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ABSTRACT. By Grothendieck’s anabelian conjectures, Galois representa-
tions landing in outer automorphism group of the algebraic fundamen-
tal group which are associated to hyperbolic smooth curves defined over
number-fields encode all the arithmetic information of these curves. The
Goal of this paper is to develop an arithmetic Teichmuller theory, by
which we mean, introducing arithmetic objects summarizing the arith-
metic information coming from all curves of the same topological type
defined over number-fields. We also introduce Hecke-Teichmuller Lie al-

gebra which plays the role of Hecke algebra in the anabelian framework.
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1. INTRODUCTION

This paper is continuation of two papers on outer representations of Galois
group [22, 23]. One canonically associates to a proper smooth curve X which is
geometrically reduced and is defined over a number field K a continuous group
homomorphism

px : Gal(K /K) — Out (" (X))
where Out(7¢'9 (X)) denotes the quotient of the aut. group Aut(m¢(X)) by
inner automorphisms of the algebraic fundamental group. By a conjecture of
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Matsumoto [17] and Voevodski [29] the outer Galois representation is injective
when topological fundamental group of X is nonabelian. Special cases of this
conjecture are proved by Belyi for P! — {0,1, 00} [2], by Voevodski in cases of
genus zero and one [29], and by Matsumoto for affine X using Galois action on
profinite braid groups [17].

By Grothendieck’s anabelian conjectures, in the case of hyperbolic curves,
the Galois module structure of Out(m (X)) should inherit all the arithmetic
information of the curve. In particular, it should produce all points defined
over number-fields and should characterize the isomorphism class of X over
K. The former is called Grothendieck’s “section conjecture” and the latter
is implied by Gorthendieck’s “Hom conjecture” which is proved by Mochizuki
[19]. Thus, given X and X’ hyperbolic curves, the natural map

Isomp (X, X') — Outga i /x) (Out(n(X)), Out(n{" (X")))

is a one-to-one correspondence. Here Out gy (k) denotes the group of Galois
equivariant isomorphisms between the two profinite groups.

In this paper, we introduce an arithmetic structure summarizing all such
arithmetic information for hyperbolic smooth curves of given topological type
defined over K. More precisely, we shall summarize all px in a single Galois
representation. This would be the beginning of arithmetic Teichmuller theory.

From now on, we assume that 2g — 2 4+ n > 0 to ensure hyperbolicity. The
stack My ,, is defined as the moduli stack of n-pointed genus g curves. By a
family of n-pointed genus g curves over a scheme S, we mean a proper smooth
morphism C' — S whose fibers are proper smooth curves of genus g, together
with n sections s; : S — C for ¢ = 1,...,n whose images do not intersect.

The moduli stack M, ,, is an algebraic stack over Spec(Z). One can define
the etale fundamental group of the stack M, ,, in the same manner one defines
etale fundamental group of schemes. Oda showed that the etale homotopy
type of the algebraic stack M, , ® Q is the same as the analytic stack M gm and
its algebraic fundamental group is isomorphic to the completion F/g; of the
Teichmuller modular group, or the mapping class group of n-punctured genus
¢ Riemann surfaces [16] :

WTZQ(MQJL ® Q) =Ty n.

Triviality of w9 implies exactness of the following short sequence for the uni-
versal family Cy ,, — M, ., over the moduli stack

0 — 79 (X, b) — 7%9(Cyon,b) — 789 (M,y 0, a) — 0

where X is the fiber on a and b is a point on Cy ,,. Using this exact sequence,
one defines the arithmetic universal monodromy representation

pgn : T (M, 0, a) — Out(78(X))
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In fact, after restriction to w'lllg(ngn ® Q,a), this is the completion of the

natural map

I'yn— Out(Ily,)

where 11, ,, denotes the topological fundamental group of the curve of genus g
with n punctures.

