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ABSTRACT. We study Beck-like coloring of measurable functions on a
measure space {2 taking values in a measurable semigroup A. To any
measure space ) and any measurable semigroup A, we assign a graph
(called a zero-divisor graph) whose vertices are labeled by the classes
of measurable functions defined on 2 and having values in A, with two
vertices f and g adjacent if f-g = 0 a.e.. We show that, if Q is atomic,
then not only the Beck’s conjecture holds but also the domination number
coincides to the clique number and chromatic number as well. We also

determine some other graph properties of such a graph.
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1. INTRODUCTION

Beck [10] introduced a coloring of commutative rings as follows: given a
commutative ring R, he associated to R a simple graph G whose vertices are
labeled by the elements of R, with two vertices adjacent (connected by an edge)
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if z -y = 0. Such a graph is called a zero-divisor graph of R. The purpose of
his idea was to establish a connection between graph theory and commutative
ring theory. Beck was mainly interested in characterizing and discussing the
rings which are finitely colorable, leaving aside possible applications to graph
theory.

By a measure space we mean a masurable space ({2, M) along with a measure
woon (2, M). The measure p is atomless if p({z}) = 0 for every z € Q. A
measurable set A is null if ©(A) =0 and conull if x(Q\ A) = 0. (See [16])

A graph is said to be embeddable in the plane, or planar, if it can be drawn
in the plane so that its edges intersect only at their ends. Any graph derived
from a graph G by a sequence of edge subdivisions is called a subdivision of G
or a G-subdivision.

A subset D of vertices in a graph G is a dominating set if every vertex
of the graph G is either an element of D or adjacent to an element of D.
The domination number v(G) of a graph G is the minimum cardinality of a
dominating set of G.

A proper coloring or simply a coloring of the vertices of a graph G is an
assignment of colors to the vertices in such a way that adjacent vertices have
distinct colors. x(G) is the minimal number of colors in a coloring of the graph
G. A maximal complete subgraph of a graph is a clique, and the clique number
w(G) of a graph G is the maximum order of a clique in G. It is well known that
X(G) > w(@) [11]. Beck conjectured that x(G) = w(G) for the zero divisor
graph of R and an arbitrary ring R. But Anderson and Naseer [5] have shown
that this is not the case in general, namely they presented an example of a
commutative local ring R with 32 elements for which x(G) > w(G). After that
lots of authors have worked on such graphs and found classes of graphs on
which Beck’s conjecture holds (see for instance [1, 2, 3, 6, 7, 8, 9, 14, 15, 17]).

The main aim of the present paper is to show that in fact Beck’s conjecture
is valid for a much wider class of relational structures, namely for measur-
able functions. Also, we give a condition under which such functions are not
finitely colorable. We also found a relation between the domination number
and chromatic number of such graphs.

2. MEASURABLE ZERO DIVISOR GRAPHS

Let (2, M, 1) be a measure space, A be a measurable semigroup with 0 and
R Dbe the set of all measurable functions from €2 into A. It is easy to see that
(R,-) is a semigroup, where - denotes the product of functions generated by
the binary operation of A.

For a fixed non-zero 6 € A and A C (2, we define the characteristic function
XA,s defined on €2 and taking values in A which sends all elements of A into ¢
and all other elements to 0.
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Equal almost everywhere is an equivalence relation in R and we use f for
both f and the class of f.

Observe that the class of the constant function on € which sends all elements
of Q to 0, the zero elemet of A is also the zero element of R, is denoted by 0.

Definition 2.1. An element f of R is a zero-divisor element if and only if
w(f #0) > 0 and for some g € R with u(g # 0) > 0, the equality f-g =0 a.e.
holds.

One can verify that f is a zero—divisor element of R if and only if both sets
{f =0} and {f # 0} have positive measure.

Motivated by the definition of zero divisor graph of semigroups [13] we define
measurable zero-divisor graph of Q and A as follows.

Definition 2.2. Let (2, M, i) be a measure space, A be a measurable semi-
group with 0 and R be the set of all measurable functions from 2 into A.
The measurable zero-divisor graph of €2 is a graph G with the set of all classes
of zero divisor elements of R as the vertex set and two vertices f and g are
adjacent if and only if f- g = 0 a.e.. We will denote it by ZD(Q, A).

One can easily see that the definition of zero- divisor graph of measurable
functions is well-defined, i.e., for f/ and ¢’ in R with /' = f a.e. and ¢ = ¢
a.e., f-g =0 a.e., implies f'- ¢’ =0 a.e..

For the rest of the paper we assume that (2, M, 1) is a measure space, A
is a measurable semigroup with zero element, s is some fixed non-zero element

of A and G = ZD(Q, A).

ExXAMPLE 2.3. G is a complete graph if and only if € is atomic and contains
one or two atoms.

EXAMPLE 2.4. G is a star graph if and only if €2 is atomic and contains one or
two atoms.

ExAMPLE 2.5. If G has a positive nonatomic part, or if G is atomic with more
than two atoms, then G is neither vertex-transitive, nor edge-transitive.

First of all we present some equiavalent conditions for the distance between
vertices of G.

