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1. INTRODUCTION AND PRELIMINARIES

In 2015, Khojasteh et al. [4] gave a new approach to study fixed point results
in the framework of metric spaces via simulation function as follows:

A mapping ¢ : [0, +00)? — R is called a simulation function if it satisfies the
following:

(¢1) ¢(0,0) = 0;

(C2) C(t,s) <s—tforallt,s>0;

(C3) if {tn},{sn} are sequences in (0, 4+00) such that nh_)rr;o t, = nh_}rrgo sp, > 0,
then lim ( (t,,s,) < 0.

Algcr otohey denoted the set of all simulation functions by Z.

It is worth noticing that Argoubi et al. [1] revised the above definition by
withdrawing the condition (1) (also, see [7]). Also, Roldan et al. [8] revised
(¢3) by taking t,, < s,. Hence, we can say that a mapping ¢ : [0, +00)? — R is
called a simulation function if it satisfies:

((2) C(t,s) <s—tforallt,s>0;

(¢3) if {tn}, {sn} are sequences in (0, +00) such that nILH;O t, = nILHgO Sp >0

and t, < s, for all n € N, then lim (¢ (¢,,s,) <0.
n— 00

For several examples of simulation functions, see [1, 2, 4, 6, 7, 8].

Definition 1.1. [4] Let (X, d) be a metric space and ¢ € Z. Then a mapping
T : X — X is called a Z-contraction with respect to ( if the following condition
is satisfied:

C(d(Tz,Ty),d(z,y)) >0 Vz,y € X. (1.1)

Now, it is clear that {(¢,¢) < 0 when ¢ > 0; further (1.1) implies that
d(Tz,Ty) < d(x,y) when z # y for each z,y € X. This means that each
Z-contraction with respect to ( is continuous.

Theorem 1.2. [4] Let (X,d) be a complete metric space and T : X — X be
a Z-contraction with respect to (. Then T has a unique fized point in X and
for every xog € X, the Picard sequence {x,}, where x, = Tx,_1 for alln € N,
converges to the fixed point of T.

One very important and significant kind of generalized (standard) metric
spaces are so-called b-metric spaces (or metric type spaces). Namely, (X, d)
is b-metric space if X # ) and d : X x X — [0,+00) be a mapping such
that for all z,y,z € X hold: d(z,y) =0 & =z = y;d(x,y) = d(y,x) and
d(z,y) <b(d(z,y)+d(y,z)) for b > 1. Then d is called b—metric. For more
details on b-metric spaces, see [2, 3, 5] and the references contained therein.

Recently, Demma et al. [2] introduced the b-simulation function in the
framework of b-metric spaces as follows.

Definition 1.3. Let (X,d) be a b-metric space. A b-simulation function is a
function ¢ : [0, +00)? — R satisfying the following:
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(&) £(t,s) < s—tfor all t,s > 0;
(&) if {tn}, {sn} are sequences in (0, +o00) such that

0< ngrfoo tp, <lim, o8 < limpos, < bngr-&r-loo tn, < 400, (1.2)

then lim & (bt,, s,) < 0.

n—oo

It is clear if b = 1, then b-simulation function is in the fact the simulation
function in the framework of (standard) metric spaces.

EXAMPLE 1.4. [2] Let £ : [0,4+00)? — R be defined by

(i) &£(t,s) = As —t for all ¢, s € [0, +00), where A € [0, 1).

(ii) £(t,8) = ¥ (s) —p(t) for all t,s € [0,+00), where ¢, 9 : [0,+00) —
[0,400) are two continuous functions such that v (¢) = ¢ (t) = 0 if and only if
t=0and ¥ (t) <t < p(t) forall t > 0.

(iii) €(¢,8) = s — gg:gt for all t,s € [0,+0c), where f,g : [0,4+00)? —
(0, +00) are two continuous functions with respect to each variable such that
f(t,s)>g(t,s) for all ¢,5 > 0.

(iv) £(t,8) = s—p(s)—tforallt,s € [0,+00), where ¢ : [0, +00) — [0, +00)
is a lower semi-continuous function such that ¢ (¢) = 0 if and only if t = 0.

(v) £(t,8) = sp(s) —t for all t,s € [0,400), where ¢ : [0,400) — [0,1) is
such that tEI:lJr ¢ (t) <1 for all » > 0.

Each of the function considered in (i)-(v) is a b-simulation function.
The following important and very interesting results are proved in [2].

Lemma 1.5. Let (X,d) be a b-metric space and f : X — X be a mapping.
Suppose that there exists a b-simulation function € such that following condition
holds.

§(d(fz, fy),d(z,y)) >0  Vo,yeX. (1.3)

Let {z,} be a sequence of Picard of initial at point xy € X and x,,—1 # x,, for
alln € N. Then

lim d(zp—1,2,) =0.

n—oo
Lemma 1.6. Let (X,d) be a b-metric space and f : X — X be a mapping.
Suppose that there exists a b-simulation function & such that (1.3) holds. Let
{zn} be a sequence of Picard of initial at point xg € X and x,_1 # x, for all
n € N. Then {x,} is a bounded sequence.

Lemma 1.7. Let (X,d) be a b-metric space and f : X — X be a mapping.
Suppose that there exists a b-simulation function & such that (1.3) holds. Let
{zn} be a sequence of Picard of initial at point xg € X and x,—1 # x, for all
n € N. Then {x,} is a Cauchy sequence.
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Theorem 1.8. Let (X, d) be a complete b-metric space and let f : X — X be
a mapping. Suppose that there exists a b-simulation function & such that (1.3)
holds; that is,

§(bd(fz, fy),d(z,y)) >0  Vz,yeX.

