C^{*}-Algebra Numerical Range of Quadratic Elements

M. T. Heydari
Department of Mathematics, College of Sciences, Yasouj University, Yasouj, 75914, Iran
E-mail: heydari@mail.yu.ac.ir

Abstract

It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C^{*}-algebra numerical range.

Keywords: C*-algebra, Numerical range, Quadratic element, Faithful representation.

2000 Mathematics subject classification: 47A12, 46K10.

1. Introduction

Let \mathcal{A} be a C^{*}-algebra with unit 1 and let \mathcal{S} be the state space of \mathcal{A}, i.e. $\mathcal{S}=\left\{\varphi \in \mathcal{A}^{*}: \varphi \geq 0, \varphi(1)=1\right\}$. For each $a \in \mathcal{A}$, the C^{*}-algebra numerical range is defined by

$$
V(a):=\{\varphi(a): \varphi \in \mathcal{S}\}
$$

It is well known that $V(a)$ is non empty, compact and convex subset of the complex plane, $V(\alpha 1+\beta a)=\alpha+\beta V(a)$ for $a \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$, and if $z \in V(a),|z| \leq\|a\|$ (For further details see [3]).

As an example, let \mathcal{A} be the C^{*}-algebra of all bounded linear operators on a complex Hilbert space H and $A \in \mathcal{A}$. It is well known that $V(A)$ is the closure of $W(A)$, where

$$
W(A):=\{\langle A x, x\rangle: x \in H,\|x\|=1\}
$$

Received 05 January 2010; Accepted 02 April 2010
is the usual numerical range of the operator T.
In [7] the authors have proved that,
Theorem 1. Let the operator A be quadratic i.e.;

$$
A^{2}-2 \mu A-\lambda I=0
$$

with some $\mu, \lambda \in \mathbb{C}$. Then $\overline{W(A)}$ is the elliptical disc with foci $z_{1,2}=\mu \pm$ $\sqrt{\mu^{2}+\lambda}$ and the major/minor axis of the length

$$
s \pm\left|\mu^{2}+\lambda\right| s^{-1} .
$$

Here $s=\|A-\mu I\|$.
The purpose of this paper is to show that an analogous result holds for quadratic elements of any C^{*}-algebra.

2. main result

Theorem 2. If \mathcal{A} is a C^{*}-algebra with unity and $a \in \mathcal{A}$ is quadratic i.e.

$$
a^{2}-2 \mu a-\lambda 1=0
$$

with some $\mu, \lambda \in \mathbb{C}$. Then $V(a)$ is the elliptical disc with foci $z_{1,2}=\mu \pm$ $\sqrt{\mu^{2}+\lambda}$ and the major/minor axis of the length

$$
s \pm\left|\mu^{2}+\lambda\right| s^{-1} .
$$

Here $s=\|a-\mu 1\|$.
Proof. Let ρ be a state of \mathcal{A}. Then there exists a cyclic representation φ_{ρ} of \mathcal{A} on a Hilbert space \mathcal{H}_{ρ} and a unit cyclic vector x_{ρ} for \mathcal{H}_{ρ} such that

$$
\rho(a)=\left\langle\varphi_{\rho}(a) x_{\rho}, x_{\rho}\right\rangle, a \in \mathcal{A} .
$$

By Gelfand-Naimark Theorem the direct sum $\varphi: a \mapsto \sum_{\rho \in \mathcal{S}} \oplus \varphi_{\rho}(a)$ is a faithful representation of \mathcal{A} on the Hilbert space $\mathcal{H}=\sum_{\rho \in \mathcal{S}} \oplus \mathcal{H}_{\rho}$ (see [5]). Therefore for each $\rho \in \mathcal{S}, \rho(a) \in W\left(\varphi_{\rho}(a)\right) \subset W(\varphi(a))$ and hence $V(a)$ contained in $W(\varphi(a))$. On the other hand if x is a unit vector of \mathcal{H}, then the formula $\rho(b)=$ $\langle\varphi(b) x, x\rangle, b \in \mathcal{A}$ defines a state on \mathcal{A} and hence $\rho(a)=\langle\varphi(a) x, x\rangle \in V(a)$ and it follows that

