y \in S$. Suppose that $x y \neq 0$. Let z be a vertex of $\Gamma(S)$ and $\mathrm{d}(x, z)=t$. Then there is a shortest path from x to z of length t,

$$
x-x_{1}-x_{2}-\cdots-x_{t-1}-z
$$

and so

$$
x y-x_{1}-x_{2}-\cdots-x_{t-1}-z,
$$

is a walk of length t from $x y$ to z. Thus $\mathrm{d}(x y, z) \leq \mathrm{d}(x, z)$. Since $\mathrm{d}(r, r)=0$, we have the following (in)equalities:

$$
\mathrm{d}(x y)=\sum_{z \in \mathrm{~V}(\Gamma(S))} \mathrm{d}(x y, z) \leq \sum_{z \in \mathrm{~V}(\Gamma(S))} \mathrm{d}(x, z)=\mathrm{d}(x) .
$$

Since $x \in M(\Gamma(S))$, we have $\mathrm{d}(x y)=\mathrm{d}(x)$, and hence $x y$ belongs to the vertex set of $M(\Gamma(S))$.

Now let T be a minimal cut vertex set of $\Gamma(S)$, and $x \in T, r \in S$. Since $T \backslash\{x\}$ is not a cut vertex of $\Gamma(S)$, there exist two vertices z, y of the graph $\Gamma(S)$ such that $y-x-z$ is a path in $\Gamma(S)$, and y, z belong to two distinct connected components of $\Gamma(S) \backslash T$. Now if $r x \neq 0$, and $r x \notin T$, then $r x$ is a vertex of $\Gamma(S) \backslash T$. Therefore we have the following path in $\Gamma(S) \backslash T$;

$$
y-r x-z
$$

which is a contradiction. Thus $r x \in T \cup\{0\}$ and so $T \cup\{0\}$ is an ideal of S.

The techniques of the proof of Theorem 2.2 can be applied to obtain the following result.

Corollary 2.3. Let x be a cut vertex of $\Gamma(S)$. Then $\{0, x\}$ is an ideal of S. In this case either x is adjacent to every vertex of $\Gamma(S)$ or $x \in S x$.

The center $\mathrm{C}(G)$ of a connected finite graph G is the subgraph induced by the vertices of G with eccentricity equal the radius of G.

Theorem 2.4. For a finite commutative semigroup S, the set $V(C(\Gamma(S))) \cup\{0\}$ is an ideal of S.

Proof. Let $x \in \mathrm{~V}(\mathrm{C}(\Gamma(S)))$, and $r \in S$. Suppose that $r x \neq 0$. Then

$$
\mathrm{e}(r x)=\max \{\mathrm{d}(u, r x) \mid u \in \mathrm{~V}(G)\} \leq \max \{\mathrm{d}(u, x) \mid u \in \mathrm{~V}(G)\}=\mathrm{e}(x)
$$

Thus $\mathrm{e}(r x)=\mathrm{e}(x)$, and so $r x \in \mathrm{~V}(\mathrm{C}(\Gamma(S))) \cup\{0\}$.
A subgraph H of a graph G is a spanning subgraph of G if $\mathrm{V}(H)=\mathrm{V}(G)$. If U is a set of edges of a graph G, then $G \backslash U$ is the spanning subgraph of G obtained by deleting the edges in U from $\mathrm{E}(G)$. A subset U of the edge set of a connected graph G is an edge cutset of G if $G \backslash U$ is disconnected. An edge cutset of G is minimal if no proper subset of U is edge cutset. If e is an edge of G, such that $G \backslash\{e\}$ is disconnected, then e is called a bridge. Note that if U is a minimal edge cutset, then $G \backslash U$ has exactly two connected components.

Theorem 2.5. Let $e=x y$ be a bridge of $\Gamma(S)$ such that the two connected components G_{1}, G_{2} of $\Gamma(S) \backslash\{e\}$ have at least two vertices. Then $S x=\{0, x\}$ and $S y=\{0, y\}$ are two minimal ideals of S. Also if G_{1} or G_{2} has only one vertex (i.e. $\operatorname{deg} x=1$ or $\operatorname{deg} y=1$), then $\{0, x, y\}$ is an ideal.