On can think of the Galois module structure of Out(ﬂ'fl‘q(Mgm ® Q)) as a
replacement for the Teichmuller space. This object has the information of all
outer representations associated to smooth curves over Q. Indeed, by fixing
such a hyperbolic curve X of genus g with n punctures defined over QQ, we have
introduced a rational point on the moduli stack a € M, , and thus a Galois
representation

Gal(Q/Q) — 7" (My,n, a)
which splits the following short exact sequence
0— W?lg(Mg,n ®Q,a) — w‘lllg(Mg)n, a) — Gal(Q/Q) — 0.
Composing with the arithmetic universal monodromy representation, we get
Gal(Q/Q) — Out(r{"(X))

which recovers the canonical outer representation associated to X. Therefore,
the following universal Galois representation

Punio : Gal(Q/Q) — Out(x§" (M, ® Q) = Out(Ty.,)

is the arithmetic analogue of the Teichmuller space. Here, we have assumed
that, one can treat M, , as an anabelian space whose arithmetic is governed
by Grothendieck’s anabelian conjectures, as was expected by Grothendieck.

Having this picture in mind, we try to translate this arithmetic information
to the language of Lie algebras in order to make it more accessible computa-
tionally.

2. BACKGROUND MATERIAL

The study of outer representations of the Galois group has two origins. One
root is the theme of anabelian geometry introduced by Grothendieck [7] which
lead to results of Nakamura, Tamagawa and Mochizuki who solved the prob-
lem in dimension one [19]. The second theme which is originated by Deligne
and Thara independently deals with Lie-algebras associated to the pro-l outer
representation [6, 10] . This lead to a partial proof of a conjecture by Deligne
[8] . In the first part, we will review the weight filtration introduced by Oda
(after Deligne and Thara) and a circle of related results.
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2.1. Weight filtration on OA/ut(Wl1 (X)). By a result of Grothendieck [7] the
pro-I geometric fundamental group 7! (X z) of a smooth algebraic curve X over
K is isomorphic to the pro-I completion of its topological fundamental group,
after extending the base field to the field of complex numbers. The topological
fundamental group of a Riemann surface of genus g with n punctured points
has the following standard presentation:

g

n
I, , =< ai,..,aqg,b1,....bg,c1, ..., Cp] H[ai,bi] H c;=1>.
i=1 j=1

Let Aut(m} (X)) denote the group of continuous automorphisms of the pro-I
fundamental group of X and Out(w!(X)) denote its quotient by the subgroup
of inner automorphisms. We will induce filtrations on particular subgroups of
these two groups.

Let X denote the compactification of X obtained by adding finitely many
points. X is still defined over K. Let X : Aut(n} (X)) — GL(2g,7;) denote the
map induced by abelianization. The natural actions of Aut(7} (X)) on cohomol-
ogy groups H'(m{(X),Z;) are compatible with the non-degenerate alternating
form defined by the cup product:

HY(nl(X), 7)) x H (7' (X), Z;) — H*(7}(X), 7)) = 7.

This shows that the image of A is contained in GSp(2g,Z;). One can prove
that A is surjective and if A\ denotes the natural map

A Out(nt (X)) — GSp(29,7Z;)

there are explicit examples showing that the Galois representation pl o X does
not fully determine the original anabelian Galois representation [1] .

Let Aut(wl(X)) denote the Braid subgroup of Aut(r! (X)) which consists of
those elements taking each c¢; to a conjugate of a power ¢/ for some o in Z;.
There is a natural surjective map

mx : Aut(rl (X)) — Aut(r}(X))

Oda uses A to study natural filtrations on ZZt(wll (X)) and @(wll (X)). In the
special case of X = P* — {0,1,00} this is the same filtration as the filtration
introduced by Deligne and Thara. This filtration is also used by Nakamura
in bounding Galois centralizers [20]. Consider the central series of the pro-l
fundamental group

(X)) =I'7\(X) > PPrl(X) > ... o "7l (X) D ...

and let I' Aut(7! (X)) denote the kernel of my o A\. The central series filtration
is not the most appropriate for non-compact X. In general, we consider the
weight filtration, namely the fastest decreasing central filtration such that

IQT(%.(X) :< [7T§.(X)?7T§_(X)]7cl7 "'7C’I’L >n0rm
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where < . >;om means the closed normal subgroup generated by these ele-
ments. For m > 3 we define

Il (X) =< [I'7Y(X), P74 (X)]|i + 5 = m >norm -

The weight filtration induces a filtration on the automorphism group of braid
type by normal subgroups

Aut(7h (X)) = I°Aut (7} (X)) D I"Aut(7} (X)) D ... D I Aut(z} (X)) D ...

