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ABSTRACT. In this paper we define a metric on the collection of all trans-
lation invariant spaces on a locally compact abelian group, and we study

some topological properties of the metric space.
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1. INTRODUCTION

Translation invariant spaces on a locally compact abelian group G are closed
subspaces of L?(G) that are invariant under translations by a closed cocom-
pact subgroup of G. Especially, a shift invariant space is a closed subspace
of L?(@G) that is invariant under translations by elements of a uniform lattice
in G. Shift invariant spaces are applicable in various areas of mathematical
analysis and its applications such as approximation, wavelet, and frame the-
ory. These spaces are studied on R™ in [3] by Bownik and on locally compact
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abelian groups in [9, 10] by the second and the third authors (see also [6]).
Translation invariant spaces in the setting of locally compact abelian groups
are studied in [4, 2]. Introducing a metric on the class of translation invari-
ant spaces provides a platform for topological investigations on them and it is
interesting on its own right. In this paper, we introduce a translation metric
on the collection of all translation invariant subspaces of L?(G), where G is a
locally compact abelian group. We then study some topological properties and
convergence in this metric space. This paper is organized as follows. In the
rest of this section, we state some preliminaries and notation related to locally
compact abelian groups and translation invariant spaces. In Section 2, follow-
ing an idea from [1], we define a translation metric on TI(G), the collection
of all translation invariant subspaces of L?(G), and we show that TI(G) is a
complete, noncompact, and disconnected metric space. In Section 3, we study
convergence in the translation metric.

Throughout this paper, we assume that G is a second countable locally
compact abelian group. Let G denote the dual group of G equipped with the
compact convergence topology and the Fourier transform,”: L'(G) — Co(@),
¢ — ¢, be defined by ¢(§) = [, o(z)é(z)dr. The Fourier transform can
be extended to a unitary isomorphism from L?(G) to L2(@) known as the
Plancherel transform [8, Theorem 4.25].

If L is a closed cocompact subgroup of G, then the subgroup L+ = {¢ €
@; &(L) = {1}}, the annihilator of L in @, is a closed cocompact subgroup of
G. For closed cocompact subgroup L of G, a fundamental domain of L in G
is a measurable set St in G such that every x € G can be uniquely written in
the form z = ks, where k € L and s € Sy, whose existence is guaranteed by
[11, Lemma 1.1]. For more details on locally compact abelian groups, we refer
to the usual textbooks about locally compact groups, e.g.[8, 11].

For A C L?(G), the translation invariant space generated by A, is defined by
S(A)={Trp:keL,pec A}. If A= {p}, then S(¢p) is called a principal trans-
lation invariant space. The mapping T, defined from L?(G) to L?(Sp.,1?(L1))
by

Te() = (@(En)ners> (1.1)

is called the fiberization mapping, where L?(Sy1,l2(L1)) is the space of square
integrable vector valued functions on Sy 1 to [2(L*). For a locally compact
abelian group G with its closed cocompact subgroup L, a range function is
defined to be

J:Sp1 — {closed subspaces of 1*(L*)}.

The mapping J is called measurable if the mapping & — (P, (£) f, g) is mea-
surable for each f, g € [2(L+), where Py, (£) is the orthogonal projection onto
J(€). By [4, Theorem 3.8] a closed subspace V' C L?(G) is translation invariant
if and only if V = {p € L%(G) : Tp(&) € J(€) for a.e. v € S}, where J is a
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measurable range function and 7 is the mapping as in (1.1). Identifying range
functions which are equivalent almost everywhere, the correspondence between
translation invariant spaces and measurable range functions is one to one and
onto. For a translation invariant space V' with range function J, let Py, (§) be
the projection of [?(L*) onto J(¢) for ¢ € S; .. The spectral function of V is

I~

defined to be the mapping oy : G — [0, 1] given by
Uv(fn) = ||PJV (5)(677)”27 £ S SLivn S Ll7

where (e,) denotes the standard basis for [?(L1). The local trace function
associated to V' is defined as

Tv,5(€) = (f, Py, () f), feP(L*),eeC.

Note that there is a close relation between the local trace function associated
to V and the spectral function of V' (see the proof of Corollary 3.2). For more
information on spectral function and local trace function we refer to [5, 7].

