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ABSTRACT. Let G = (V, E) be a simple graph with exactly n vertices and
m edges. The aim of this paper is a new method for investigating non-
triviality of the automorphism group of graphs. To do this, we prove that
if |[E| > [(n —1)2/2] then |Aut(G)| > 1 and |Aut(G)| is even number.
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1. INTRODUCTION

Throughout this paper all graphs mentioned are assumed to be finite sim-
ple graph. Let G = (V,E) be a graph of order n with vertex set V(G) =
{v1,v2, ..., 00}, E C P5(V) and |E| = m. The automorphism group of a graph
G is denoted by Aut(G).

In [2, 3], the authors proved that the proportion of graphs which have a
non-trivial automorphism group tends to zero as n — oco. This is true whether
we take labeled or unlabeled graphs. Let G1, G2 be two graphs. Then G1 4+ G»
is join of G; and G2 namely every vertex of (G; is join to every vertex of Gs.

Let G = (V,E) be a graph with n vertices and = € V(G). We define
Ve ={teV(G)| ot € E(G)}. If V; —{y} =V, — {«} then we call z,y € V(G)
to be co-adjacent.

Theorem 1.1. If G = (V, E) is a finite simple graph with two vertices that
are co-adjacent then 2||Aut(G)| and |Aut(G)| > 1.
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Proof. Let x,y be co-adjacent. Our main proof consider two separate cases:

Case 1. If z,y are not adjacent then V, = V,,. We now define f : V(G) —
V(G) by f(x) =y, fly) ==, f(t) =t for t ¢ {x,y}. Since V, =V, f is an
automorphism. One can see that f # identity and O(f) = 2. Thus 2||Aut(G)|
and |Aut(G)| > 1.

Case 2. Suppose z,y are adjacent. Then V,, — {y} = V,, — {z} and a similar
argument as Case 1 shows that f : V(G) — V(G) is an 1somorphlsm where
f(x) =y, f(y) =z and f(t) =t, for ¢t ¢ {x,y}. Therefore 2||Aut(G)|, proving
the theorem. O

Theorem 1.2. Suppose z;,y;, 1 <1i < k, are co-adjacent and {z;,y;} ({z;,y;} =
¢,i # j, then 2F|| Aut(G)|.

Proof. By the proof of Theorem 1, (z;,y;) € Aut(G) and (x;,y;:)(z;,y )
(zj,yj) (i, yi), because {z;,y:i} (Wzj,y;} = ¢ and (z4,9:), (z;,y;) are dis
joint permutation of order 2. Thus < (z1,y1), (z2,%2), ..., (Tk,yx) > = <
(x1,91) > X < (®2,y2) > X..X < (Tk,yr) > is a subgroup of Aut(G) and
by Lagrange’s theorem O(< (x1,%1), (z2,¥2), .-, (Tk, yx) >)||Aut(G)|. There-
fore O(< (z4,vi), (zj,y;) >) = O((w4,4:))O((z,y;)) and hence 2%||Aut(G)|.
(]

Example 1.3. Suppose G = (V, E) in which
V=1{1,2,3,4}, E={13,24,32,41,34}.

Then {1,2} ({3,4} = ¢ and so 4 | |Aut(G)|. Thus |Aut(G)| =4 and Aut(G) =
Z2 X ZQ.

Theorem 1.4. Let G be a graph with n vertices. If |E| > |(n — 1)?/2] then
there exists a co-adjacent pair (z,y) € V(G).

Proof. Since two vertices with the same degree n — 1 are co-adjacent, so it is
enough to assume that G have at most one vertex of degree n — 1. We consider
the following two cases.

Case 1. n is even. Then [(n —1)?/2] = w Since the number of edges
in a n — 2-regular graph is M there are at least two co-adjacent vertices of
degree n — 1, whenever |E| > "( B = "—) and G is (n — 2)—regular
then every two non-adjacent vertlces of degree n — 2 are co-adjacent. If |E| =
@ and G is not (n — 2)—regular then there exist z,y € V(G) such that
deg(x) = deg(y) = n—2 and z, y are not adjacent. Thus these are co-adjacent.
Otherwise 2|E| < (n—2)(n—3)+ (n—2)+ (n — 1) < n(n — 2), which is a
contradiction.

Case 2. Suppose n is odd. Then |E| = [(n — 1)?/2] = (n-1)7 1) . If there are
two vertices of degree n — 1 then they are co-adjacent, 0therw1se 1f G dose not
have one vertex of degree n— 1, then a similar argument as above completes the
proof. Suppose there exist one vertex of degree n — 1. Then by omitting this
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vertex G—v has order n—1 and n—1is even. Since |[E(G—v)| > (n—1)(n—3)/2,
a simple argument as Case 1 completes the proof. (]

Example 1.5. Suppose G = (V, E), where
V ={1,2,3,4}, E={12,14,15,23,24,34,45}.

We can see that G dose not satisfy the conditions of Theorem 3 with one edge
less than [(n — 1)?/2] and there are not co-adjacent vertices. This shows that
the bound given in Theorem 3 is sharp.

2. THE MAIN RESULTS

This section is concerned with the main theorem of the paper. Some new
results are also presented.