Imjm(ﬂ'll(X)) ={o € zm(wll(X)ﬂx"x*l e Izl (X) for all z € 7l (X)}
The following propositions are proved in [13] :
Proposition 2.1. The weight filtration on Im(wll (X)) satisfies
1™ Aut(x} (X)), I" Aut ('} (X))] € I™ " Aut(} (X))

for all m a/ricin, and induces a Ii'g—algebm structure on the associated graded
object Gr Aut(rl (X)) = @ gr™ Aut(7} (X)). The graded pieces

gr™ Aut(r} (X)) = I"™ Aut(} (X)) /I Aut(n} (X))
are free Z;-modules of finite rank for all positive m.

The weight filtration on the automorphism group of pro-I/ fundamental group
induces a filtration on the outer automorphism group of braid type

Out(rl (X)) = I°Out(7L (X)) D I'Out(7} (X)) D ... D I Out (7} (X)) > ...
Proposition 2.2. The induced filtration on Out(r} (X)) satisfies
(I Out(x} (X)), I"Out(w} (X))] C I"™ " Out(w} (X))

for all m afn\d/ n, and induces a Iii\e/—algebm structure on the associated graded
object Gr3Out(rt (X)) = @ gr™Out(n(X)). The graded pieces

gr™Out ('} (X)) = I™ Out(x} (X)) /T Out(w} (X))
are finitely generated Z;-module for all positive m.

These two propositions are proved in [13] . One can induce filtrations on
Aut(m} (X)) and Out (7} (X)) using the natural surjection

Aut(wll (X)) — GSp(29,7)

which is induced by the action of Aut(r}(X)) on gr'zl(X) =779
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2.2. Graded pieces of OA/ut(wll(X )). The explicit presentation of the funda-
mental group of a Riemann surface given in the previous section implies that
7t (X) is a one-relator pro-/ group and therefore very close to a free pro-I
group. The groups Aut(w} (X)) and Out(r} (X)) also look very similar to au-
tomorphism group and outer automorphism group of a free pro-I group [24] .
This can be shown more precisely in the particular case of (/)\1}(%% (X)).

The graded pieces of Gr}évut(ﬂl (X)) can be completely determined in terms
of the graded pieces of Gr$m} (X) which are free Z;-modules. In fact, Gr I7r1(X )
is a free Lie-algebra over Z; generated by images of a;’s and b;’s in gr’r!(X)
for 1 <i < gandcj’sin g7'37rl1 (X) for 1 < j < n. We denote these generators
by a;,b; and C; respectively.

Let g., denote the following injective Z;-linear homomorphism

Gm = gr™my (X) — (gr™ i (X))% x (gr™ 7 (X)"

g ([9,@i))1<i<g % ([9,bi))1<i<g X (9)1<j<n

and f,, denote the following surjective Z;-linear homomorphism

o+ (gr™ I (X)) % (gr™ (X)) — gr™ P (X)
g n

(ri)i<icg X (si)1<icg X (t5)152n = > (@5, 53] + [ri b)) + Y [t5,5).
; =

Proposition 2.3. The graded pieces of Gr}éuut(wll(X)) fit into the following
short exact sequence of Z;-modules

g™ Out(ri (X)) = (gr™ i (X)) x (gr™ 7l (X))" /gr™mi (X) — gr™ 27 (X)
where embedding of gr™ 7t (X) inside (gr™Hal (X))29 x (gr™m (X))" is defined
by gm and the final surjection is induced by f,.

This tool helps to work with the graded pieces of Gr${ ()ut(7r1 (X)) as fluently
as the graded pieces of Gr¢r!(X). In particular, it enabled Koneko to prove
the following profinite version of the Dehn-Nielson theorem [13] :

Theorem 2.4. (Koneko) Let X be a smooth curve defined over a number-field
K and letY denote an embedded curve in X obtained by omitting finitely many
K -rational points. Then the natural map

Out(m}(Y')) — Out(m} (X))
18 a surjection.