2. TRANSLATION METRIC

In this section we introduce and investigate topological properties of a trans-
lation metric 8, a metric on the collection of all translation invariant subspaces
of L?(G). Let TI(G) denote the collection of all translation invariant subspaces
of L(G). For each V and W in TI(G) define

OV, W) = inf{a>0:m({ € Spr : [Py (§) = Pry (Ol > a}) =0}, (2.1)

where Jy and Jy, are the measurable range functions associated with V' and
W, Py, (&) and Py, (§), & € Sp1, are the orthogonal projections onto Jy (€)
and Jy (&) respectively, ||.|| denotes the operator norm, and m is the Haar
measure of G. In the forthcoming proposition, we show that 6 is a metric on
TI(QG), which is called translation metric. Note that if V' and W are translation
invariant spaces, then 0(V, W) < ¢ if and only if, | Py, (§) — Py, (§)]] < ¢, for
a.e. £€Sp..

Proposition 2.1. With the notation as above, 0 is a metric on TI(G).

Proof. Positivity of 8 follows from the definition. For V and W in TI(G), if
O(V,W) = 0, one can find a sequence (a;,) of positive numbers converging
to 0 and a set E of measure zero such that [Py, ) — P, o)l < an, for
all n € N and for £ € Sp.. It follows that ||[Py, ) — Py, (el = 0 for a.e.
€ € Sp1, so the projections onto Jyy (§) and Jy (§) are the same a.e. and hence
V = W, in the sence of the usual convention that two translation invariant
spaces are equal if the corresponding range functions are equal a.e. On the
other hand, V' = W implies that Jy (§) = Jw (&) for a.e. £ € Sy, which in
turn implies that || Py, ) — Py, ()l > 0 only on a set of measure 0. Hence
O(V,W) = 0. For the triangle inequality, if U, V, and W are translation
invariant spaces and € > 0, one can get M1, My > 0 such that M; < 6(V,U)+ 5,
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My < O(UW) + 5§, m({& € Spr : |Py, ey — Pyy(e)ll > M1}) = 0, and m({¢ €
St 1Py e) = Pryeyll > Ma}) = 0. Applying the triangle inequality for the
norm gives

”PJV(E) — PJW(§)|| <M+ My, aeleSpy.
It follows that 6(V, W) < 8(V,U)+6(U, W). Finally, it’s obvious that (V,U) =
(U, V). O

In the sequel, we show that TT(G) is a complete, noncompact, and discon-
nected metric space. The following lemma is used in the proof of the next
theorem.

Lemma 2.2. Let (J,) be a sequence of measurable range functions, and let
(P (€)) be the corresponding sequence of orthogonal projections onto Jy,,’s. Sup-
pose that (P, (£)) converges to the orthogonal projection P(€) in the operator
norm for & € Spo. If J(&) is the range of P(§), then J is a measurable range
function.

Proof. Let f € I2(L1). Setting F,, (&) = P,(&)f and F(&) = P(€)f, we have

1E.(&) = FI < [152() = PEIIA- (2.2)

It now follows that F'(¢) = lim F,,(§). Thus F is the limit of a sequence (F},)
of vector valued measurable functions and hence is measurable. That is J is
measurable. O

Theorem 2.3. The space TI(G) is complete in the translation metric.

Proof. Suppose (V) is Cauchy in TI(G). Then (Py, (£)) is Cauchy in the
Banach space BL(I2(L1)), the space of all bounded linear operators on 12(L1).
Hence it converges to an orthogonal projection P(&) for a.e. £ € Sp.. Let J(§)
be the closed subspace of [?(L') associated with the orthogonal projection
P(¢). Consider the translation invariant space V := {p € L*(GQ) : Tp(§) €
J(&) ae. &€ € Spi}, we have Jy (&) = J(§) for a.e. & € Sp., and hence
Py, (&) = P(¢) for a.e. & € Spi. Consequently, (V;,) converges to V in the
translation metric. O

As a consequence of Theorem 2.3 we have the following corollary. Let

PTI(G) denote the collection of all principal translation invariant subspaces
of L*(G).

Corollary 2.4. The space PTI(G) is complete in the translation metric.

Proof. Suppose that (V;,) is a Cauchy sequence in PTI(G). By Theorem 2.3,
(V) converges to some V € TI(G). We need only to show that V has a single
generator. For 0 < € < 1, choose p € N such that (V,,,V) < € for all n > p.
This implies that || Py, (§) — Pr, (§)| < € for a.e. § whenever n > p. Hence
dim Jy (§) = dim Jy, (§) = 1 for a.e. £ ([13, Theorem 4.35]). This proves that
V can be generated by a single function, and hence V' € PTI(G). a
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Let FTI(G) be the collection of all translation invariant spaces generated
by a fixed number of elements of L?(G). With the same proof as Corollary
2.4, one can see that F'TT(G) is complete in the translation metric. Indeed, we
have the following corollary.

