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Abstract. In this paper we are concerned with cuts in models of Samuel

Buss’ theories of bounded arithmetic, i.e. theories like Si
2 and T i

2. In cor-

respondence with polynomial induction, we consider a rather new notion

of cut that we call p-cut. We also consider small cuts, i.e. cuts that are

bounded above by a small element. We study the basic properties of p-

cuts and small cuts. In particular, we prove some overspill and underspill

properties for them.
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1. Introduction

First-order arithmetic has had an important role in the development of math-

ematical logic. Peano arithmetic is the most important logical theory of arith-

metic. This theory has a small number of basic axioms together with the axiom

scheme of induction.

Let M be a nonstandard model of Peano arithmetic. A non-empty subset I

ofM is a cut if I is closed under successor and also is downward closed. Study-

ing cuts has an important place in the model theory of arithmetic, specially

the issue of definability and undefinability of cuts. Definable cuts are discussed

mostly in the contexts of Gödel’s incompleteness theorem, consistency and in-

consistency (see [5]). Undefinable cuts are studied in the context of overspill

properties and their consequences. For this type of results see [6].
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Bounded arithmetic is obtained from Peano arithmetic by restricting the

axiom scheme of induction to bounded formulas. The importance of bounded

arithmetic is essentially based on its connection to computational complexity

(see [2]).

In this paper we consider undefinable cuts in models of bounded arithmetic

theories. In [4] and [3] overspill properties for models of bounded arithmetic in

the language of PA are studied. We work in the special language of bounded

arithmetic introduced by Buss in [2]. In correspondence with polynomial in-

duction PIND in these theories, we define a notion of p-cut for models of

Si
2 and T i

2. We also consider small cuts, i.e. cuts bounded above by a small

element of the form |a|. We investigate basic properties of p-cuts and small

cuts. In particular, we prove some overspill and underspill properties and their

converses.

2. Some backgrounds

In this paper we consider some well-known fragments of bounded arithmetic

like Si
2 and T i

2. In this section we review some basic properties of these theories

(see [2] for the details).

The language of the theories Si
2 and T i

2 extends the usual language of first-

order arithmetic by adding function symbols �x
2 � (= x

2 rounded down to the

nearest integer), |x| (= the length of binary representation for x) and # (x#y =

2|x||y|).
The base theory BASIC is a finite set of quantifier-free formulas expressing

basic properties of the relation and function symbols. Σb
0 = Πb

0 is the class

of all sharply bounded formulas. A sharply bounded formula is a bounded

formula in which all quantifiers are sharply bounded, i.e. of the form ∃x � |t|
or ∀x � |t| where t is a term which does not contain x.

The syntactic classes Σb
i+1, Π

b
i+1 of bounded formulas are defined by counting

alternations of bounded quantifiers ignoring sharply bounded quantifiers. A

formula ϕ is in Δb
i with respect to a model (resp., theory), if there is a Σb

i -

formula and a Πb
i -formula such that ϕ is equivalent to both of them in the

model (resp., theory).

The theory Si
2 is axiomatized by adding the Σb

i −PIND axioms to BASIC,

i.e.

[ϕ(0) ∧ ∀x(ϕ(�x/2�) → ϕ(x)] → ∀xϕ(x),
where ϕ(x) is a Σb

i -formula that can have more free variables besides x. The

theory T i
2 is defined by adding the Σb

i − IND axioms to BASIC.

The PLIND and LIND axioms are defined as

PLIND : [ϕ(0) ∧ ∀x(ϕ(�x/2�) → ϕ(x)] → ∀xϕ(|x|),

LIND : [ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x+ 1)] → ∀xϕ(|x|).
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The theories Li
2 and Ri

2 are axiomatized by adding the Σb
i − LIND and

Σb
i − PLIND axioms to BASIC, respectively.

Throughout this paper, i denotes a natural number greater than or equal to

1, unless it is explicitly stated that it can also be 0.

Let M be a nonstandard countable model of BASIC. A non-empty subset

I of M is said to be a cut if I is closed under successor and whenever a ∈ I and

M |= b < a, then b ∈ I. If I is a cut of M , we write I ⊆e M . I is small if there

is an a ∈M such that I < |a|, i.e. every element of I is less than |a|.
Let Ψ be a class of formulas. It is well-known and easy to see that, if

M |= Ψ− IND, then no proper cut I of M can be Ψ-definable, that is to say,

there is no ψ ∈ Ψ such that M |= ψ(a) if and only if a ∈ I. This is a simple

version of the overspill property for models of arithmetic. It is not hard to

prove that the overspill property for cuts is equivalent to the induction-scheme

(see [6, Page 72]).

