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Abstract. Dendritic macromolecules’ have attracted much attention

as organic examples of well-defined nanostructures. These molecules

are ideal model systems for studying how physical properties depend on

molecular size and architecture. In this paper using a simple result, some

GAP programs are prepared to compute Wiener and hyper Wiener indices

of dendrimers.
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1. Introduction

Dendrimers are macromolecular nanoscale objects that are widely recognized
as precise, mathematically defined, covalent core-shell assemblies. Since den-
drimers are well defined organic molecules in the size range of (1 to 15) nm and
are known to act as hosts for guest molecules, they are promising candidates
as templates for the formation of inorganic nanoclusters [1].

Let G be a simple molecular graph without directed and multiple edges and
without loops, the vertex and edge-shapes of which are represented by V (G)
and E(G), respectively. The graph Gis said to be connected if for every vertices
x and y in V (G) there exists a path between x and y. In this paper we only
consider connected graphs. The distance between a pair of vertices u and v of
G is denoted by d(u, v).
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A topological index is a real number related to a molecular graph. It must be
a structural invariant, i.e., it does not depend on the labelling or the pictorial
representation of a graph. There are several topological indices have been
defined and many of them have found applications as means to model chemical,
pharmaceutical and other properties of molecules. Here, we consider two of
topological indices containing Wiener and hyper Wiener of dendrimers. These
topological indices define as follows:

• The Wiener index W(G) [2-4] of a molecular graph Gis defined as the
sum of the distances between all pairs of vertices. In other words,

W (G) =
1
2

(
n∑

i=1

Pi

)
.

where Pi is length of the path that contains the least number of edges
between vertex i and vertex j in graph G and n is the maximum possible
number of i and j.

• The Wiener matrix [5] introduced by Randic, as a potential source of
structural invariants for need of QSAR. The (i, j) entry of the Wiener
matrix is based on enumeration of paths in a graph which contain the
path (i, j). Then the hyper Wiener index R can be expressed as the
half sum of the Wiener matrix entries.

The goal of this article is to obtain some computer programs for calculat-
ing the Wiener and hyper Wiener indices of dendrimers, Figure 1. We apply
our program on some dendrimers to compute their Wiener and hyper Wiener
indices.

2. Computational Details

GAP [6] stands for Groups, Algorithms and Programming. The name was
chosen to reflect the aim of the system, which is a group theoretical software
for solving computational problems in group theory. The last years have seen a
rapid spread of interest in the understanding, design and even implementation
of group theoretical algorithms. These are gradually becoming accepted both
as standard tools for a working group theoretician, like certain methods of
proof, and as worthwhile objects of study, like connections between notions
expressed in theorems. GAP was started as an attempt to meet this interest.
This software was constructed by GAP’s team in Aachen. We encourage the
reader to consult [1,7] for backgroud materials and computational techniques
related to applications of GAP in solving some problems in chemistry and
biology.

To describe our method we first label the vertices of dendrimers D by se-
quences of 0,1,2,3,4. We label the main root by 0, and then the first four
neighbors of 0 by 01, 02, 03 and 04. The other vertices are labeled according
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to its position in the lattice by sequence of {0, 1}, {0, 2}, {0, 3} or {0, 4}, see
Figure 1. Therefore D can be divided to exactly four parts in which very part
has the same lattice structure. We have the following crucial lemma:

Lemma 2.1. Suppose u = u1u2 . . . um and v = v1v2 . . . vn are two vertices of
D and u1 = v1, u2 = v2, . . . , ur = vr. Then d(u, v) = m + n − 2r.

Proof. Suppose u and v are two arbitrary vertices of D such that u =
u1u2 . . . um and v = v1v2 . . . vn and v1 = u1, v2 = u2, . . . , vr = ur. To prove
the lemma, we first assume that u and v lie in the same part of D. Thus ui’s
and vj ’s are sequences of 0, p such that p ∈ {1, 2, 3, 4}. In this case one can see
that r ≥ 2 and d(u, v) = m−r+nr = m+n−2r. If u and v lie in two separate
parts of D, then r = 1 and we must compute d(u, 0p) and d(v, 0q), p �= q. So
d(u, v) = d(u, 0p) + d(v, 0q) + 2 = m + n − 2.