This can be easily proved by diagram chasing between the corresponding
short exact sequences for Y and X. The above exact sequence first appeared
in the work of Thara [10] and then generalized by Asada and Koneko [1, ?].
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2.3. Filtrations on the Galois group. If all of the points in complement
X — X are K-rational, then the pro-l outer representation of the Galois group
lands in the braid type outer automorphism group

Pl : Gal(K/K) — Out(r}(X))

and the weight filtration on the pro-I outer automorphism group induces a
filtration on the absolute Galois group mapping to OA/ut(wll(X )) and also an
injection between associated Lie algebras over Z; defined by each of these fil-
trations

Gri, Gal(K /K) « GriOut(r!(X)).

Proposition 2.5. Let X andY denote smooth curves over K and let ¢ : X —
Y denote a morphism also defined over K. Then ¢ induces a commutative
diagram of Lie algebras

Gry ,Gal(K/K) — GriOut(r(X))
Lo Lo
Gry,Gal(K/K) < Gr3Out(ri(Y))
If ¢ induces a surjection on topological fundamental groups, then ¢, and ..
will also be surjective.

Proof. The claim is true because ¢, is Galois equivariant and graded pieces
of Gr$Out(m} (X)) can be represented in terms of exact sequences on graded
pieces of Gremt (X) [7] . O

Proposition 2.6. Let X be an affine smooth curve X over K whose comple-
ment has a K-rational point. Then there is a morphism

Gri, Gal(K/K) = Grin (g1 o0y, Gal(K/K).
Proof. This is a consequence of theorem 3.1 in [17] . O

Proposition 2.7. There exists a finite set of primes S such that we have an
isomorphism

Gr%leal(f(/K) = Grg, Gal(Kg"/K)
where Gal(K4"/K) denotes the Galois group of the mazimal algebraic exten-
ston unramified outside S

Proof. Indeed, Grothendieck proved that the representation ﬁlX factors through
Gal(K4™/K) for a finite set of primes S. S can be taken to be primes of bad
reduction of X and primes over I [Gro]. This is also proved independently by
Thara in the special case of X = P* —{0,1, 00} [Iha]. O

The importance of this result of Grothensieck is the fact that Gal(Kg"/K)
is a finitely generated profinite group [21] and therefore, the moduli of its
representations is a scheme of finite type.
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For a Lie algebra L over Z; let Der(L) denote the set of derivations, which
are defined to be Z;-linear homomorphisms D : L — L with

D([u, v]) = [D(u), 0] + [u, D(v)]

for all w and v in L, and let Inn(L) denote the set of inner derivations, which
are defined to be derivations with D(u) = [u,v] for some fixed v € L. Then we
have the following Lie algebra version of the outer representation of the Galois
group

Grk,Gal(K/K) — Der(Grymt (X)) /Inn(Gryzt (X))

o€ gr"Gal(K/K) — (uw &(@).a" ') mod I xl(X)

where u € gr*rt(X) with @ € I"7!(X) and & € I™Gal(K/K) is a lift of o.
In fact, for a free graded algebra, one can naturally associate a grading on the
the algebra of derivations. Let L = @;L’ be a free graded Lie algebra and let
D denote the derivation algebra of L. Then define

D' = {d € D|d(I’) c L**7}.

Then every element d € D is uniquely represented in the form d =, d* with
d' € D' such that for any f € L the component d’f vanishes for almost all i.
One can prove that

(D', D7) € D' and [Dy, Do]* = ) [Di, D).
itj=k
One can mimic the same construction on the graded algebra associated to
7h(X) to get a graded algebra of derivations [27] .

