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1. Introduction

Let A be a C*-algebra with unit 1 and let S be the state space of A, i.e.
S = {ϕ ∈ A∗ : ϕ ≥ 0, ϕ(1) = 1}. For each a ∈ A, the C*-algebra numerical
range is defined by

V (a) := {ϕ(a) : ϕ ∈ S}.
It is well known that V (a) is non empty, compact and convex subset of the
complex plane, V (α1 + βa) = α + βV (a) for a ∈ A and α, β ∈ C, and if
z ∈ V (a), |z| ≤ ‖a‖ (For further details see [3]).

As an example, let A be the C*-algebra of all bounded linear operators on a
complex Hilbert space H and A ∈ A. It is well known that V (A) is the closure
of W (A), where

W (A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1},
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is the usual numerical range of the operator T .

In [7] the authors have proved that,

Theorem 1. Let the operator A be quadratic i.e.;

A2 − 2μA − λI = 0

with some μ, λ ∈ C. Then W (A) is the elliptical disc with foci z1,2 = μ ±√
μ2 + λ and the major/minor axis of the length

s ± |μ2 + λ|s−1.

Here s = ‖A − μI‖.
The purpose of this paper is to show that an analogous result holds for

quadratic elements of any C*-algebra.

2. main result

Theorem 2. If A is a C*-algebra with unity and a ∈ A is quadratic i.e.

a2 − 2μa − λ1 = 0

with some μ, λ ∈ C. Then V (a) is the elliptical disc with foci z1,2 = μ ±√
μ2 + λ and the major/minor axis of the length

s ± |μ2 + λ|s−1.

Here s = ‖a − μ1‖.
Proof. Let ρ be a state of A. Then there exists a cyclic representation ϕρ of A
on a Hilbert space Hρ and a unit cyclic vector xρ for Hρ such that

ρ(a) = 〈ϕρ(a)xρ, xρ〉, a ∈ A.

By Gelfand-Naimark Theorem the direct sum ϕ : a �→ ∑
ρ∈S ⊕ϕρ(a) is a faith-

ful representation of A on the Hilbert space H =
∑

ρ∈S ⊕Hρ (see [5]). There-
fore for each ρ ∈ S, ρ(a) ∈ W (ϕρ(a)) ⊂ W (ϕ(a)) and hence V (a) contained in
W (ϕ(a)). On the other hand if x is a unit vector of H, then the formula ρ(b) =
〈ϕ(b)x, x〉, b ∈ A defines a state on A and hence ρ(a) = 〈ϕ(a)x, x〉 ∈ V (a) and
it follows that

(1) W (Ta) = V (a)

where Ta = ϕ(a). (see also Theorem 3 of [2]).

But T 2
a −2μTa−λI = ϕ2(a)−2μϕ(a)−λϕ(1) = ϕ(a2−2μa−λ1) = ϕ(0) = 0.

Then Ta is quadratic operator. So by Theorem 1, W (Ta) is the elliptical disc
with foci at z1,2 = μ ± √

μ2 + λ and the major/minor axis of the length

s ± |μ2 + λ|s−1.



C∗-Algebra numerical range of quadratic elements 51

where s = ‖Ta −μI‖. Since ϕ is isometry, then s = ‖ϕ(a−μ1)‖ = ‖a−μ1‖.
Now the proof is completed by equation (1). �

Corollary 3. If a is a nontrivial self-inverse element in C*-algebra A i.e.
a2 = 1, then V (a) is a closed ellipse with foci at ±1 and major/minor axis
‖a‖ ± 1

‖a‖

Corollary 4. If a is a nontrivial nilpotent element with nilpotency 2 i.e. a2 =
0, then V (a) is a closed disc with center at the origin and radius ‖a‖

2 .

3. Hardy Space

Let U denote the open unit disc in the complex plane, and the Hardy
space H2 the functions f(z) =

∑∞
n=0 f̂(n)zn holomorphic in U such that∑∞

n=0 |f̂(n)|2 < ∞, with f̂(n) denoting the n-th Taylor coefficient of f . The
inner product inducing the norm of H2 is given by < f, g >:=

∑∞
n=0 f̂(n)ĝ(n).

The inner product of two functions f and g in H2 may also be computed by
integration:

< f, g >=
1

2πi

∫
∂U

f(z)g(z)
dz

z

where ∂U is positively oriented and f and g are defined a.e. on ∂U via radial
limits.

For each holomorphic self map ϕ of U induces on H2 a bounded composition
operator Cϕ defined by the equation Cϕf = f ◦ ϕ(f ∈ H2). In fact (see [4])√

1
1 − |ϕ(0)|2 ≤ ‖ϕ‖ ≤

√
1 + |ϕ(0)|
1 − |ϕ(0)|

In the case ϕ(0) �= 0 Joel H. Shapiro [9] has been shown that the second
inequality changes to equality if and only if ϕ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of U onto
itself. Each such map is linear fractional, and can be represented as a product
w.αp, where

αp(z) :=
p − z

1 − pz
, (z ∈ U),

for some fixed p ∈ U and w ∈ ∂U (See [8]).
The map αp interchanges the point p and the origin and it is a self-inverse
automorphism of U.
Therefore Cαp is a self-inverse composition operator and by corollary 3 W (Cαp)
is an ellipse with foci at ±1 and major axis ‖Cαp‖ + 1

‖Cαp‖ = 2√
1−|p|2 .

This is another proof of [1].
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4. Dirichlet space

The Dirichlet space, which we denote by D, is the set of all analytic functions
f on the unit disc U for which∫

U

|f ′
(z)|2dA(z) < ∞,

where dA denote the normalized area measure. Equivalently an analytic func-
tion f is in D if

∑∞
n=1 n|f̂(n)|2 < ∞, where f̂(n) denotes the n-th Taylor

coefficients of f . The inner product inducing the norm of D is given by

< f, g >D:= f(0)g(0) +
∫

U

f
′
(z)g′(z)dA(z), f, g ∈ D.

The inner product of two functions f(z) =
∑∞

n=0 f̂(n)zn and g(z) =
∑∞

n=0 ĝ(n)zn

in D may also be computed by

< f, g >D:= f(0)g(0) +
∞∑

n=1

nf̂(n)ĝ(n).

For each holomorphic self-map ϕ of U we define the composition operator Cϕ

by the equation Cϕf = foϕ(f ∈ D). A univalent self-map ϕ of the unit
disc is called a full map if it maps U onto its subset of full measure, i.e.,
A(U\ϕ(U)) = 0. It is shown in [6] that for any univalent full map ϕ,

‖Cϕ‖ =

√
L + 2 +

√
L(4 + L)

2
,

where L = − log(1 − |ϕ(0)|2).
Thus we have the following:

The W (Cαp) is ellipse with foci at ±1 and major/minor axis

‖Cαp‖ ±
1

‖Cαp‖
=

L + 2 +
√

L(4 + L) ± 2√
2L + 4 + 2

√
L(4 + L)

.

It is easy to see that W (Cα0 ) = [−1, 1].
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