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ABSTRACT. Let G = (V,E) be a (p,q)-graph. A bijection f : E —
{1,2,3,...,q} is called an edge-prime labeling if for each edge uv in E,
we have GCD(f* (u), fT(v)) =1 where f*(u) = 3, ,cp f(uw). More-
over, a bijection f : E — {1,2,3,...,q} is called a semi-edge-prime la-
beling if for each edge uv in E, we have GCD(f*(u), fT(v)) = 1 or
fT(u) = ff(v). A graph that admits an edge-prime (or a semi-edge-
prime) labeling is called an edge-prime (or a semi-edge-prime) graph. In
this paper we determine the necessary and/or sufficient condition for the

existence of (semi-) edge-primality of bipartite and tripartite graphs.
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1. INTRODUCTION

Let G = (V(G), E(G)) (or G = (V, E) for short if not ambiguous) be a simple,
finite and undirected graph of order |V| = p and size |E| = ¢. All notation not
defined in this paper can be found in [1].

The concept of prime labeling was originated by Entringer and it was intro-
duced in a paper by Tout et al. [8]. A graph G with p vertices and ¢ edges is
said to have a prime labeling if f: V — {1,2,...,p} is bijective and for every
edge e = uv of G, GCD(f(u), f(v)) = 1. If there is no ambiguous, we use (a, b)
instead of GCD(a,b). Currently, the two most prominent open conjectures
involving vertex labelings are the following:

(1) All tree graphs have a prime vertex labeling (Entringer-Tout Conjecture);
(2) All unicyclic graphs have a prime vertex labeling (Seoud and Youssef [7]).

In 2011, Haxell and Pikhurko [4] proved that all large trees are prime. In
1991, Deretsky et al. [2] introduced the notion of dual of prime labeling which
is known as vertex prime labeling. A graph with ¢ edges has vertex prime
labeling if its edges can be labeled with distinct integers {1,2,..., g} such that
for each vertex of degree at least two the greatest common divisor of the labels
on its incident edges is 1. For convenience, we will use [a, b] to denote the set
of integers between a and b inclusively.

A conjecture: “Any 2-regular graph has a vertex prime labeling if and only if
it does not have two odd cycles.” was proposed.

An excellent survey on graph labeling is maintained by Gallian [5]. In this
paper, we introduce a variant of prime labeling of graphs.

Definition 1.1. Let G = (V, E) be a (p, q)-graph. A bijection f: E — [1,¢] is
called an edge-prime labeling if for each edge uv in E, we have (f*(u), f*(v)) =
1, where f*(u) =3, cp f(uw). A graph that admits an edge-prime labeling
is called an edge-prime graph.

Note that this is not a generalization of integer-magic spectra [6] and Bary-
Centric Labeling [9]. In Section 2, we obtained a necessary and sufficient con-
dition for disjoint union of path to be edge-prime. We also proved that all
2-regular graphs are edge-prime. In Sections 3 and 4, we proved that many
bipartite and tripartite graphs are edge-prime (or not edge-prime). In Section
5, we defined semi-edge-prime and show that certain bipartite and tripartite
graphs are semi-edge-prime graphs.

2. EDGE-PRIME LABELINGS OF SOME SIMPLEST GRAPHS

Lemma 2.1. Suppose ey, ea, e3 are any 3 successive edges of a graph such
that the end-vertices of eo = uv are of degree 2. If there exist an edge labeling

f such that f(e1)+ f(e2) and f(e2)+ f(es) are not both even, and that | f(e1) —
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fles)| =2™, m > 0, then the induced vertex labels of the 2 end-vertices of eq

are relatively prime.

Proof. Without loss of generality, assume that f(e;) > f(e3). The given la-
beling f guarantees that (f*(u), fT(v)) = (f(e1) + f(e2), f(e2) + f(e3)) =
(Fler) — Fles), f(e2) + Fles)) = (2™, F(ea) + fes). T flea) + f(es) is odd we
have (2™, f(e2) + f(e3)) = 1. Otherwise, we must have f(e1) + f(e2) is odd
and m = 0 so that (2™, f(e2) + f(e3)) = (1, f(e2) + f(e3)) = 1. Hence, the
lemma holds. ]

Theorem 2.2. Let G be the disjoint union of paths. Then G is edge-prime if
and only if it has at most one component of Ps.