One shall notice that in case X = P! — {0,1,00} the group 7} (X) is the
pro-l completion of a free group with two generators. Thara proves that the
associated Lie algebra Gr(m} (X)) is also free over two generators say x and
y [10]. Now for f in the m-th piece of the grading of the Lie algebra, there
is a unique derivation Dy € Der(Gr(n!(X))) which satisfies Dy(z) = 0 and
Dy (y) = [y, f]. One can show that D(y) is non-zero for non-zero m and that
for any o € Gry(mi (X)) there exists a unique f € Gri(n!(X)) with image of
o being equal to Dy [18] . Now it is enough to let ¢ = o, the Soule elements,
to get a non-zero image D for -

Conjecture 2.8. (Deligne [6] ) The graded Lie algebra
(GTI;lf{O,l,oo},lGal(@/Q)) @Y

is a free graded Lie algebra over Q; which is generated by Soule elements and
the Lie algebra structure is induced from a Lie algebra over Z independent of I.

Remark 2.9. It is reasonable to expect freeness to hold for

(Grk.,Gal(Q/Q)) ® Q.
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This implies that the above graded Lie algebra representation is also injec-
tive. Thara showed that Soule elements do generate Grkl(Gal(@/Q)) ® Q if
one assumes freeness of this Lie algebra [10] . Hain and Matsumoto proved the
same result without assuming any part of Deligne’s conjecture [8] .

3. THE COMPLETION OF MAPPING CLASS GROUP

The mapping class group MC(X) of X is defined as the factor of the group
of homeomorphisms of X as a Riemann surface by the subgroup of elements
isotopic to identity. The mapping class group is isomorphic to the group of
outer automorphisms of the topological fundamental group

MC(X) = Out (7l (X)).

There has been many efforts to introduce a finite presentation for this group.
The ones introduced by Birman [3] for the case of genus 2 look particularly
simple. The generators o1, ..., 05 together with the following relations generate
MC(Xs).

0i0j = 0,05, for|i—j|>2,1<4,5<5
0i0i410; = 0410011, 1<i<4

(0'10'2...0'5)6 =1

(010203040204030201)? =1

0’1020’30’40%040’30’201L0’i, 1<:<5H

where 21y means that z and y commute. For g > 3 genus, Dehn 1938 [5] ,
Lickorish 1965 [15] , Hatcher and Thurston 1980 [9] , Wajnryb 1983 [30] , gave
presentations of the mapping class group. In all these presentations, the num-
ber of generators increases with g. However, Suzuki in 1977 showed that one
can manage with four generators [26]. We give automorphisms in Aut (7! (X))
whose image in MC(X) = Aut(7i°?(X))/Inn(7i°’(X)) generate the mapping
class group.

. a1—>b;1,aj—>aj7j7é1
O\ by = b7 arby, by — by, # 1
o a; = a;i41,1 <1< g—1,ay = ay
L bi—>bi+1,1§i§g—l,bg—>b1

a; > a;,1<1<g
Q9 —1 .
b1—>b1 ,bj—)bj,2§]§g
as — bgag(bflalbl)(az_lb;lag)
e - aj%aj,j#2
3 b1 — bl(a;1b51a2)
bj —=+b;,2<j<g
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We define the groups MC~(X) and MCT(X) as the images of L~ and L™ un-
der the canonical homomorphism Aut(7i”(X)) — MC(X). The generators
for MC~(X) and MC™(X) are also introduced by Suzuki in 1977. The auto-
morphisms oy, ag, and a3 generate MC~(X). The generators of MCF(X) are
the following. Here s; denotes the word bi_lai_lbiai for1 <i<yg.

—1

o ai —>b1_1a1_1b1,aj —a;,2<j<g
4 by — b7 tsTh b, 2 b;,2<j<g

o - a1—>51_1a231,a2—>a1,aj—>aj,3§jSg
> bl *)Sl_lbzsl,bg *)bl,bj 4)()],33‘] §g

a; > a;,1<1<g
bl — alblaglsg(bflaflbl)
by — bgag(bflaflbl)agl
bj =+b;,3<j<g

Qg -

By studying the mapping class group, we have considered generators of
Out (7l (X)).

In order to understand the algebraic geometric analogue Out(wflg (X)) we shall
study Aut(7(X)) in more detail.