Proof. Since G_{1} and G_{2} have at least two vertices, there exists vertices g_{1} and g_{2} of $\Gamma(S)$ with $g_{1} \in \mathrm{~V}\left(G_{1}\right), g_{2} \in \mathrm{~V}\left(G_{2}\right)$, and x adjacent to g_{1} (in G_{1}) and y adjacent to $g_{2}\left(\right.$ in $\left.G_{2}\right)$. Suppose that $r \in S$ and $r x \neq 0$. Then $r x \in \mathrm{Z}(S)$. If $r x \in G_{2}$, then $r x$ is adjacent to g_{1} in $\Gamma(S) \backslash\{e\}$, which is a contradiction. Therefore $r x \in G_{1}$. We claim that $r x=x$. In the other case $r x$ is adjacent to y in $\Gamma(S) \backslash\{e\}$, which is a contradiction. Since $g_{2} x \neq 0$ we have that $g_{2} x=x$ and so $S x=\{0, x\}$ is a minimal ideal of S. Similarly $S y=\{0, y\}$ is a minimal ideal of S. The last part follows by a similar argument.

The techniques of the proof of Theorem 2.5 can be applied to obtain the following result.

Corollary 2.6. Let T be the minimal edge cutset of $\Gamma(S)$, and G_{1}, G_{2} are two parts of $G \backslash T$. Then the following hold.
(a) For any $i=1,2,\left(V\left(G_{i}\right) \cap V(T)\right) \cup\{0\}$ is ideal of S provided G_{i} has at least two vertices.
(b) $V(T) \cup\{0\}$ is an ideal if G_{1} or G_{2} has only one vertex.

A commutative semigroup is called reduced if for any $x \in S, x^{n}=0$ implies $x=0$. The annihilator of $x \in S$ is denoted by $\operatorname{Ann}(x)$ and it is defined as

$$
\operatorname{Ann}(x)=\{a \in S \mid a x=0\} .
$$

In [22] Satyanarayana gave some characterization of semigroups satisfying the a.c.c. for right ideals possesses zero divisors. In the following we bring a necessarily condition for a commutative and reduced semigroup to satisfying the a.c.c on annihilators.

Proposition 2.7. Let S be a commutative and reduced semigroup in which $\Gamma(S)$ does not contain an infinite clique. Then S satisfies the a.c.c on annihilators.

Proof. Suppose that Ann $x_{1}<\operatorname{Ann} x_{2}<\cdots$ be an increasing chain of ideals. For each $i \geq 2$, choose $a_{i} \in \operatorname{Ann} x_{i} \backslash \operatorname{Ann} x_{i-1}$. Then each $y_{n}=x_{n-1} a_{n}$ is nonzero, for $n=2,3, \cdots$. Also $y_{i} y_{j}=0$ for any $i \neq j$. Since S is a commutative and reduced semigroup, we have $y_{i} \neq y_{j}$ when $i \neq j$. Therefore we have an infinite clique in S. This is a contradiction and so the assertion holds.
Lemma 2.8. Let S be a commutative semigroup and let Anna be a maximal element of $\{$ Annx : $0 \neq x \in S\}$. Then Anna is a prime ideal.
Proof. Let $x S y \subseteq \operatorname{Ann} a$, and $x, y \notin \operatorname{Ann} a$. Then $x x y \in \operatorname{Ann} a$, and so $x^{2} y a=$ 0 . Since $y a \neq 0$ and Ann $a \subset$ Ann $y a$, we have Ann $a=$ Ann $y a$. Thus $x^{2} \in$ $\operatorname{Ann} a$ and hence $x \in \operatorname{Ann} x a=\operatorname{Ann} a$. This is a contradiction.

Recall that the set of associated primes of a commutative semigroup S is denoted by $\operatorname{Ass}(S)$ and it is the set of prime ideals \mathfrak{p} of S such that there exists $x \in S$ with $\mathfrak{p}=\operatorname{Ann}(x)$. The next result gives some information of $\Gamma(S)$.

Theorem 2.9. Let S be a commutative semigroup. Then the following hold:
(a) If $|\operatorname{Ass}(S)| \geq 2$ and $\mathfrak{p}=\operatorname{Ann}(x), \mathfrak{q}=\operatorname{Ann}(y)$ are two distinct elements of Ass (S), then $x y=0$.
(b) If \mid Ass $(S) \mid \geq 3$, then $\operatorname{girth}(\Gamma(S))=3$.
(c) If \mid Ass $(S) \mid \geq 5$, then $\Gamma(S)$ is not planar (A graph G is planar if it can be drawn in the plane in such a way that no two edges meet except at vertex with which they are both incident).