Proof. (Sufficiency) List all the path(s) from the shortest length to the longest
length. Label the consecutive edges of each path from 1 to |E(G)| such that
every 2 adjacent edge labels must differ by 1. By Lemma 2.1, the induced
vertex labels of every 2 adjacent internal vertices are relatively prime. It is
also easy to verify that the induced vertex labels of each pendant vertex and
its adjacent vertex are relatively prime.

(Necessity) We prove by contrapositive. If G has at least 2 components of P,
then a P, will have its edge labeled by integer > 1. Such a labeling is not
edge-prime. O

Corollary 2.3. A 1-reqular graph is edge-prime if and only if it is K.

Theorem 2.4. All 2-reqular graphs are edge-prime.

J
Proof. Let G = Y C,, be a 2-regular graph which is the disjoint union of

n;-cycles, 1 <14 §17]1 Without loss of generality, assume that 3 < n; < ng <

- < n;. We shall label C',, by using the first n; integers, and label C),, by
the next ns integers and so on. Suppose a+1 > 1 is the smallest available edge
label for a cycle C),. Let e, es, ..., e, be successive edges in C),. Consider the
following four cases.

(1) Suppose n = 4k for some k > 1. Label the 4 successive edges of C4 by
a+1,a4+2,a+3,a+4if k=1. Suppose k > 2. Define o :{e; | 1 <i <
2k} — [a+1,a+ 4k] by o(e;y4) = o(e;) + 8 for 1 < i < 2k — 4 with initial
values o(e1) =a+1, o(es) =a+2, o(ez) =a+5 and o(eq) = a+ 6. Also
define o : {e; | 2k+1 <i <4k} — [a+1,a+4k] by o(ej+4) = o(e;) — 8 for
2k +1 < i < 4k — 4 with initial values o(esg+1) = a +4k — 1, o(eap2) =
a+ 4k, o(espts) = a+ 4k — 5 and o(egr14) = a + 4k — 4. One may check
that o : E(Cyx) — [a+ 1,a + 4k] is a bijection.

(2) Suppose n = 4k + 1 for some k > 1. Label the 5 successive edges of Cs
bya+1 a+4, a+5, a+2, a+3if K = 1. Suppose k > 2. Define

{e; |2<i<2k+1} = [a+1,a+ 4k + 1] by o(ejrqa) = ole;) + 8
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for 2 < i < 2k — 3 with initial values o(es) = a + 4, o(ez) = a + 5,
o(es) = a+8and o(es) = a+9. Also define o : {e; | 2k+2 <i <4k+1} —
[a+1,a+4k+1] by o(e;14) = o(e;) —8 for 2k +2 < ¢ < 4k — 3 with initial
values o (e t2) = a+4k —2, o(esgts) =a+4k—1, o(egp14) = a+4k—6
and o(eart5) = a + 4k — 5. Finally define o(e;) = a + 1. One may check
that o : E(Cg1) — [a + 1,a + 4k + 1] is a bijection.

(3) Suppose n = 4k + 2 for some k > 1. Label the 6 successive edges of Cg by
a+1,a+4,a+3,a+2,a+5, a+6if kK =1. Suppose k > 2. Define
o:{e; |3<i<2k+2} > Ja+1,a+4k+ 2] by o(e;14) = o(e;) + 8
for 3 < i < 2k — 2 with initial values o(e3) = a + 3, o(es) = a + 4,
o(es) = a+7and o(eg) = a+8. Also define o : {e; | 2k+3 < i < 4k+2} —
[a+1,a+4k+2] by o(ei+a) = o(e;) — 8 for 2k +3 < ¢ < 4k — 2 with initial
values o(ea13) = a+4k+1, o(eagys) = a+4k+2, o(eapss) =a+4k—3
and o(esp46) = a+ 4k — 2. Finally define o(e;) = a+1 and o(e2) = a+ 2.
One may check that o : E(Cygy2) — [a + 1,a + 4k + 2] is a bijection.

(4) Suppose n = 4k + 3 for some k > 0. If n = 3, then label the 3 edges
of C3 by a+1,a+2, a+ 3. If n =7, then label the 7 edges of C7 by
a+1l,a+2,a+3, a+4, a+7 a+5, a+ 6. Suppose k > 2. Define
oc:{e; |4<i<2k+3} > [a+1,a+4k+ 3] by o(e;r4) = o(e;) + 8 for
4 < i < 2k—1 with initial values o(e4) = a+4, o(es) = a+7, 0(eg) = a+8
and o(er) = a + 11. Also define o : {e; | 2k +4 < i < 4k + 3} —
[a+1,a+4k+3] by o(eira) = o(e;) — 8 for 2k +4 < i < 4k — 1 with initial
values o(egrt4) = a+4k+1, o(esgts) = a+4k+2, o(eapi6) = a+4k —3
and o(esp47) = a+ 4k — 2. Finally define o(e;) = a+1, o(ez) = a+2 and
o(e3z) = a+ 3. One may check that o : E(Cyr13) > [a+1,a+4k+ 3] is a
bijection.