3. New proofs for old results

In this section we give relatively new proofs for some well-known facts con-

cerning bounded arithmetic theories using the notion of cut.

Definition 3.1. Let M |= BASIC and ∅ �= I ⊆ M . We say that I is a p-cut

if �x/2� ∈ I implies x ∈ I and if a ∈ I and M |= b ≤ a then b ∈ I.

Note that p-cuts are those cuts that are closed under addition. For an

example of a cut which is not a p-cut, let a ∈M |= BASIC be a non-standard

element. Then

Ia = {x ∈M : ∃n ∈ N x ≤ a+ n}
is a cut but not a p-cut (a ∈ I and 2a �∈ I). If I is a p-cut then |I| = {|x| : x ∈ I}
is a cut, because from BASIC we have S(|x|) = |2x| and if |b| ≤ |a| then b < 2a.

Moreover, if I is proper, then |I| is a small cut.

From the above definition, it is clear that no model of Si
2 contains a proper

Σb
i -definable p-cut, and no model of T i

2 contains a proper Σb
i -definable cut.

Proposition 3.2. We have BASIC +Πb
i − IND  Πb

i − PIND.

Proof. Let ϕ(x) ∈ Πb
i and M |= BASIC +Πb

i − IND and

M |= ϕ(0) ∧ ∀x (ϕ(�x/2�) → ϕ(x)).

Then the set

I = {x ∈M :M |= ∀y ≤ xϕ(y)}
is a p-cut, and it is defined by ∀y ≤ x ϕ(y) ∈ Πb

i . Therefore, I is a cut and

I =M . This means that M |= ∀x ϕ(x). So M |= Πb
i − PIND. �

In the proof of the following two propositions we use an idea due to Solovay

(see [8]). It shows how to construct a p-cut in a cut.
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Proposition 3.3. Let M be a model of BASIC. Let i ≥ 0. Then in every

small Δb
i -definable cut there is a small Δb

i -definable p-cut.

Proof. Assume that I is a small Δb
i -definable cut of M , a ∈ M and |a| > I.

Let ϕ(x) ∈ Δb
i define I. Then the formula

∀y < |a| (ϕ(y) → ϕ(x + y))

defines a small p-cut. For this, note that ifM |= ϕ(�x/2�+y), then �x/2�+y <
|a|. �

The following proposition can be proved similarly.

Proposition 3.4. Let M be a model of BASIC. Then in every proper Δb
i -

definable cut there is a proper Πb
i -definable p-cut.

Proposition 3.5. Let M |= BASIC. If there exists a proper Δb
i -definable

subset of M containing 0 and closed under successor then there is a proper

Πb
i -definable p-cut in M .

Proof. Let ϕ(x) be the Δb
i formula such that

M |= ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)).

Consider the formula

ψ(x) : ∀y < a (ϕ(y) → ϕ(x+ y)).

As in 3.3, one can show that

M |= ψ(0) ∧ ∀x (ψ(�x/2�) → ψ(x)).

Now notice that ifM �|= ϕ(a), then the formula ∀z ≤ x ψ(z) defines a proper

Πb
i -definable p-cut. �

In the rest of this section we add two binary functions a−̇b andMSP (a, i)(=

�a/2i�) to the language and also add the following primary properties of them

as new axioms to BASIC:

i) a−̇0 = a

ii) [b < a→ a−̇(b + 1) + 1 = a−̇b] ∧ [b ≥ a→ a−̇b = 0]

iii) y ≤ x→ a−̇x ≤ a−̇y
iv) MSP (a, 0) = a

v) MSP (a, i+ 1) = �1/2 MSP (a, i)�
vi) b ≥ |a| → MSP (a, b) = 0

vii) y ≥ x→MSP (a, y) ≤MSP (a, x).

We represent this modified set of axioms with BASIC∗ and redefine frag-

ments of bounded arithmetic in this language. Note that in the presence of S1
2

the results in this extended language can be stated and proved in the original

one.
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Proposition 3.6. Let M |= BASIC∗. Then the following statements are

equivalent.

i) There is no proper Σb
i -definable cut (resp., p-cut) in M ,

ii) There is no proper Πb
i -definable cut (resp., p-cut) in M .

Proof. Let A(x) define a proper cut (resp., p-cut) I and a > I. Then ¬A(a−̇x)
(resp. ¬A(MSP (a, |x|))) defines a proper cut (resp., p-cut) as well. �

Below by asserting that a cut I is Ψ-undefinable we mean that there is no

formula in Ψ that defines I.