It is well known that, for a profinite group G which admits a fundamen-
tal system of open neighborhoods of the identity consisting of characteristic
subgroups, there exists a topological isomorphism,

Aut(G) = hi>n Aut(G/U)

where U runs over open characteristic subgroups of G. We have an injection
TiP(X) — 789(X)). An element of Aut(n!°’(X)) fixes every characteristic
open subgroup U and induces a compatible system of elements in Aut(A/U)
for different U and therefore an element of lim Aut(G/U). We have constructed
an injection
Aut(riP (X)) — Aut(x$9(X)).

Inner automorphisms of 7:°”(X) induce inner automorphisms of the completion
744 (X). Thus we get a second injection,

Out(mi° (X)) — Out(78(X)).

If we prove that Aut(7%(X)) is the profinite completion of Aut(r'"(X)), we
have shown that Out(7®9(X)) is the completion of Out(w'’ (X)) = MC(X)
in the profinite topology . It is enough to show that 7%(X) has a funda-
mental system of open characteristic subgroups which are completions of open

subgroups of WEOP (X) in the profinite topology. We know that every automor-

phism of 7!’ (X) is induced by an automorphism of F(ay, ..., ag,b1,...,bg). So

it is enough to show that every free group has a fundamental system of open


http://ijmsi.com/article-1-992-en.html

[ Downloaded from ijmsi.com on 2026-01-30 ]

Arithmetic Teichmuller theory 167

characteristic subgroups. But this is proved to be true for a finitely generated
free group. Therefore we have a representation of Galois group landing on the
profinite completion of MC(X)

p: Gal(@/Q) — Out(r{"¥ (X)) = MC(X).

Uchida in 1976 [28] and Tkeda in 1977 [12] proved that every automorphism
of Gal(Q/Q) is inner. Therefore the equivalence class of Galois representations

p: Gal(Q/Q) = Out(r}"(X))

has only one element. This is unlike the case of p-adic Galois representations
associated to elliptic curves.

Translating the Galois representation from the language of automorphisms
to the language of mapping class group, gives us a opportunity to geometrically
define invariants of the Galois representation. For example, one shall be able to
give a purely geometric definition of the conductor of a Galois representation.

4. ARITHMETIC TEICHMULLER THEORY

Here, we shall fulfill our promise of developing an arithmetic Teichmuller
theory. The universal representation

Puniv : Gal(Q/Q) — Out(T,,)

as explained in the introduction summarizes the arithmetic information coming
from all curves of the same topological type defined over number-fields. The
aim is to translate this to the language of Lie algebras. Although we lose some
information, Lie algebras are much more flexible for computations rather than
Galois representations landing in outer automorphism groups.

In the first part, we introduce Hecke-Teichmuller Lie algebra which plays the
role of Hecke algebra in the anabelian framework. Then, in the second section,
we bring in the story of elliptic curves and modularity. Finally, Galois action
on the Hecke-Teichmuller Lie algebra is related to elliptic curves.

4.1. Hecke-Teichmuller graded Lie algebras. There is no general analogue
for Hecke operators in the context of Lie algebras constructed in this manner.
What we need is an analogue of Hecke algebra which contains all the infor-
mation of Galois outer representations associated to elliptic curves. In fact,
we will provide an algebra containing such information for hyperbolic smooth
curves of given topological type.

From now on, we assume that 29 — 2 +n > 0. Note that elliptic curves
punctured at the origin are included. By composition with the natural pro-
jection to outer automorphism group of the l-adic completion IT!

gn We get a
representation

Py w‘lllg(Mg)n, a) — Out(wll (X))
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for nice [. This map induces filtrations on wflg (My.,) and its subgroup
T (Mg © Q)
and an injection of Z;-Lie algebras
GT;(,lW?lg(Mg,n ® Q) < GT;(,ZW;ng(Mg,n)~

It is conjectured by Oda and proved in a series of papers by Ihara, Matsumoto,
Nakamura and Takao that the cokernel of the above map after tensoring with
Qy is independent of g and n [11, 18, 20] . Note that My 3 = Spec(Q).