By Lemma 2.1, the labeling above is edge-prime. O

EXAMPLE 2.5. Let G = C3 4+ Cs + Cy + C1p + C11. We label the components
of G as follows:

(1) Label the 3 successive edges of C5 by 1,2, 3.

(2) Label the 8 successive edges of Cg by 4,5,8,9,10,11,6, 7.

(3) Label the 9 successive edges of Cy by 12,15,16,19,20,17,18,13, 14.

(4) Label the 10 successive edges of C1g by 21, 22, 23, 24, 27, 28, 29, 30, 25,
26.

(5) Label the 11 successive edges of C11 by 31, 32, 33, 34, 37, 38, 41, 39, 40,
35, 36.

It is readily verified that the labeling is edge-prime.
From the proof of Theorem 2.4, we have

Theorem 2.6. If G is edge-prime, then G + C, is edge-prime.
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Proof. Let f be an edge-prime labeling of G and h be an edge-prime labeling
of C,, as defined in Theorem 2.4. Define an edge labeling g of G + C,, such that
g(e) = f(e) if e € E(G), and g(e) = h(e) + |E(G)| otherwise. Clearly, g is an
edge-prime labeling. O

Corollary 2.7. If G is edge-prime, then G + H 1is edge-prime, where H is a
2-regular graph.

We note that under the edge-prime labeling defined in the proof of Theorem 2.4
by choosing a = 0, all the induced vertex labels of Cy and Cg are prime. We
now give edge-prime labelings of even cycles of order at most 34 such that all
the induced vertex labels are primes.

n || Labels of successive edges of C),
811,2,58,3,4,7,6

10]1,2,5,8,3,10,9, 4,7, 6

121,25 12,11, 8, 3,10, 9,4, 7, 6

141,25 14, 3,8, 11, 12, 7, 4, 9, 10, 13, 6

16 || 1, 2, 5, 14, 15, 16, 3, 8, 11, 12, 7, 4, 9, 10, 13, 6

18]/ 1, 2,5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 9, 4, 7, 12, 17, 6

20 || 1, 2, 5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 19, 20, 9, 4, 7, 12, 17, 6

22 ([ 1,2, 5, 14, 15, 16, 3, 8, 11, 18, 13, 10, 19, 22, 21, 20, 9, 4, 7, 12, 17, 6

24 ([ 1,2, 5, 24, 17, 12, 7, 4, 9, 20, 21, 22, 19, 10, 13, 18, 11, 8, 3, 16, 15, 14,
23, 6

26 || 1, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 10, 9, 14, 23, 20, 3, 26, 15,
22,7, 6, 17, 12

28 |11, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 9, 10, 27, 14, 23, 20, 3,
26, 15, 22, 7, 6, 17, 12

30 || 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 9, 10, 27, 14, 23
20, 3, 26, 15, 22, 7, 6, 17, 12

32 | 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 31, 10, 9, 32, 27
14, 23, 20, 3, 26, 15, 22, 7, 6, 17, 12

34 [ 1, 30, 29, 2, 11, 18, 5, 8, 21, 16, 25, 4, 19, 24, 13, 28, 31, 10, 33, 34, 9
32, 27, 14, 23, 20, 3, 26, 15, 22, 7, 6, 17, 12

Similarly, it is easy to verify that each odd cycle of order up to 11 admits an
edge-prime labeling such that all but one induced vertex labels are prime.

Conjecture 2.1. There exist edge-prime labelings for even cycles such that
all induced vertex labels are primes, and for odd cycles such that all but one
induced vertex labels are prime.

3. EDGE-PRIME LABELINGS OF SOME BIPARTITE AND TRIPARTITE (GRAPHS

The following useful lemma can be found in any book of number theory:
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Lemma 3.1. For any integers a, b, c,
1. (a,b) = (a,—b) = (a + be,b);
2. if (a,b) = (a,c) = 1, then (a,bc) = 1.