Proposition 3.7. Let M be a model of BASIC∗ and Ψ be the one of the

classes Σb
i or Πb

i of formulas. We have

1. Ψ− IND is equivalent to Ψ-undefinability of proper cuts,

2. Ψ− PIND is equivalent to Ψ-undefinability of proper p-cuts,

3. Ψ− LIND is equivalent to Ψ-undefinability of small cuts,

4. Ψ− PLIND is equivalent to Ψ-undefinability of small p-cuts.

Proof. In each case, the left to right part is straightforward. Also, the right to

left parts for Πb
i -formulas are easy. For Σb

i -formulas we only prove case 1. The

other cases can be proved similarly.

Let ϕ(x) be a Σb
i -formula and

M |= ϕ(0) ∧ ∀x(ϕ(x) → ϕ(x + 1)) ∧ ¬ϕ(a).
Then the formula ∃y < a (y ≥ x ∧ ϕ(y)) is Σb

i and defines a proper cut of M

which is impossible. �

Now we can give simple and uniform proofs for the following well-known

facts.

Corollary 3.8. We have the following.
i) BASIC∗ + Πb

i − IND ≡ BASIC∗ + Σb
i − IND,

ii) BASIC∗ + Πb
i − PIND ≡ BASIC∗ + Σb

i − PIND,

iii) BASIC∗ + Πb
i − LIND ≡ BASIC∗ + Σb

i − LIND,

iv) BASIC∗ + Πb
i − PLIND ≡ BASIC∗ + Σb

i − PLIND.

Proof. Use Proposition 3.6 and 3.7. �

From Corollary 3.8 and Proposition 3.2, we have T i
2  Si

2. Also, Proposition

3.4 and Corollary 3.8(ii) imply Si+1
2  T i

2. Using Proposition 3.5 and Corollary

3.8(ii), one can see Si
2  IΔb

i .

In [9], using a proof theoretic method, Takeuti proved that Ri
2  Si−1

2 .

Below we give a model theoretic proof for this fact. Actually, we prove a

stronger result.

Proposition 3.9. Ri
2  Δb

i − PIND, for i ≥ 0.
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Proof. Assume that M � Ri
2. Let ϕ(x) be a Δb

i -formula and

M |= ϕ(0) ∧ ∀x(ϕ(�x/2�) → ϕ(x)) ∧ ¬ϕ(a).
Let ψ(x) be the formula ¬ϕ(MSP (a, x)). We have

M |= ψ(0) ∧ ∀x(ψ(x) → ψ(x+ 1)) ∧ ¬ψ(|a|).
Then the formula ∃y < |a| (y � x ∧ ψ(y)) is Δb

i and defines a small cut of M .

But as by Proposition 3.3, in every small proper Δb
i -definable cut there is a

small Δb
i -definable p-cut, which is impossible. �

Note that in the presence ofMSP , Δb
i−PIND is equivalent to Δb

i−LIND.

So Proposition 3.9 can be stated as Ri
2  Δb

i − LIND. This result appears as

Theorem 2.7.7 of [1] where it is shown that Ri
2 proves Δb

i −LIND, over a weak

theory defining MSP . Also, from Proposition 2.11, we get Ri
2  Si−1

2 .

Corollary 3.10. BASIC∗ + Δb
i − PIND ≡ BASIC∗ + Δb

i − PLIND,

for i ≥ 0.

Proof. The Left to right part is obvious by the definition of PIND and PLIND.

For the inverse side note that in the proof of Proposition 3.9 one can assume

that ϕ(x) is a Δb
i -formula. �

4. Overspill and underspill properties

In this section we study overspill properties for the theories Si
2 and T i

2. In

[4] and [3], the authors studied such properties for the classes En and Un of

bounded formulas in the language of PA.

Theorem 4.1. (Overspill) Let M |= T i
2 and I ⊆e M be a proper cut and

φ(x) ∈ Πb
i such that for all x ∈ I, M |= φ(x). Then there exists an element

c > I such that M |= ∀x ≤ c φ(x).

Proof. If not, then I would be definable by the Πb
i -formula ∀x ≤ y φ(x) which

is impossible. �

When a model M has the properties of Theorem 4.1, we say that it has the

overspill property.

Theorem 4.2. Let M |= BASIC∗ enjoying the overspill property for Πb
i -

formulas. Then M |= T i
2.

Proof. By Corollary 3.8(i), it is enough to show M satisfies the induction

scheme for Πb
i -formulas. Let φ(x) ∈ Πb

i and

M |= φ(0) ∧ ∀x(φ(x) → φ(x + 1)).