$$
\begin{equation*}
W\left(T_{a}\right)=V(a) \tag{1}
\end{equation*}
$$

where $T_{a}=\varphi(a)$. (see also Theorem 3 of [2]).
But $T_{a}^{2}-2 \mu T_{a}-\lambda I=\varphi^{2}(a)-2 \mu \varphi(a)-\lambda \varphi(1)=\varphi\left(a^{2}-2 \mu a-\lambda 1\right)=\varphi(0)=0$. Then T_{a} is quadratic operator. So by Theorem $1, W\left(T_{a}\right)$ is the elliptical disc with foci at $z_{1,2}=\mu \pm \sqrt{\mu^{2}+\lambda}$ and the major/minor axis of the length

$$
s \pm\left|\mu^{2}+\lambda\right| s^{-1} .
$$

where $s=\left\|T_{a}-\mu I\right\|$. Since φ is isometry, then $s=\|\varphi(a-\mu 1)\|=\|a-\mu 1\|$. Now the proof is completed by equation (1).

Corollary 3. If a is a nontrivial self-inverse element in C^{*}-algebra \mathcal{A} i.e. $a^{2}=1$, then $V(a)$ is a closed ellipse with foci at ± 1 and major/minor axis $\|a\| \pm \frac{1}{\|a\|}$

Corollary 4. If a is a nontrivial nilpotent element with nilpotency 2 i.e. $a^{2}=$ 0 , then $V(a)$ is a closed disc with center at the origin and radius $\frac{\|a\|}{2}$.

3. Hardy Space

Let \mathbb{U} denote the open unit disc in the complex plane, and the Hardy space H^{2} the functions $f(z)=\sum_{n=0}^{\infty} \widehat{f}(n) z^{n}$ holomorphic in \mathbb{U} such that $\sum_{n=0}^{\infty}|\widehat{f}(n)|^{2}<\infty$, with $\widehat{f}(n)$ denoting the n-th Taylor coefficient of f. The inner product inducing the norm of H^{2} is given by $<f, g>:=\sum_{n=0}^{\infty} \widehat{f}(n) \overline{\hat{g}}(n)$. The inner product of two functions f and g in H^{2} may also be computed by integration:

$$
<f, g>=\frac{1}{2 \pi i} \int_{\partial U} f(z) \overline{g(z)} \frac{d z}{z}
$$

where $\partial \mathbb{U}$ is positively oriented and f and g are defined a.e. on $\partial \mathbb{U}$ via radial limits.

For each holomorphic self map φ of \mathbb{U} induces on H^{2} a bounded composition operator C_{φ} defined by the equation $C_{\varphi} f=f \circ \varphi\left(f \in H^{2}\right)$. In fact (see [4])

$$
\sqrt{\frac{1}{1-|\varphi(0)|^{2}}} \leq\|\varphi\| \leq \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}}
$$

In the case $\varphi(0) \neq 0$ Joel H. Shapiro [9] has been shown that the second inequality changes to equality if and only if φ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of \mathbb{U} onto itself. Each such map is linear fractional, and can be represented as a product $w . \alpha_{p}$, where

$$
\alpha_{p}(z):=\frac{p-z}{1-\bar{p} z},(z \in \mathbb{U})
$$

for some fixed $p \in \mathbb{U}$ and $w \in \partial \mathbb{U}$ (See [8]).
The map α_{p} interchanges the point p and the origin and it is a self-inverse automorphism of \mathbb{U}.
Therefore $C_{\alpha_{p}}$ is a self-inverse composition operator and by corollary $3 \overline{W\left(C_{\alpha_{p}}\right)}$ is an ellipse with foci at ± 1 and major axis $\left\|C_{\alpha_{p}}\right\|+\frac{1}{\left\|C_{\alpha_{p}}\right\|}=\frac{2}{\sqrt{1-|p|^{2}}}$.
This is another proof of [1].