Corollary 2.5. The collection FTI(G) is complete in the translation metric.
Now we show that TI(G) is not a compact metric space.

Proposition 2.6. The space TI(G) is not compact in the translation metric
topology.

Proof. Using [12, Theorem 45.1], it is enough to show that TI(G) is not totally
bounded in the translation metric. First choose a countable basis {¢1, @2,...}
for L*(G). Set V,,, = S(A), where Ay, = {¢1,02, ..., om}. Then V,,, C Vipgq
for any m, and hence || Py, (§) =Py, (§)|| =1forall§ € Sp. ([13, Theoram

m+1
4.30]). That is 6(Vy, Viny1) = 1 for all m. Hence for e = 1,
of e-balls can contain all V,,,’s. O

no finite collection

In the next theorem we show that the metric space TI(G) is disconnected.
Theorem 2.7. The space TI(G) is disconnected in the translation metric.

Proof. It is enough to show that T'I(G) has an open and closed proper subset.
That PTI(G) is closed follows from the Corollary 2.4. Now we show that it
is open. Let V € PTI(G); put r = % We show that B,.(V) C PTI(G),
where B,.(V) is an open ball with center V' and radius r. Let W € B,.(V);
then 6(V,W) < 1, and hence dim Jy (§) = dim Jy (£) for a.e. & € Spo ([13,
Theorem 4.35]). Hence W € PTI(G). Since V is arbitrary, then PTI(G) is an
open subspace of TI(G). That is TI(G) is disconnected. O

3. CONVERGENCE

In this section we establish a few results about convergence in the translation
metric. Indeed we study the relation between convergence of a sequences of
translation invariant spaces in the translation metric and uniform convergence
of corresponding local trace functions.

Proposition 3.1. Let (V,,) be a sequence of translation invariant subspaces
converging to a translation invariant subspace V' in the translation metric. For
any f € I*(L*), the local trace function Tv,.f converges uniformly to Ty 5 in
Sr1, except possibly on a set of measure zero.

Proof. We have for almost every £ € Sy 1,

v (&) = Tvis O = [, Pr, () F) = (f, Py () )]
= [{f, (P, (&) = P () )

< FIPUPs,, (&) = Pr (1)
I£1P0(V, V).

IAIA
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The uniform convergence of local trace functions follows easily. O

Corollary 3.2. Let (V,,) be a sequence of translation invariant subspaces con-
verging to a translation invariant subspace V' in the translation metric. Then
the corresponding sequence of spectral functions of V,, converges uniformly to
the spectral function of V. on G a.e.

Proof. Let (e,) denote the standard orthonormal basis of I(L+). Then
TV,eq (5) = <67]7PJV (5)677>
= <PJV (g)e’m Py, (€)€U>
1Ps (€)en]?
ov (& +n).

This implies by Proposition 3.1 that sequence of spectral functions of V,, con-

verges uniformly to the spectral function of V. (]

Proposition 3.3. Let V,V,, € TI(G) for any m € N. Assume that the local
trace function Ty, 5 converges uniformly to Tv.y on Sp., except possibly on a
set of measure zero and for all f € I>(L*Y) with ||f|| = 1. Then (V,,) converges
to V in the translation metric.

Proof. The result follows from the following identification.

sup [7v,, f(€) =1vr ()] = sup [(f,(Pn,, (§) = Pr () f)]
If1=1 I£1=1

1P, (&) = Pry (E)]-

]

Remark 3.4. Recently, translation invariant spaces have been generalized to
the setting when the subgroup L is not necessarily discrete or cocompact in [2].
The authors in [2] have utilized the Zak transform instead of the fiberization
map 7 defined in (1.1), and they have given a characterization of translation
invariant spaces in terms of range functions. Our results can be also in this
setting phrased in terms of the Zak transform.

ExAMPLE 3.5. We give an example of a sequence of translation invariant spaces
converging in the translation metric. Define ¢ € L2(R) by ¢(¢) = 1¢0,1y(&), and
suppose (¢r,) is the sequence defined by ¢, (£) = 2517 01)(€). Let V = S(¢)
and V,, = S(¢,). A direct calculation shows that Jy(§) = span{eyo} and
Jv, (&) = span{™tley}. So the projections onto Jy, (£)’s and Jy () are the
same and we can conclude that (V},) converges to V in the translation metric.
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