Then

Iφ = {x ∈M :M |= ∀y ≤ x φ(y)}
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is a Πb
i - definable cut. If Iφ �=M , then by overspill there is c > Iφ such that

M |= ∀x ≤ c ∀y ≤ x φ(y).

Now, by putting x = c, we get M |= ∀y ≤ c φ(y). So c ∈ Iφ, which is a

contradiction. �

There is a overspill property for Πb
i -formulas in models of Si

2 (Theorem 4.3

below) which can be proved analogously.

Theorem 4.3. Let M be a model of BASIC∗. We have M |= Si
2 if and only

if the following condition holds: for every proper p-cut I of M and φ ∈ Πb
i

for which for all x ∈ I, M |= φ(x), there exists an element c > I such that

M |= ∀x ≤ c φ(x).

Now we state another overspill property for models of Si
2 (and hence T i

2).

For this we need the notion of small cut.

Theorem 4.4. (Sharp overspill). Let M |= Si
2 and I ⊆e M be a small cut and

ϕ be a (Σb
i

⋃
Πb

i )-formula such that for all x ∈ I, M |= ϕ(x). Then there exists

an element a ∈M such that |a| > I and M |= ∀x ≤ |a| ϕ(x).
Proof. Otherwise, {z : M |= ∀x ≤ |z| ϕ(x)} = {z : |z| ∈ I} would be a proper

(Σb
i

⋃
Πb

i )-definable p-cut which is impossible. �

Theorem 4.5. Let M |= BASIC enjoying the sharp overspill property for Σb
i

(resp. Πb
i)-formulas. Then M |= Li

2 (and hence M |= Si
2).

Proof. Let ϕ be a Σb
i (resp. Πb

i ))-formula. Assume that

M |= φ(0) ∧ ∀x (ϕ(x) → φ (x + 1)).

If M �|= ∀xϕ(|x|), then there exists c ∈M such that M �|= ϕ(|c|). Define

ψ(z) : ∃x < |c| (z ≤ x ∧ ϕ(x)).
This formula defines a cut I of M and since |c| is not in this cut, I is a small

cut. Now using sharp overspill, there is |d| > I such that M |= ∀z ≤ |d| ψ(z).
Now use z = |d| to get a contradiction. �

Let M |= Si
2 be nonstandard and let I be a proper p-cut of M . Suppose

φ(x) is a (Σb
i

⋃
Πb

i )-formula such that M |= φ(|a|) for all a ∈ I. Since in this

case |I| is a small cut, by Theorem 4.4, there is c ∈ M such that c > I and

M |= ∀x ≤ |c| φ(x).
Theorem 4.6. Let M |= Ri

2. If I is a very small cut of M (i.e. it is bounded

by an element of the form ||a||) and ϕ is a Σb
i (resp. Πb

i)-formula such that

M |= φ(x), for all x ∈ I, then there exists an element c ∈M such that |c| > I

and M |= ∀x ≤ |c| φ(x).
Proof. This can be proved as Theorem 4.4. �
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Below we prove an underspill property for models of Si
2.

Lemma 4.7. Let M |= Si
2 and φ(x) ∈ Πb

i . Assume that I is a p-cut of M and

for each x ∈ I, there exists y ∈ |I| with M |= y ≥ |x| ∧ φ(y). Then for each

c ∈M with |c| > |I|, there exists an element b ∈M such that |I| < b < |c| and
M |= φ(b).

Proof. Let c ∈M such that |c| > |I|. Apply Theorem 4.3 to the formula

ψ(x) := ∃y < |c| (y ≥ |x| ∧ φ(y)).
By the assumption, for all x ∈ I, we have M |= ψ(x). Thus there is d > I such

that M |= ∀x ≤ d ψ(x). Now let x = d. There is b < |c| such that b ≥ |d| > |I|
and M |= φ(b). This completes the proof. �

Theorem 4.8. (Underspill) Let i ≥ 0 and M |= Si
2. Let I be a proper p-cut

of M and φ(x) ∈ Σb
i . If M |= φ(c) for all c > |I|, then there exists an element

b ∈ I such that M |= ∀x ≥ |b| φ(x).
Proof. Suppose that for all x ∈ I there exists y ∈ |I| such that M |= y ≥
|x| ∧ ¬φ(y).

Since ¬ϕ(y) ∈ Πb
i , by the previous lemma, there is c > |I| such that M |=

¬ϕ(c) which contradicts the assumption of the theorem. �
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