Let (X,Y") be the bipartition of K(2,n), where X = {z1,z2} and Y ={y,; | 1 <
j < n}. Define 0, : E(K(2,n)) — [1,2n] by o,(z1y,) = 2j — 1 and o, (22y;) =
2n+2—2j,1 < j <n. Then o} (y;) = 2n+ 1 for all j, o, (21) = n? and
o (z2) = n? + n. The labeling o, is called the basic labeling of K(2,n).

Lemma 3.2. Keep the notation defined above. Suppose a € Z. Let [ :
E(K(2,n)) = [a+ 1,a 4+ 2n], where f = o, +a. If (n,2a + 1) = 1, then
(ft(z), fT(y;)=1for1<j<nandi=1,2.

Proof. Clearly f*(z1) =n(n+a), fT(z2) =n?+n+naand fF(y;) =2(n+
a) + 1.

By Lemma 3.1 and the hypothesis we have (n+a,2(n+a)+1) = 1 and (n,2n+
2a+1) = (n,2a + 1) = 1. By Lemma 3.1 again we have (f*(z1), fT(y;)) =
(n(n+a),2(n+a)+1) =1 for all j.

Similarly, (f*(22), fT(y;)) = (n* +n+na,2n+2a+1) = (—n* —na,2n+2a+
1) =(n(n+a),2(n+a)+1) =1 for all j. O

Theorem 3.3. The disjoint union of m complete bipartite graph K(2,n)’s,
mK(2,n), is edge-prime for m,n > 1.

Proof. Let G; =2 K(2,n), 1 < i < m. By using the basic labeling of K(2,n)
we define f; : E(G;) — [2(1 — D)n + 1,2in], where f; = 0, + 2(i — 1)n, 1 <
i < m. Let the combining labeling for the whole graph mK(2,n) be f. Since
(4(i—1)n+1,n) = 1, by Lemma 3.2 we obtain that f is an edge-prime labeling.

O

Theorem 3.4. Forn > 1, Y. K(2,k) is edge-prime.
k=1
Proof. Label K(2,k) by o, +k(k—1),1 <k <n. We can see that the labeling
is a bijection from E( ). K(2,k)) — [1,n(n+1)]. Since (k,2k(k—1)+1) =1,
k=1
by Lemma 3.2 we have the theorem. O
Conjecture 3.1. > K(2,n;) is edge-prime, where m > 2.
i=1
For 1 < i < m, let G; & K(2,n;) with bipartition (X;,Y;), where X; =

m

{zic1, 2}, Yi = {¥i1,-- -, Yin, } and 29 = Ty Let B(ny,...,nm) = J G If
i=1

ny = --- = n,, = n, then we denote the sequence ni,no,...,n,, by nlm for
short. Note that B(1™) = Cy,,.

Theorem 3.5. Suppose (m — 1,2n 4+ 1) = 1 where m > 2 and n > 1. The
bipartite graph B(nl™) is edge-prime.
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Proof. Keep the notation defined above. Label G; by o, + 2(i — 1)n, where
on is the basic labeling of K(2,n). Let the combining labeling be f. Then
fra) = m?+n+26G—1)n%) + n?+2in?) =4in’+nfor1 <i<m-—1;
[T (zo) = (M +n+2(m—1)n?)+(n?) = 2mn?+n; and f*(y; ;) = 4in—2n+1,
for all j.

Since (n,4in £2n+1) =1 and (din+1,4in£2n+1) = (din+ 1,+2n) =1,
(fH (@), f*(ig)) = (4in® +n,4in — 2n +1) = Land (f7(2:), fF (yitr,5)) =
(4in? +n,din+2n+1)=1for 1 <i<m—1.

Finally, from the hypothesis, (2mn + 1,2n +1) = (1 —=m,2n + 1) = 1 and
2mn + 1,4mn —2n+1) = 2mn+1,-2n—1) = 2mn+ 1,2n + 1) = 1,
(o), /- (y1.5)) = (2mn?+n,2n-+1) = 1 and (F+(x0), £+ (ym5)) = (2mn? +
n,dmn —2n+1) = 1. O

Conjecture 3.2. B(n[m]) is edge-prime, where m > 2, n > 2.

The generalized theta graph 0(sy, ..., sx) consists of a pair of end vertices joined
by k > 3 internally disjoint paths of lengths s1,...,s, > 1.

Theorem 3.6. Forn > 3, the generalized theta graph 9(3["]) is edge-prime.