4. Dirichlet space

The Dirichlet space, which we denote by \mathcal{D}, is the set of all analytic functions f on the unit disc \mathbb{U} for which

$$
\int_{\mathbb{U}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

where $d A$ denote the normalized area measure. Equivalently an analytic function f is in \mathcal{D} if $\sum_{n=1}^{\infty} n|\hat{f}(n)|^{2}<\infty$, where $\hat{f}(n)$ denotes the n-th Taylor coefficients of f. The inner product inducing the norm of \mathcal{D} is given by

$$
<f, g>_{\mathcal{D}}:=f(0) \overline{g(0)}+\int_{\mathbb{U}} f^{\prime}(z) \overline{g^{\prime}(z)} d A(z), f, g \in \mathcal{D} .
$$

The inner product of two functions $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ and $g(z)=\sum_{n=0}^{\infty} \hat{g}(n) z^{n}$ in \mathcal{D} may also be computed by

$$
<f, g>_{\mathcal{D}}:=f(0) \overline{g(0)}+\sum_{n=1}^{\infty} n \hat{f}(n) \overline{\hat{g}(n)} .
$$

For each holomorphic self-map φ of \mathbb{U} we define the composition operator C_{φ} by the equation $C_{\varphi} f=f o \varphi(f \in \mathcal{D})$. A univalent self-map φ of the unit disc is called a full map if it maps \mathbb{U} onto its subset of full measure, i.e., $A(U \backslash \varphi(U))=0$. It is shown in [6] that for any univalent full map φ,

$$
\left\|C_{\varphi}\right\|=\sqrt{\frac{L+2+\sqrt{L(4+L)}}{2}}
$$

where $L=-\log \left(1-|\varphi(0)|^{2}\right)$.
Thus we have the following:

The $\overline{W\left(C_{\alpha_{p}}\right)}$ is ellipse with foci at ± 1 and major/minor axis

$$
\left\|C_{\alpha_{p}}\right\| \pm \frac{1}{\left\|C_{\alpha_{p}}\right\|}=\frac{L+2+\sqrt{L(4+L)} \pm 2}{\sqrt{2 L+4+2 \sqrt{L(4+L)}}}
$$

It is easy to see that $\overline{W\left(C_{\alpha_{0}}\right)}=[-1,1]$.

Acknowledgement. I would like to thank the referee for a number of helpful comments and suggestions.

References

1. A. Abdollahi, The numerical range of a composition operator with conformal automorphism symbol, Linear Algebra Appl., 408 (2005), 177-188.
2. S.K. Berberian, G.H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math. Soc., 18 (1967), 499-503
3. F.F. Bonsall, J. Duncan, Numerical Ranges of Operators on normed Spaces and of Elements of Normed Algebras, London-New York: Cambridge University Press 1971.
4. C. C. Cowen and B. D. Maccluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
5. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol I. Elementary Theory. Pure and Applied Mathematics 100, NewYork: Academic Press 1983.
6. M.J. Martin and D. Vukotic, Norms and spectral radii of composition operators acting on the Dirichlet spaces, J. Math. Analysis and Application, 304 (2005), 22-32.
7. L. Rodman and I. M. Spitkovsky, On generalized numerical ranges of quadratic operators, Operator theory: Advances and Applications, 179 (2008), 241-256.
8. W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, New York, 1987.
9. J. H. Shapiro, What do composition operators know about inner functions, Monatsh. Math., 130 (2000), 57-70.
10. S.-H. Tso and P. Y. Wu, Matricial ranges of quadratic operators, Rocky Mountain J. Math., 29 (3) (1999), 1139-1152.