Theorem 2.1. Let G be a graph with |E| = m > |[(n — 1)?/2|. Then
|Aut(G)| > 1 and |Aut(G)| is even number.

Proof. Suppose |E| > |(n—1)?/2]. Then by Theorem 3, there are two vertices
x,y such that x,y are co-adjacent and by Theorem 1, we can conclude that
2||Aut(G)|, proving the theorem. O

Theorem 2.2. Let G = (V, E) be a graph and A, B C V(G) such that every
two member of A or B are co-adjacent. Then Aut(G) contains a subgroup of
order |A|!|B|!.

Proof. Suppose G4 = {f € Aut(G)|f(x) = z,Vz ¢ A} and Gp = {f €
Aut(G)|f(z) = z,Vo ¢ B}. We can see that G4 and Gp are subgroups of
Aut(G) such that Ga = S, and Gp = S|p|. Notice that if f € G4 and
g € Gp then f, g are disjoint permutation and fg = gf. Thus GoGp = GG
and so G4Gp is a subgroup of Aut(G). Since |Ga| = |A|!,|Gg| = |B|! and
GaNGp ={e}, |GaGp| = |Gal|GB| = |A]!B]!. O

Theorem 2.3. Let G = (V,E) be a graph, A, B C V, |V| = AUB and
deg(a) # deg(b), for alla € A,b € B. Then Aut(G) = S| x S|p.

Proof. By Theorem 5, GaGp < Aut(G). Since deg(a) # deg(b), a € A is
not commute with b € B. This means that Aut(G) = GaGp. By Theorem
5, [Aut(G)| = |A]Y|B|! and Ga[\Gp = {e}. Hence Ga,Gp < Aut(G) and
Aut(G) =2 G4 x Gp. Obviously, Ga Sja, G = Sip| and so Aut(G) =
S‘A‘ X S|B‘. O

It

Corollary 2.4. Suppose n; # n;, where i,j are distinct. Then
Aut(Kn, mang) = Sny X Sny X Sy

Proof. Suppose A, B and C are the part of K, n,n, containing ni,ny and
ng vertices, respectively. Apply Theorem 6. One can see that elements of A, B
and C have degree ny + ns,n1 + n3 and ns + ng, as desired. O



32 G. H. FATH-TABAR

Theorem 2.5. Suppose G;,i = 1,2 are (n,m;)-graph with m; = C(n,2) — 1
and mg = C(n,2) — 2. Then

a) AUt(Gl) = ZQ X Sn_g.

b)AUt(GQ) = ZQ X Sn_g or A’U,t(Gg) = D4 X Sn_4.

Proof. a) Suppose A and B are subsets with two and n — 2 elements of V(G),
where elements of A have degree n — 2 and elements of B have degree n — 1.
Thus elements of A are co-adjacent and the same are true for elements of B.
We now apply Theorem 6 to prove Aut(G1) = Zy x Sy_o.

b) By omitting two edges from the complete graph K,,, one can prove there
are four vertices of degree n — 2 or two vertices with degree n — 2 and one
vertex of degree n — 3. Thus by Theorem 6, in the first case A contains two
element of degree two and B contains n — 3 elements of degree n — 1. Thus
Aut(Ga) = Zy x S,,—3. In the second part one can see that there are four
vertices of degree n — 2 and n — 4 vertices of degree n — 1. By omitting this
n — 4 vertices, we obtain the cycle graph Cy, where Aut(Cy) = Dy. A similar
argument shows that Aut(Gz) = Dy X Sp_4. |

Theorem 2.6. Suppose G1 and Go are two graphs. If Hy < Aut(Gi1) and
Hy < A’U,t(Gg) then Hy x Hy < Aut(G1 + Gg) Also, Zf |d(l‘z) — d(y])| 75
[y —nol,i=1,2,....,n1 and j = 1,2,...,ny then

Aut(Gy + G2) =2 Aut(G1) x Aut(G2)

Proof. Let H; < Aut(Gy) and Hy < Aut(Gsz). Then it is obvious that
Hy, x Hy < Aut(Gy + G3). For proving the second part of the theorem, we
assume that H; = Aut(G1) and Hy = Aut(G2). Then Aut(G1) x Aut(Gs) <
Aut(G1 + G2). Suppose f(z;) = y;. Then d(z;) + ne = d(y;) + n1 and
so d(z;) — d(y;) = n1 — na. This implies that |d(z;) — d(y;)| = |n1 — ne|, a
contradiction. Thus vertices of G and G2 cannot interchange to each other and
so |Aut(G1 + G2)| = |Aut(G1)||Aut(G2)|. Hence Aut(G1 + G2) =2 Aut(Gy) X
A’U,t(Gg). O

In the end of this paper, we compute the automorphism groups of the com-
plete bipartite graph K, ; and a summation of complete bipartite graphs. To
do this, we notice that K, , = K, + K.

Corollary 2.7. Suppose m = mi+ma, m' = mi+mb and |m;—m;| # |m—m/|.
Then Aut(Kmym, + Kpymy) = Aut(Kmym,) X Aut(Kppymy ). In particular if
my # ma,my # my then Aut(Komym, + Kmymy) = Smy X Smy X Syt X Spny -

Proof. Apply Theorems 6 and 7. (]
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