Proof. Let G = 0(3!") with V(G) = {u,z,v;,w; | 1 <i < n} and E(G) =
{uv;, viw;, wiz | 1 < i < n}. Define a labeling f as follows:

(1) fluv;) =ifor 1 <i<m;

(2) flviw;)) =2n+1—1ifor 1 <i<nm;

(3) flwyx) =2n+ifor1 <i<n.

Clearly, fT(u) =n(n+1)/2, fT(v;) =2n+ 1, fH(w;) =4n + 1 and fT(x) =
n(bn + 1)/2. It can be verified that (f¥(v;), fT(w;)) = (fT(u), fT(v;)) =
(fT(w;), f*(x)) = 1. Hence, f is an edge-prime labeling. O

Theorem 3.7. Forn >3, the generalized theta graph 6(4) is edge-prime.

Proof. Let G = 0(4")) with V(G) = {u,y,vi,w;,z; | 1 <i < n} and E(G) =
{uvs, viws, wizs,xiy | 1 < ¢ < n}. Define a labeling f similarly to that of
Theorem 3.6:

(1) f(uv;) =i for 1 <i<mn;

(2) flojw;)) =2n+1—idifor1<i<mn;

(3) flwz;) =2n+ifor 1 <i<mn;

4) flryy)=4n+1—ifor 1 <i<n.

Clearly, fT(u) = n(n+1)/2, fT(v;) = 2n+ 1, fT(w;) = 4n + 1, fF(x;) =
6n +1 and f*(y) = n(7n + 1)/2. It can be verified that (f*(v;), fT(w;)) =
(fF(w), fH(@3)) = (fF(u), fF(vi)) = (fF(2:), fF(y)) = 1. Hence, f is an
edge-prime labeling. O

Theorem 3.8. The generalized theta graph 6(n,n,n) is edge-prime for n > 2.
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Proof. For n = 2,3,4, the results follow from Theorems 3.3, 3.6 and 3.7. We
may assume n > 5. Let V(0(n,n,n)) = {z,y,u;,vi,w; | 1 <i<n-—1} and
E(0(n,n,n)) = {zu1, 201, W1, Up 1Y, Vn-1Y, Wn-1Y}
U {uiui+1,vivi+1,wiwi+1 ‘ 1 S 7 S n — 2}

Define a labeling f as follows:
(&) flzur) =1, f(zv1) =2, f(awr) = 3;
(b) flui—1u;) = 31, f(vi—1v;) = 3i — 1, f(wi—qw;) = 3i — 2 for even i > 2;
(C) f(u,-_lu,-) =3i— 27 f(vi_lvi) =3t — 1, f(wi_lwi) = 3i for odd 7 Z 3.
(d) f(un_1y) = 3n, flon_1y) = 3n — 1, f(w,_1y) = 3n — 2 if n is even;

fun—1y) =3n =2, f(vp—1y) =3n—1, f(w,—1y) = 3n if n is odd.
Observe that f*(z) = 6, fT(u;) = fT(v;) = fH(w;)) = 6i+1for 1 <34 <
n—1, ff(y) = 9n — 3. Clearly, (f*(z),ft(u1)) = 1. For 1 <i <n—2,
(fT(us), fH(usg1)) = (6i 4+ 1,60 +7) = (66 + 1,6) = (1,6) = 1. Moreover,
(ft(up—1), fT(y)) = (6n —5,9n — 3) = (6n — 5,3n+2) = (3n — 7,3n + 2) =
(3n — 7,9) = 1 since 3n — 7 is not a multiple of 3. Hence, f is an edge-prime
labeling. (]

Conjecture 3.3. All generalized theta graphs are edge-prime.

4. EDGE-PRIME LABELINGS OF SOME TREES

Definition 4.1. For n > 1, the star St(n) is called the graph of diameter 2
with n edges attach to the apex vertex c.

Definition 4.2. The n-galaxy St(ai,as,...,a,) is called the disjoint union of
n > 2 stars St(a;), 1 =1,2,...,n.

Theorem 4.3. The star St(n) is edge-prime if and only if n < 2.

Proof. The sufficiency is obvious. Suppose n > 3. Let ¢ be the apex vertex and
let f be an edge-prime labeling of St(n). Clearly, f*(c) =n(n+1)/2. If n is
odd, then (n,n(n+ 1)/2) = n; and if n is even, then (n/2,n(n+1)/2) =n/2.
Hence, St(n) is not edge-prime. O

Theorem 4.4. The galazy St(1,n) is edge-magic if and only if n < 2.