Definition 4.1. We define the Hecke-Teichmuller Lie algebra to be the image
of the following morphism of graded Lie algebras

Gry mi" (M) — GriOut(IL, ).

Note that, the filtration induced on the Galois group by Out(Hé’n) coincides
with the filtration coming from 7% (Mg n,a) by the Galois representation as-
sociated to the corresponding curve and we have morphisms

Gry ,Gal(Q/Q) — Gry " (My,,) — GriOut(IL, ).

We expect Hecke-Teichmuller Lie algebra to serve the role of Hecke algebra in
proving modularity results for elliptic curves or other motivic objects.

4.2. Galois representations associated to elliptic curves. The method
of proving modularity results by finding isomorphisms between Hecke algebras
and universal deformation rings as originated by Wiles [31] , can be reformu-
lated in the language of Lie algebras. One can find a canonical graded repre-
sentation of the Galois group to Hecke-Teichmuller Lie algebra which contains
all the information of modular Galois representations.

Let us first reformulate the theory of Galois representations in the language
of Lie algebras. We start with elliptic curves. To each elliptic curve F defined
over Q which has a rational point, one associates a Galois outer representation

Gal(Q/Q) — Out(mi(E — {0})).

By analogy to Shimura-Taniyama-Weil conjecture, we expect this representa-
tion to be encoded in the representations

Gal(Q/Q) — Out(my(Yo(N)))

associated to modular curves Yy(N) which have a model over Q. By Y(N)
we mean the non-compactified modular curve of level N which is given as the
quotient of the upper half-plane by the congruence subgroup I'g(V) of SLy(Z)
consisting of matrices which are upper triangular modulo N.
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For any smooth curve X defined over Q the outer automorphism group of
braid type acts on Gr$Out(w} (X)) by conjugation and therefore for each m we
get a Galois representation

Gal(Q/Q) — Aut(gr™ Out(r}(X))).

Knowing that Shimura-Tanyama-Weil conjecture proved by Wiles and his col-
laborators [31, 25, 4] we get the following Lie algebra version of Shimura-
Taniyama-Weil conjecture:

Theorem 4.2. Let E be an elliptic curve over Q together with a rational point
0 € E. Then, the Galois representation

Gal(Q/Q) — Aut(GriOut(r}(E ~ {0})))
appears as the direct summand of the Galois representation
Gal(Q/Q) — Aut(GriOut(w} (Yo(N))))
for some level N which can be chosen to be conductor of the elliptic curve.

Proof. In grade zero, we recover the usual abelian Galois representation and in
higher grades one can canonically construct this representation by the grade-
zero standard representation. Indeed, for each m > 1 the isomorphism in
proposition 1.3 is Out(r! (X))-equivariant. From this we can determine the
representation from the inner action of Out(w! (X)) on Gr3mi(X). This action
is fully determined by the grade-zero action. Therefore, the Galois representa-
tions
Gal(Q/Q) — Aut(gr™ Out(r' (X))

are all determined by the abelian Galois representation associated to X over

Q. O

4.3. Galois actions on Hecke-Teichmuller algebra. The arithmetic ana-
logue of the Teichmuller space which is the universal Galois representation
landing in outer automorphism group of the algebraic fundamental group of
My, ®Q

puniv  Gal(Q/Q) — Out(x{"* (M, ® Q) = Out(T, )
induces a Galois action on the corresponding Lie algebra
Gal(Q/Q) — Aut(Gr}, Out(r§" (M, ® Q)))

and thus a Galois action on the Hecke-Teichmuller Lie algebra. This is analogue
of the Galois action on the abelian Hecke algebra, which is used to prove mod-
ularity of Galois representations in [31] . One can use the Hecke-Teichmuller
Lie algebra to prove that certain Galois actions on Lie algebras do come from
curves defined over number fields.

The general question would be recognition of Galois actions on Lie alge-
bras or even, recognition of representations of Galois-Lie group as appropiriate
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tools. In order to answer this general question, one shall find appropriate gen-
eralizations of arithmetic hyperbolicity and Grothendieck’s conjectures or even
a motivic formulation of hyperbolicity in higher dimensions.
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