Theorem 2.6. The distance of two vertices f and g of G can be calculated as
follows:
(i) supp f Nsupp g is null if and only if d(f,g) = 1.
(ii) Neither supp f Nsupp g s null nor supp fUsupp g is conull if and only
ifd(f,g9) =2.
(iii) supp f Nsuppg is not null but supp f Usupp g is conull if and only if
d(f,g) = 3.
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Proof. (i) It is easy to see that the following equalities hold.
{f-9#0}={f#0}n{g # 0} = supp f Nsuppg.

Therefore, we can say
d(f,g)=1 f is adjacent to g
f-9=0 ae.
n({f-g#0}) =0
p(supp f Nsupp g) = 0.

rout

(ii) Assume that p(supp f Nsuppg) # 0 and p((supp f Usuppg)®) # 0. By
(i) and the first assumption, we can conclude that f is not adjacent to g, i.e.

d(f,g) > 2. Now define h := X(suppfusuppg),s» Dy the assumption (suppf U
suppg)© has positive measure, thus we can say that h is a measurable function
with u(h #0) > 0.

We also have

supph Nsupp f = ()
yields
w(supp h Nsupp f) = 0.

By (i) we can say that f is adjacent to h.

Similar argument shows that g is also adjacent to h. Thus f ~ h ~ g is a
path from f to g, hence d(f,g) <2, i.e., d(f,g) = 2.

Now suppose that d(f,g) = 2. Thus by part (i) we can conclude that
w(supp f Nsuppg) > 0. We also have a vertex h which is adjacent to both f
and g. Therefore, we have the following statements:

f ~h = p(supp f Nsupp h) =0,
g ~h = u(suppgnsupph) = 0.
Therefore, we imply that

p((supp f Usupp g) Nsupp h) = 0.
The fact p(h = 0) > 0 implies that

p((supp f Usupp g)° Nsupph) > 0,

therefore,
p((supp f Usupp g)©) > 0.

(iii) If p(supp f Nsuppg) # 0 and p((supp f Usupp g)¢) # 0, Then by parts (i)
and (i), d(f,g) > 2.

f # g, implies that u(f # g) > 0. By the assumption in (iii), we have
p(supp f \ supp g) > 0.

Now, define h := Xgupp f\supp £,6 ad k = X(supp f)e,s-

Therefore f ~ k ~ h ~ g is also a path, i.e., d(f,g) < 3.

The inverse is deduced by (i) and (ii). O
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Applying Theorem 2.6, we will have the following corollary.

Corollary 2.7. With the notation of Theorem 2.6, the girth of G is 3 if and
only if M contains at least 3 disjoint measurable sets with positive measure.

Theorem 2.8. For an atomic measure space ) with the set of atoms A, we
have

1G) = w(@) = x(G) = |A].

Proof. Let D = {xa,s: A€ A}. It is easily seen that D is a clique in G.
Thus we can calculate that

X(G) = w(G) = [D] = |Al.

If we set |A| disjoint colors to all elements of A, then we can color the graph
G with these colors in the sense that, designate the color of some of atoms of
supp f to any vertex f. If f is adjacent to g, then by Theorem 2.6,

p(supp f Nsupp f) = 0.
Therefore, atoms of supp f and supp g and thus colors of f and g are different.
Hence we can color the graph G with |A| colors, i.e., x(G) < |A]. Finally we
have
Al < w(G) < x(G) < |A
We also prove that D is a dominating set which has the minimum cardinality
among dominatng sets. For a vertex f of G, f is a zero divisor element, thus
wu(f =0) >0, hence the set {f = 0} contains an atom A. Therefore f = x4,
i.e., D is a dominating set. Now, suppose that D’ is a dominating set with
[D'| < |D].
Set
E' ={suppf: fe D'}
For every W € E| there is an atom Z such that Z C W.
For every Z € A, there is some W € E which contains Z, otherwise for some
Z € A, there is no W € E which contains Z. Since Z is an atom, we can say

VW eE pWnZz)=0,
with the fact that every element of E has positive measure, yields
VW eE p(WnZz >0.
Therefore,
Vfl€D" [xz]-f#0,
which is a contradiction with the condition that D is a dominating set.

Now by the axiom of choice, we can define a function ¢ : A — E’ which
sends every element Z € A to some W € E’ where Z C W.
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Since |A| > |E’|, ¢ can not be a one to one function, hence for two distinct
elements of A such as Z and Z’ we have ¢(Z) = ¢(Z’), thus for some W € E’,
Z € W and Z' € W and there is no W’ € E' with W’ = Z . Thus we can say

VW'e E' u(W'\ Z) > 0.
Now if we set g = xq\ 7,5, we have

vf € Dv g- f 7£ Oa
since
supp f Nsuppg = (2\ 2) N (W'\ Z2) = W'\ Z,
where W/ = supp f and (W' \ Z) # 0.
Therefore, f is not adjacent to any element of D’ which says D’ is not a
dominating set. A contradiction with the hypothesis |D'| < |D|. O

Theorem 2.9. If Q has an atomless subset, then
Y(G) = w(G) = x(G) = oo.

