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1. Introduction

Translation invariant spaces on a locally compact abelian group G are closed

subspaces of L2(G) that are invariant under translations by a closed cocom-

pact subgroup of G. Especially, a shift invariant space is a closed subspace

of L2(G) that is invariant under translations by elements of a uniform lattice

in G. Shift invariant spaces are applicable in various areas of mathematical

analysis and its applications such as approximation, wavelet, and frame the-

ory. These spaces are studied on R
n in [3] by Bownik and on locally compact
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abelian groups in [9, 10] by the second and the third authors (see also [6]).

Translation invariant spaces in the setting of locally compact abelian groups

are studied in [4, 2]. Introducing a metric on the class of translation invari-

ant spaces provides a platform for topological investigations on them and it is

interesting on its own right. In this paper, we introduce a translation metric

on the collection of all translation invariant subspaces of L2(G), where G is a

locally compact abelian group. We then study some topological properties and

convergence in this metric space. This paper is organized as follows. In the

rest of this section, we state some preliminaries and notation related to locally

compact abelian groups and translation invariant spaces. In Section 2, follow-

ing an idea from [1], we define a translation metric on TI(G), the collection

of all translation invariant subspaces of L2(G), and we show that TI(G) is a

complete, noncompact, and disconnected metric space. In Section 3, we study

convergence in the translation metric.

Throughout this paper, we assume that G is a second countable locally

compact abelian group. Let Ĝ denote the dual group of G equipped with the

compact convergence topology and the Fourier transform,ˆ: L1(G) −→ C0(Ĝ),

ϕ −→ ϕ̂, be defined by ϕ̂(ξ) =
∫
G
ϕ(x)ξ(x)dx. The Fourier transform can

be extended to a unitary isomorphism from L2(G) to L2(Ĝ) known as the

Plancherel transform [8, Theorem 4.25].

If L is a closed cocompact subgroup of G, then the subgroup L⊥ = {ξ ∈

Ĝ; ξ(L) = {1}}, the annihilator of L in Ĝ, is a closed cocompact subgroup of

Ĝ. For closed cocompact subgroup L of G, a fundamental domain of L in G

is a measurable set SL in G such that every x ∈ G can be uniquely written in

the form x = ks, where k ∈ L and s ∈ SL, whose existence is guaranteed by

[11, Lemma 1.1]. For more details on locally compact abelian groups, we refer

to the usual textbooks about locally compact groups, e.g.[8, 11].

For A ⊆ L2(G), the translation invariant space generated by A, is defined by

S(A) = {Tkϕ : k ∈ L,ϕ ∈ A}. IfA = {ϕ}, then S(ϕ) is called a principal trans-

lation invariant space. The mapping T , defined from L2(G) to L2(SL⊥ , l2(L⊥))

by

T ϕ(ξ) = (ϕ̂(ξη))η∈L⊥ , (1.1)

is called the fiberization mapping, where L2(SL⊥ , l2(L⊥)) is the space of square

integrable vector valued functions on SL⊥ to l2(L⊥). For a locally compact

abelian group G with its closed cocompact subgroup L, a range function is

defined to be

J : SL⊥ −→ {closed subspaces of l2(L⊥)}.

The mapping J is called measurable if the mapping ξ 7−→ 〈PJV
(ξ)f, g〉 is mea-

surable for each f, g ∈ l2(L⊥), where PJV
(ξ) is the orthogonal projection onto

J(ξ). By [4, Theorem 3.8] a closed subspace V ⊆ L2(G) is translation invariant

if and only if V = {ϕ ∈ L2(G) : T ϕ(ξ) ∈ J(ξ) for a.e. x ∈ SL⊥}, where J is a
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measurable range function and T is the mapping as in (1.1). Identifying range

functions which are equivalent almost everywhere, the correspondence between

translation invariant spaces and measurable range functions is one to one and

onto. For a translation invariant space V with range function J , let PJV
(ξ) be

the projection of l2(L⊥) onto J(ξ) for ξ ∈ SL⊥ . The spectral function of V is

defined to be the mapping σV : Ĝ −→ [0, 1] given by

σV (ξη) = ‖PJV
(ξ)(eη)‖

2, ξ ∈ SL⊥ , η ∈ L⊥,

where (eη) denotes the standard basis for l2(L⊥). The local trace function

associated to V is defined as

τV,f (ξ) = 〈f, PJV
(ξ)f〉, f ∈ l2(L⊥), ξ ∈ Ĝ.