Proof. The sufficiency is obvious. Suppose n > 3 and St(1,n) is edge-prime.
Then we must label the component Ky by 1 and all other edges by 2 to n + 1.
The apex vertex of St(n) component has label n(n + 3)/2. If n is odd, then
(n,n(n+3)/2) = n. If n is even, then (n/2,n(n+3)/2) = n/2. Hence, St(1,n)
is not edge-prime. O

Theorem 4.5. For m > n and m +n = 1 (mod 4), the galazy St(n,m) is
edge-prime only if m > n+1> 3 is odd, and all the edges of St(n) receive odd
labels.
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Proof. Let m +n = 4k + 1. Hence m > 2k + 1 > n and there are 2k + 1 odd
integers to label the edges. Note that a component of St(n,m) must receive
even number of odd edge labels. It follows that all the edges of this component
must receive odd integer labels. Since m > 2k + 1, this component must be
St(n). Hence, n is even. It follows that m > n+ 1 > 3 is odd. O

Theorem 4.6. For m > n and m +n = 2 (mod 4), the galaxy St(n,m) is
edge-prime only if m > n+ 2 > 4 is even, and all the edges of St(n) receive
odd labels.

Proof. Let m +n = 4k + 2. Hence m > 2k + 1 > n and there are 2k + 1
odd integers to label the edges. Similar to the proof of Theorem 4.5, all edges
of St(n) receive odd labels and n is even. Hence, m is even. It follows that
m>n+22>4. O

Corollary 4.7. The galazy St(4,6) is not edge-magic.
Proof. 1t follows by using Theorem 4.6 and checking each case directly. ]
Corollary 4.8. If the galazy St(n[?) is edge-magic, then n is even.

Theorem 4.9. For m,n > 2 and m+n = 0,3 (mod 4), the galazy St(n,m)
is edge-prime if (m +n)(m 4+ n +1)/2 is the sum of two primes p and q such
that p is the sum of m distinct integers in [1,m + n].

m
Proof. Suppose p = Y x;, where z1,...,x,, are distinct integers in [1,m + n].

=1
We label the edges of St(m) by x1,...,%, consecutively and those of St(n)
by the remaining labels. It is clear that we have an edge-prime labeling of
St(n, m). O

ExXAMPLE 4.10. We illustrate the case m +n = 3 (mod 4) with the example
(n,m) = (5,6). We see that (5+6)(5+6+1)/2 =66. As 66 can be expressed
as the sum of {5,61}, {7,59}, {13,53}, {19,47}, {23,43} and {29,37}, it is
clear that we cannot use {5,61}, {7,59} and {13,53} to construct an edge-
prime labeling. However, for the remaining three pairs we have (1,2,3,4,9),
(5,6,7,8,10,11) for {19,47}; (1,2,3,6,11), (4,5,7,8,9,10) for {23,43}; and
(1,3,4,10,11), (2,5,6,7,8,9) for {29,37}.

It is easy to verify that for m+n < 16, the necessary condition in Theorems 4.5
and 4.6 are sufficient except m = 6,n = 4.

Conjecture 4.1. The galazy St(n,m) is edge-prime if and only if
(1) m+n=0,3 (mod 4);

(2) m+n=1 (mod4) andm>n+12>3 is odd;
(8) m+n=2 (mod4) and m >n+2 >4 is even except m = 6,n = 4.

Theorem 4.11. For any k > 1, St(2¥) is edge-prime.
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Proof. This is a special case of Theorem 3.3. (|
Theorem 4.12. If St(3!*]) is edge-prime, then k = 0,3 (mod 4).

Proof. Observe that if the induced label of the apex vertex of a component
of St(S[k]) is even, then the labeling is not edge-prime. Thus, the induced
label of the apex vertex of each component of St(3/)) must be odd. Hence,
the corresponding component has 1 or 3 odd edge labels. Suppose there are a
components containing 1 odd edge label. Since there are [3k/2] odd integers
to label the edges, [3k/2] = a + 3(k — a) = 3k — 2a.

When £ is even, we have 3k — 2a = 3k/2 which implies that kK = 0 (mod 4).
When k is odd, we have 3k — 2a = (3k + 1)/2 which implies that k = 3
(mod 4). O

Conjecture 4.2. St(3%]) is edge-prime if k = 0,3 (mod 4).

Theorem 4.13. If G is edge-prime, then G + St(2I*]) is edge-prime for all
k>1.