Proof. (a). We can assume that there exists $r \in \mathfrak{p} \backslash \mathfrak{q}$. Then $r x=0$ and so $r S x=0 \in \mathfrak{q}$. Since \mathfrak{q} is a prime ideal, $x \in \mathfrak{q}$ and hence $x y=0$.
(b). Let $\mathfrak{p}_{1}=\operatorname{Ann}\left(x_{1}\right), \mathfrak{p}_{2}=\operatorname{Ann}\left(x_{2}\right)$, and $\mathfrak{p}_{3}=\operatorname{Ann}\left(x_{3}\right)$ belong to $\operatorname{Ass}(S)$. Then $x_{1}-x_{2}-x_{3}-x_{1}$ is a cycle of length 3.
(c). Since \mid Ass $(S) \mid \geq 5, K_{5}$ is a subgraph of $\Gamma(S)$, and hence by Kuratowski's Theorem $\Gamma(S)$ is not planar.

References

[1] S. Akbari, H. R. Maimani, S. Yassemi, When a Zero-Divisor Graph is Planar or a Complete r-Partite Graph, J. Algebra 270 (2003), 169-180.
[2] D. D. Anderson, Finitely generated multiplicative subsemigroups of rings, Semigroup Forum 55 (1997), 294-298.
[3] D. D. Anderson, and E.W. Johnson, Ideal theory in commutative semigroups, Semigroup Forum 30 (1984), 127-158.
[4] D. D. Anderson, M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1991), 500-514.
[5] D. F. Anderson, A. Frazier, A. Lauve, P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring II, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
[6] D. F. Anderson, P. S. Livingston, The Zero-Divisor Graph of a Commutative Ring, J. Algebra 217 (1999), 434-447.
[7] D. F. Anderson, R. Levy, J. Shapiro, Zero-Divisor Graphs, von Neumann Regular Rings, and Boolean Algebras, J. Pure Appl. Algebra 180 (2003), 221-241.
[8] I. Beck, Coloring of Commutative Rings, J. Algebra 116 (1988), 208-226.
[9] R. Belshoff and J. Chapman, Planar zero-divisor graphs, J. Algebra 316 (2007), 471480.
[10] G. Chartrand, O. R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, Inc., New York, 1993.
[11] H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319 (2008), 2789-2802.
[12] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys, No. 7, vol 1 and 2, American Mathematical Society, Providence, RI, 1961 and 1967.
[13] F. R. DeMeyer, L. DeMeyer, Zero-Divisor Graphs of Semigroups, J. Algebra 283 (2005), 190-198.
[14] F. R. DeMeyer, T. McKenzie, K. Schneider, The Zero-Divisor Graph of a Commutative Semigroup, Semigroup Forum 65 (2002), 206-214.
[15] J. M. Howie, An introduction to semigroup theory, L.M.S. Monographs, No. 7. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976.
[16] J. D. LaGrange, Complemented zero-divisor graphs and Boolean rings, J. Algebra 315 (2007), 600-611.
[17] R. Levy, J. Shapiro, The Zero-Divisor Graph of von Neumann Regular Rings, Comm. Algebra 30 (2002), 745-750.
[18] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), 174-193.
[19] H. R. Maimani, M. R. Pournaki, and S. Yassemi, Zero-divisor graph with respect to an ideal, Comm. Algebra 34 (2006), 923-929.
[20] H. R. Maimani and S. Yassemi, Zero-divisor graphs of amalgamated duplication of a ring along an ideal, J. Pure Appl. Algebra 212 (2008), 168-174.
[21] Y. S. Park, J. P. Kim, and M.-G. Sohn, Semiprime ideals in semigroups, Math. Japon. 33 (1988), 269-273.
[22] M. Satyanarayana, Semigroups with ascending chain condition, J. London Math. Soc. 5 (1972), 11-14.
[23] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 (2008), 325-345.
[24] S. E. Wright, Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups, Comm. Algebra 35 (2007), 1987-1991.
[25] T. Wu and F. Cheng, The structure of zero-divisor semigroups with graph $K_{n} \circ K 2$, Semigroup Forum 76 (2008), 330-340.
[26] M. Zuo, T. Wu, A New Graph Structure of Commutative Semigroup, Semigroup Forum 70 (2005), 71-80.