Note that there is a close relation between the local trace function associated

to V and the spectral function of V (see the proof of Corollary 3.2). For more

information on spectral function and local trace function we refer to [5, 7].

2. Translation Metric

In this section we introduce and investigate topological properties of a trans-

lation metric θ, a metric on the collection of all translation invariant subspaces

of L2(G). Let TI(G) denote the collection of all translation invariant subspaces

of L2(G). For each V and W in TI(G) define

θ(V,W ) = inf{α > 0 : m({ξ ∈ SL⊥ : ‖PJV
(ξ)− PJW

(ξ)‖ > α}) = 0}, (2.1)

where JV and JW are the measurable range functions associated with V and

W , PJV
(ξ) and PJW

(ξ), ξ ∈ SL⊥ , are the orthogonal projections onto JV (ξ)

and JW (ξ) respectively, ‖.‖ denotes the operator norm, and m is the Haar

measure of Ĝ. In the forthcoming proposition, we show that θ is a metric on

TI(G), which is called translation metric. Note that if V and W are translation

invariant spaces, then θ(V,W ) ≤ ǫ if and only if, ‖PJV
(ξ) − PJW

(ξ)‖ ≤ ǫ, for

a.e. ξ ∈ SL⊥ .

Proposition 2.1. With the notation as above, θ is a metric on TI(G).

Proof. Positivity of θ follows from the definition. For V and W in TI(G), if

θ(V,W ) = 0, one can find a sequence (αn) of positive numbers converging

to 0 and a set E of measure zero such that ‖PJV (ξ) − PJW (ξ)‖ ≤ αn, for

all n ∈ N and for ξ ∈ SL⊥ . It follows that ‖PJV (ξ) − PJW (ξ)‖ = 0 for a.e.

ξ ∈ SL⊥ , so the projections onto JW (ξ) and JV (ξ) are the same a.e. and hence

V = W , in the sence of the usual convention that two translation invariant

spaces are equal if the corresponding range functions are equal a.e. On the

other hand, V = W implies that JV (ξ) = JW (ξ) for a.e. ξ ∈ SL⊥ , which in

turn implies that ‖PJV (ξ) − PJW (ξ)‖ > 0 only on a set of measure 0. Hence

θ(V,W ) = 0. For the triangle inequality, if U , V , and W are translation

invariant spaces and ǫ > 0, one can get M1,M2 > 0 such that M1 < θ(V,U)+ ǫ
2 ,
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M2 < θ(U,W ) + ǫ
2 , m({ξ ∈ SL⊥ : ‖PJV (ξ) − PJU (ξ)‖ > M1}) = 0, and m({ξ ∈

SL⊥ : ‖PJU (ξ) − PJW (ξ)‖ > M2}) = 0. Applying the triangle inequality for the

norm gives

‖PJV (ξ) − PJW (ξ)‖ ≤ M1 +M2 a.e ξ ∈ SL⊥ .

It follows that θ(V,W ) ≤ θ(V,U)+θ(U,W ). Finally, it’s obvious that θ(V,U) =

θ(U, V ). �

In the sequel, we show that TI(G) is a complete, noncompact, and discon-

nected metric space. The following lemma is used in the proof of the next

theorem.