Then f has a unique fixed point.

For the proof of Theorem 1.8, Demma et al. [2] used Lemmas 1.5-1.7.

2. MAIN RESULTS

In this section we improve the main result from [2]; that is, we prove The-
orem 1.8 without using all three lemmas 1.5-1.7. At the first, we quote some
well known results from b-metric spaces. The following lemma was used (and
proved) in the course of proofs of several fixed point results in the framework
of b-metric spaces in [3].

Lemma 2.1. Let {y,} be a sequence in a b-metric space (X,d) such that

d(ynaynJrl) S >\d (ynflayn) (21)

for some A, 0 < A < % and eachn =1,2,---. Then {y,} is a Cauchy sequence
in (X,d).

By utilizing Lemma 2.1, Jovanovié¢ et al. [3] proved following result.

Theorem 2.2. Let (X,d) be a complete b-metric space and f : X — X be a
map such that

d(fz, fy) < Ad(2,y) (2.2)
holds for all x,y € X, where 0 < \ < %. Then f has a unique fixed point z and
for every xg € X, the sequence {f"xo} converges to z.

Now we formulate and prove Theorem 1.8 via a shorter and simple approach.

Theorem 2.3. Let (X,d) be a complete b-metric space and f : X — X be a
mapping. Suppose that there exists a b-simulation function & such that (1.3)
holds; that is,

Ebd (fx, fy),d(xz,y)) >0 Va,y € X. (2.3)

Then f has a unique fixed point.
Proof. Tt is enough clear that (2.3) implies
bd(fz, fy) <d(z,y)  Va,yeX. (2.4)

Indeed, (2.4) holds if © = y. In the case that x # y there are two possibilities,
either fx = fy or fx # fy. In the first case we have that b-d(fz, fy) =0 <
d (z,y), while in second case the result follows from (£;). This means that (2.3)
implies (2.4) for all z,y € X. Further, obviously, (2.4) implies that

4(f, f%) < pydwy) = M (). (25)
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Since A = ;5 € [0, 1), then according to Theorem 2.2, f? has a unique fixed
point (say z) in X. This further means that f has a unique fixed point z in X.
Now, the proof of this theorem is complete. |

Obviously, our proof is much shorter than the corresponding ones from
Demma et al.’s work [2]. Tt is very interesting that all four Corollaries 4.1-
4.4 from [2] follows immediately according to our easy approach. Thus we have
following corollary.

Corollary 2.4. Let (X,d) be a complete b-metric space and let f : X — X be
a mapping. Suppose that
(i) A €10,1) such that bd (fz, fy) < Ad(x,y);
(ii) a lower semi-continuous function ¢ : [0,+00) — [0,00) with ¢~1(0) =
{0} such that bd (fmv fy) < d(l'vy) - (d (xvy));
(iii) ¢ : [0,400) — [0,1) with lim ¢ (t) < 1 for all ¥ > 0 such that
t—r
bd (fz, fy) < ¢ (d(z,y))d(z,y);
(iv) n:[0,+00) — [0,00) with n (t) <t for allt >0 and n(0) = 0 such that
bd (fz, fy) <n(d(z,y))

forallx,y € X. Then f has a unique fized point in each one of above condition.

Proof. Obviously, each one of mentioned conditions implies the condition (2.4)
by selecting the appropriate b-simulation function in Example 1.4. Hence, we
obtain that bd (fz, fy) < d(z,y) for all z,y € X. The result then follows
according to Theorem 2.3. a

EXAMPLE 2.5. Now, we consider Example 4.5 from [2]. Let X = [0,1] and
d: X x X — R be defined by d(z,y) = |# —y|>. Then (X,d) is a complete
b-metric space with b = 2. Consider a mapping f: X — X by

fr=

ax
1+

for all z € X, where a € |0, %} Now, we have

2 2
ax ay 5 |z — y| 2
29 (f, fy) = 2 - =22 — T <|r—yf =d(s,
g =25 - ] =2 <P = i)
(2.6)
for all z,y € X. Further, (2.6) implies that
1
d(f*z, f*y) < 7d(2,y);

that is, f2 has a unique fixed point according to Theorem 2.2. This means that
f has a unique fixed point. Here it is z = 0.

The next result is probably known, but our proof is very condensed.
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Theorem 2.6. Let (X, d) be a complete b-metric space and let f : X — X be
a mapping such that

d(fz, fy) < Ad(z,y) (2.7)
for all x,y € X, where X\ € [0,1). Then f has a unique fixed point (say z) in
X and for xog € X the sequence {f"xo}, oy converges to z.

Proof. The condition (2.7) implies that

for all z,y € X and n € N. Since A" — 0 as n — oo, there is k € N such that
NF< % Therefore, we have

1
d(fFtta, fFriy) < @)

The result now follows by Theorem 2.2. |

Question 1. Does Theorem 2.3 holds if & (d (fz, fy),d(x,y)) > 0 for all
x,y € X, where (X,d) is a given complete b-metric space and f : X — X be
a mapping and £ a given b-simulation function?

Question 2. Can you obtain this results by considering ordered b-metric
spaces or cone b-metric spaces instead of b-metric spaces?
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