Proof. Suppose that A is an atomless subset, thus there is a decreasing
sequence of measurable sets

ADA DAy

where

p(A) > p(Ar) > p(Az) > -
By defining the difference of the sets we will have a sequence of disjoint sets
By, By, - -+ with positive measures. One can see that the set

{XBiﬁ RS N}

is a clique with infinite cardinality, therefore, w(G) = x(G) = cc.

If D is a finite dominating set with cardinality n, we can suppose that
D ={f1, fo, -, fu} is a dominating set. Let A; = supp f; and for 1 < i < n,
define A; = A;—1 Nsupp f; if u(A;—1 Nsupp f;) > 0, otherwise let 4; = A;_;.
Thus p(A,) > 0. Q is atomless, thus we can find B C A,,, where p(B) > 0 and
u(B) < u(Ay).

One can easily see that xpe s is a vertex different with all elements of D
which is adjacent to non of elements of D, a contradiction. Hence domination
number of G is infinite. O

Halas in [14] proved that if the clique number of a zero divisor graph for a
poset (P, <) is finite, then the number of all minimal prime ideals of P is finite.
In the following, we present some similar but a little different properties of G.

Lemma 2.10. M C R is a minimal ideal if and only if M is an ideal and for
some atom A, all non zero elements f of M have A as their support.
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Proof. Assume that for some f € M we have supp f = B which is not an
atom or contains two atoms. Thus we can find another positive measure C'
which is a pure subset of B. Now it is enough to define

N={feM: supp f C C},

which is a non-zero ideal of R. The converse is obvious. [

Lemma 2.10 and Theorem 2.8 conclude the following theorem.

Theorem 2.11. The following are equivalent:
(1) the cliqgue number of G is finite.
(2) the chromatic number of G is finite.
(3) the dominating number of G is finite.
(4) the number of minimal ideals of R is finite.
(5) Q is atomic with finite number of atoms.

Now we can determine all ends of the graph G and their corollaries.

Theorem 2.12. FEvery vertex f of G is either an end or is contained in a
triangle. The first case may occur only if Q has an atom.

Proof. Suppose that f = x4c s where A is an atom. The only vertex which
is adjacent to f is g = x 4,5, therefore f is an end of G.

Now assume that €2 is atomless, thus B has positive measure, where B =
(supp f)¢ for a vertex f of G. Thus B = C U D, where C and D are disjoint
with positive measures. One can see that f, xcs and xp,s is a triangle. O

The core of a graph G is the largest subgraph of G in which every edge is
the edge of a cycle in G [12].
The following are corollaries immediately concluded from Theorem 2.12.

Corollary 2.13. The core of G contains all vertices of G except for the vertices
f in which p(supp f \ A) =0 for some atom A.

Corollary 2.14. G has a cut vertex if and only if Q0 has an atom.
We also present some conditions for neighbors of the graph G.

Theorem 2.15. supp fUsupp g s conull if and only if each vertex of N(f) is
adjacent to each vertex of N(g).

Proof. Suppose that supp f Usuppg is conull, h € N(f) and k € N(g). By
definition we will have
supp h C (supp [)*,
and
supp k C (supp g)°.
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With the assumption, we can conclude supph Nsuppk = 0, i.e., h is adjacent
to k. For the converse, assume that supp f U supp g is not conull, hence there
exists a measurable set A with positive measure which has a zero measure
intersection with both supp f and supp g. It is enough to consider the function
X 4,6 which is obviously in both N(f) and N(g). O

Theorem 2.16. ) is atomic with finite number of atoms if and only if the
ACC condition holds for neighborhoods of G.

Proof. Suppose that there exists an infinite chain of neighborhoods

N(fi) CN(f2) CN(fs) C -
Let A; = (supp f;)¢ for every natural i. Hence we have
Ayl CAyCA3C---
and for B; = A; \ A;_1, and B; = A; we will have
u(B1) < p(Bz) < p(Bs) < -

Therefore, € is not atomic or has an infinite atoms.
For the converse, suppose that 2 is not atomic or has an infinite atoms. In
both cases we can find a sequence of positive measure sets

A1CA2CA3C"'

where
((Az \ Ar) < p(As\ Ag) < -

Now if we define f; = xac s, we derive an infinite chain of neighborhoods of
fiS. Il

It is well known that no planar graph can contain a subdivision of either K5
or K33 (see [12]). A fundamental theorem due to Kuratowski (1930) states that
every nonplanar graph necessarily contains a copy of a subdivision of either K5
or K33 as well.

Theorem 2.17. G is planar if and only if ) is atomic and does not contain
more than three atoms.

Proof. 1If € is atomic containing less than four atoms, a simple drawing
shows that G is planar.

Now suppose that €} contains a subset {a,b,c,d} of atoms. Let A := x4,
B :=xps, C = Xc5, D := x4,5 and similarly for more than one alphabets (for
instance AB := X4¢,5).- Then the following diagram shows that G contains a
subdivision of K3 3. If {2 is not atomic, then there are at least four mutually
disjoint measurable sets a, b, ¢, d with positive measure and the latter proof can
be done. OJ
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