Proof. Let m = |E(G)|. We extend the edge-labeling of G to G + St(2[¥) by
labeling the edges of St(2I*) by {m + 1,m + 2}, {m +3,m +4},..., {m +
2k — 1,m + 2k} consecutively. It is clear that the extended labeling is edge-
prime. (]

For 3 < j < 8, it is easy to verify that St(2,7), St(3,4), St(31), St(3M) and
St(2) + K4 are edge-prime.
Corollary 4.14. For anyk > 1, 3 < j <8, the graphs St(2I*, j), St(2I*], 3, 4),
St(2lkl, 331), St(2[F 314 and St(2F) + K4 are edge-prime.
Let Y,, be a tree with

V(Yn) = {ur,us,v; |1 <i<n}and

E(Y,) = {urv1, ugvy, vivigr |1 <i <n —1},
where n > 3.

Theorem 4.15. The tree Y, n > 3 is edge-prime.

Proof. Define f(uivi) = 1, f(uzav1) = 4, f(viv2) = 2, f(v2vs) = 3, f(vivig1) =
1+ 2 for 3 <i<n—1. Clearly, f is an edge-prime labeling. O

For n > 2, let X,, be the tree with V(X,,) = {u1,us, us,uqs,v; |1 <i <n} and
E(Xy) = {u1v1, ugvy, usvy, Ugp, ;v |1 < i <n— 1}

Theorem 4.16. The tree X,, is edge-prime, n > 2.

Proof. Let eq,...,e,_1 be the successive edges of the path vvs---v,. Define
flurvr) =1, f(ugvr) = 3, f(ugvn) = 2, f(usvn) = n+ 3 and f(e;) =i+ 3,
1<i<n-—1. It follows that f*(u1) =1, fT(u2) =3, fT(us) =2, fT(us) =
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n+3, ff(v)) =8, ff(vp) =2n+T7and fT(v;) =2i+5for2<i<n-—1.
Clearly (f*(vl), FT(w)) = (fT(v1), fT(u2)) = 1, (fF(vn), fH(us)) = (2n +
7,2) = 1, (f*(vn), fT(uy ) (2n+7,n4+3) = (1,n+ 3) = 1. Moreover,
(fT (1), fH(v2)) = (8,9) = 1, (f*(va—1), [H(va)) = (20 + 3,20 +7) = (2n +
3,4)=1and (f*(v), f (vl+1)) =(20+5,2i+7)=(2i+5,2)=1for2<i <
n — 2. So f is an edge-prime labeling. (|

Let DS(m,n) be the double star with V(DS(m,n)) = {z,y,u;,v; |1 < i <
m,1 < j <n} and E(DS(m,n)) = {zy, zu;, yv; |1 <i<m,1 <j<n}

Theorem 4.17. For even n=2" > 2, DS(n —1,n) is edge-prime if n + 1 is
prime.

Proof. Label edge xy by n + 1, label edge(s) zu; to zu,—; by odd integers in
[1,2n]\ {n+1}, and label edges yuv; to yv, by even integers in [1,2n]. We have
fT(x) =n? and fH(y) = (n+ 1)2. Tt can be verified that (f¥(z), f*(y)) = 1.
From the given conditions, we also have (f*(z), f*(u;)) = (fT(y), [T (v;)) = 1.
The theorem holds. ]

Theorem 4.18. For odd n =2™—1> 1, DS(n,n) is edge-prime if n®> +n+1
18 prime.

Proof. Label edge xy by 1, label edge(s) zu; to zu, by odd integers in [3, 2n+1],
and label edges yv; to yv, by even integers in [1,2n + 1]. We have f*(z) =
(n+1)? and f*(y) = n? + n+ 1. It can be verified that (f*(z), fT(y)) = 1.
From the given conditions, we also have (f*(z), f*(u;)) = (fT(y), [T (v;)) = 1.
The theorem holds. O

Remark 4.19. All star St(n),n > 3 are non-edge-prime trees of diameter 2 while
the trees X,, and Y;, are edge-prime trees of diameter at least 3. Moreover, there
are sufficient conditions for trees of diameter 3 (the double star D.S(m,n)) to
admit an edge-prime labeling. We propose the following conjecture.

Conjecture 4.3. All trees of diameter at least 3 are edge-prime.

5. SEMI-EDGE-PRIME LABELING

Definition 5.1. Let G be a (p, ¢)-graph. A bijection f: E — [1, 4] is called a
semi-edge-prime labeling if for each edge uv in E, we have (f(u), fT(v)) =1
or fT(u) = f*(v). A graph that admits a semi-edge-prime labeling is called a
semi-edge-prime graph.