Lemma 2.2. Let (Jn) be a sequence of measurable range functions, and let

(Pn(ξ)) be the corresponding sequence of orthogonal projections onto Jn’s. Sup-

pose that (Pn(ξ)) converges to the orthogonal projection P (ξ) in the operator

norm for ξ ∈ SL⊥ . If J(ξ) is the range of P (ξ), then J is a measurable range

function.

Proof. Let f ∈ l2(L⊥). Setting Fn(ξ) = Pn(ξ)f and F (ξ) = P (ξ)f , we have

‖Fn(ξ)− F (ξ)‖ ≤ ‖Pn(ξ)− P (ξ)‖‖f‖. (2.2)

It now follows that F (ξ) = limFn(ξ). Thus F is the limit of a sequence (Fn)

of vector valued measurable functions and hence is measurable. That is J is

measurable. �

Theorem 2.3. The space TI(G) is complete in the translation metric.

Proof. Suppose (Vn) is Cauchy in TI(G). Then (PJVn
(ξ)) is Cauchy in the

Banach space BL(l2(L⊥)), the space of all bounded linear operators on l2(L⊥).

Hence it converges to an orthogonal projection P (ξ) for a.e. ξ ∈ SL⊥ . Let J(ξ)

be the closed subspace of l2(L⊥) associated with the orthogonal projection

P (ξ). Consider the translation invariant space V := {ϕ ∈ L2(G) : T ϕ(ξ) ∈

J(ξ) a.e. ξ ∈ SL⊥}, we have JV (ξ) = J(ξ) for a.e. ξ ∈ SL⊥ , and hence

PJV
(ξ) = P (ξ) for a.e. ξ ∈ SL⊥ . Consequently, (Vn) converges to V in the

translation metric. �

As a consequence of Theorem 2.3 we have the following corollary. Let

PTI(G) denote the collection of all principal translation invariant subspaces

of L2(G).

Corollary 2.4. The space PTI(G) is complete in the translation metric.

Proof. Suppose that (Vn) is a Cauchy sequence in PTI(G). By Theorem 2.3,

(Vn) converges to some V ∈ TI(G). We need only to show that V has a single

generator. For 0 < ǫ < 1, choose p ∈ N such that θ(Vn, V ) < ǫ for all n ≥ p.

This implies that ‖PJVn
(ξ) − PJV

(ξ)‖ < ǫ for a.e. ξ whenever n ≥ p. Hence

dim JV (ξ) = dim JVn
(ξ) = 1 for a.e. ξ ([13, Theorem 4.35]). This proves that

V can be generated by a single function, and hence V ∈ PTI(G). �

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
26

-0
1-

30
 ]

 

                               4 / 7

http://ijmsi.com/article-1-994-en.html


On a metric on translation invariant spaces 65

Let FTI(G) be the collection of all translation invariant spaces generated

by a fixed number of elements of L2(G). With the same proof as Corollary

2.4, one can see that FTI(G) is complete in the translation metric. Indeed, we

have the following corollary.

Corollary 2.5. The collection FTI(G) is complete in the translation metric.

Now we show that TI(G) is not a compact metric space.

Proposition 2.6. The space TI(G) is not compact in the translation metric

topology.

Proof. Using [12, Theorem 45.1], it is enough to show that TI(G) is not totally

bounded in the translation metric. First choose a countable basis {ϕ1, ϕ2, . . . }

for L2(G). Set Vm = S(Am), where Am = {ϕ1, ϕ2, . . . , ϕm}. Then Vm ⊂ Vm+1

for any m, and hence ‖PJVm
(ξ)−PJVm+1

(ξ)‖ = 1 for all ξ ∈ SL⊥ ([13, Theoram

4.30]). That is θ(Vm, Vm+1) = 1 for all m. Hence for ǫ = 1
2 , no finite collection

of ǫ-balls can contain all Vm’s. �

In the next theorem we show that the metric space TI(G) is disconnected.

Theorem 2.7. The space TI(G) is disconnected in the translation metric.

Proof. It is enough to show that TI(G) has an open and closed proper subset.