Using this lemma we prepare a GAP program for computing the Wiener
and hyper Wiener indices of dendrimers D. We mention here, it is possible to
revise our program for computing all distance definable topological indices. In
Table I, we compute the values of Wiener and hyper Wiener indices of D for
2 ≤ k ≤ 11, where k denotes the kth row. Here, if u = u1u2 . . . um we call m

the length of u.

Table 1. Computing wiener and hyper wiener indices for k ≤ 11

n = 2k+2 + 1 Hyper Wiener Index Wiener Index
5 44 16
13 900 216
29 9652 1688
61 77396 10488
125 526740 57720
253 3230484 295416
509 18448916 1442296
1021 100062228 6815736
2045 522008596 31455224
4093 2641981460 142598136

A GAP Program for Computing Wiener and Hyper Wiener Index
of Dendrimers
f:=function(k)
local

d1,i1,j1,x2,xx1,s1,p1,a1,b1,aa1,n1,str,ff,s,zz,v,xx,sts,h,i,j,y,y1,y2,yyy,
y3,yy,ww,d,dd,iii,jjj,n,m,ii,ss,rr,nn,a,r,1,p,x,x1,u,v1,q,sss,qq,11,11;
s1:=0;p1:=[];n1:=0;qq:=0;11:=[];11:=[];k:=k-3;

for i1 in [1..k] do
s1:=s1+2∧i1;Add(p1,s1);
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od;
a1 := []; b1 := []; aa1 := []; x2 := []; xx1 := [];

for i1 in [2..5]do
Add(aa1,[1,i1]);

od;
for i1 in p1 do
for j1 in [i1..2*i1+1]do
Add(a1,j1);Add(a1,2*j1+2);Add(b1,j1);Add(b1,2*j1+3);
Add(aa1,a1);Add(aa1,b1);a1:=[];b1:=[];

od;
od;
ww := []; 1 := []; p := 0; u := 0; v1 := []; ss := 0;
for i in [1..k]do
Add(ww,0);Add(ww,1);

od;
str:=[];ff:=[];y:=[0,0];y1:=[0,1];y1:=[0,1];y 2:=[0,2];y3:=[0,3];yyy:=[];
s:=1;v:=[];xx:=[];sts:=[];
while s <= Length(ww)do
Add(v,s); s:=s+1;

od;
h:=Combinations(v);;
Sort(h,function(v,w)return Length(v) < Length(w);end);
s:=1;r:=1;
while s <= Length(h)do
while r <= Length(h[s])do
Add(str,ww[h[s][r]]);r:=r+1;

od;
Add(sts,str);s:=s+1;r:=1;
if Length(str) <= k and Length(str) >= 1 then
AddSet(xx,str);fi;

str:=[];
od;
for i in xx do
for j in i do
Add(y,j);Add(y1,j);Add(y2,j);Add(y3,j);

od; Add(yyy,y);Add(yyy,y1);Add(yyy,y2);Add(yyy,y3);
y:=[0,0];y1:=[0,1];y2:=[0,2];y3=[0,3];

od;
Add(yyy,[0,0]);Add(yyy,[0,1]);Add(yyy,[0,2]);Add(yyy,[0,3]);
Add(yyy,[0]);
Stor(yyy,function(v,w)return Length(v) < Length(w);end);
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dd:=[];
for x in yyy do
d:=[];
for x1 in yyy do
n:=Length(x);m:=Length(x1);
if n < m then nn:=n;
else

nn:=m; fi;
for ii in [1..nn] do
if x[ii] <> x1[ii]then ii:=ii=i;
break;fi;

od;
ss:=n+m-(2*ii);Add(d,ss);
od;
Add(dd,d);

od;
v1:=[];Add(v1,4);

for i in [2..2∧(k + 2) − 3]do
Add(v1,3);

od;
for i in [2∧(k + 2) − 2..2∧(k + 3) − 3]do
Add(v1,1);

od;
Print(”+++++++++++++++++++++++++++++”,”\ n”);

for i in dd do
for j in i do
p:=p+j;

od;
od;
for j in [1..Length(dd)]do
for i in [1..Length(dd)]do
if j < i then qq:=qq+(dd[j][i])*(dd[j][i]+1);fi;

od;
od;
Print(”Hyper Wiener Indxex=”,qq,”\ n”);
Print(”+++++++++++++++++++++++++++++”,”\ n”);
Print(”Wiener Index=”);
return(p/2); Print(”++++++++++++++++++++”,”\ n”);

end;
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Figure 1. 2D Graphical Representation of a Dendrimer 
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