That PTI(G) is closed follows from the Corollary 2.4. Now we show that it

is open. Let V ∈ PTI(G); put r = 1
2 . We show that Br(V ) ⊆ PTI(G),

where Br(V ) is an open ball with center V and radius r. Let W ∈ Br(V );

then θ(V,W ) < 1
2 , and hence dim JV (ξ) = dim JW (ξ) for a.e. ξ ∈ SL⊥ ([13,

Theorem 4.35]). Hence W ∈ PTI(G). Since V is arbitrary, then PTI(G) is an

open subspace of TI(G). That is TI(G) is disconnected. �

3. Convergence

In this section we establish a few results about convergence in the translation

metric. Indeed we study the relation between convergence of a sequences of

translation invariant spaces in the translation metric and uniform convergence

of corresponding local trace functions.

Proposition 3.1. Let (Vn) be a sequence of translation invariant subspaces

converging to a translation invariant subspace V in the translation metric. For

any f ∈ l2(L⊥), the local trace function τVn,f converges uniformly to τV,f in

SL⊥ , except possibly on a set of measure zero.

Proof. We have for almost every ξ ∈ SL⊥ ,

|τVn,f (ξ)− τV,f (ξ)| = |〈f, PJVn
(ξ)f〉 − 〈f, PJV

(ξ)f〉|

= |〈f, (PJVn
(ξ)− PJV

(ξ))f〉|

≤ ‖f‖2(‖PJVn
(ξ)− PJV

(ξ)‖)

≤ ‖f‖2θ(Vn, V ).
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The uniform convergence of local trace functions follows easily. �

Corollary 3.2. Let (Vn) be a sequence of translation invariant subspaces con-

verging to a translation invariant subspace V in the translation metric. Then

the corresponding sequence of spectral functions of Vn converges uniformly to

the spectral function of V on Ĝ a.e.

Proof. Let (eη) denote the standard orthonormal basis of l2(L⊥). Then

τV,eη (ξ) = 〈eη, PJV
(ξ)eη〉

= 〈PJV
(ξ)eη, PJV

(ξ)eη〉

= ‖PJV
(ξ)eη‖

2

= σV (ξ + η).

This implies by Proposition 3.1 that sequence of spectral functions of Vn con-

verges uniformly to the spectral function of V . �

Proposition 3.3. Let V, Vm ∈ TI(G) for any m ∈ N. Assume that the local

trace function τVm,f converges uniformly to τV,f on SL⊥ , except possibly on a

set of measure zero and for all f ∈ l2(L⊥) with ‖f‖ = 1. Then (Vm) converges

to V in the translation metric.

Proof. The result follows from the following identification.

sup
‖f‖=1

|τVm,f (ξ)− τV,f (ξ)| = sup
‖f‖=1

|〈f, (PJVm
(ξ)− PJV

(ξ))f〉|

= ‖PJVm
(ξ)− PJV

(ξ)‖.

�

Remark 3.4. Recently, translation invariant spaces have been generalized to

the setting when the subgroup L is not necessarily discrete or cocompact in [2].

The authors in [2] have utilized the Zak transform instead of the fiberization

map T defined in (1.1), and they have given a characterization of translation

invariant spaces in terms of range functions. Our results can be also in this

setting phrased in terms of the Zak transform.

Example 3.5. We give an example of a sequence of translation invariant spaces

converging in the translation metric. Define φ ∈ L2(R) by φ̂(ξ) = 1(0,1)(ξ), and

suppose (φn) is the sequence defined by φ̂n(ξ) =
n+1
n

1(0,1)(ξ). Let V = S(φ)

and Vn = S(φn). A direct calculation shows that JV (ξ) = span{e0} and

JVn
(ξ) = span{n+1

n
e0}. So the projections onto JVn

(ξ)’s and JV (ξ) are the

same and we can conclude that (Vn) converges to V in the translation metric.
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