We now give some semi-edge-prime graphs.

Theorem 5.2. For any even n > 2, the double star DS(n,n) is semi-edge-
prime if n + 1 is prime.
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Proof. Keep all notation defined in the previous section. Label edge zy by n+1,
edges zuy to zu, by odd integers in [1,2n 4+ 1]\ {n + 1} and edges yv; to yv,
by even integers in [1,2n + 1], respectively. We have f+(z) = f(y) = (n+1)2.
Since n + 1 is prime, it is clear that ((n+1)2, f*(u;)) = ((n+1)2, fT(v;)) = 1.
Since f*(z) = f*(y), DS(n,n) is semi-edge-prime. O

Note that, if n 4+ 1 > 3 is not prime, the above labeling is not edge-prime nor
semi-edge-prime.

Let C(n,n) be a bipartite graph with V(C'(n,n)) = {x, y, 2z, w,u;,v; |1 < i < n}
and E(C(n,n)) = {xz, yw, vu;, yu;, zv;, wo; | 1 <4 < n}.

Theorem 5.3. For even n > 2, the bipartite graph C(n,n) is semi-edge-prime.

Proof. Label the edges of C(n,n) as follows:

(1) Label edges zz and yw by n + 1 and 3n + 2, respectively.

(2) Label edges zuj to zu, by odd integers in [1,2n + 1]\ {n + 1} in natural
order.

(3) Label edges zv; to zv, by even integers in [1,2n + 1] in natural order.

(4) Label edges yuy to yu, by even integers in [2n 4 2,4n + 2] \ {3n + 2} in
reversed natural order.

(5) Label edges wv; to wv, by odd integers in [2n + 2,4n + 2] in reversed
natural order.

It is easy to verify that f*(z) = f¥(2) = (n+1)%, fT(y) = fF(w) = (n+1) x

(3n +2), and fT(u;) = f*(v;) = 4n + 3. By Lemma 3.1, (f*(z), fT(w;)) =

(f*(y), f*(u;)) = 1. Hence, C(n,n) is semi-edge-prime. O

Let W,, = C,, V K7 be the wheel graph of order n+1 and F,, = P, V K7 be the
fan graph of order n + 1.

Theorem 5.4. The wheel graph W, is semi-edge-prime.

Proof. Let V(W,,) = {u,v1,v9,...,v,} and E(W,,) = {wv;,v;v;41 |1 < i < n}
(Un+1 = v1). Suppose n is even. Define an edge labeling f by

(1) f(viviy1) =i+ 1 for odd i;

(2) f(viviy1) =n+i for even i;

(3) fluv;))=2n—2i+1for 1 <i<n.

Observe that f(u) = n? ff(vi) = 4n+1,fT(v;) =3n+1for 2 <i < n.
Clearly, (3n + 1,4n + 1) = 1. By Lemma 3.1, (n?,4n+1) = (n?,3n + 1) = 1.
Suppose n is odd. Define an edge labeling f by

(1) f(viviy1) =i+ 1 for odd i;

(2) f(vivig1) =n+i+ 1 for even i;

(3) fluv;))=2n—2i+1for 1 <i<n.

Observe that f*(u) = n?, f*(v;) = 3n — 2. By Lemma 3.1, (n?,3n — 2) = 1.
Hence, W,, is semi-edge-prime. O
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Theorem 5.5. The fan graph F,, is semi-edge-prime.

Proof. From the wheel graph W,, and its semi-edge-prime labeling, we delete
the edge with the highest edge label to get a fan graph F),. Observe that all
vertex labels remain unchanged except that:

(1) for even n, we have f*(v,) =n+1, fT(v1) =2n+ 1.

(2) for odd n, we have f*(v,_1) = fT(v,) =n+ 2.

In both cases above, we can show that each pair of adjacent vertices have either
identical or relatively prime labels. Hence, F}, is semi-edge-prime. [

Let P(k,n) be the graph obtained from a path P,, = ujus - - - u,, by joining every
two vertices of distant k by an edge. Clearly, E(P(k,n)) = {witi+1, i+
1<i<n,i+k<n}

Theorem 5.6. The graph P(2,n) is semi-edge-prime if n > 6.

Proof. Define an edge labeling f by f(u;u;1+1) =i and f(u;u;42) = 2n—2—1 for
1 <i < n. It is easy to verify that f(u1) =2n—2, fT(ug) =2n—1= fT(u,),
fr(un_1) =3n—2,and f(u;) = 4n—3 for 3 < i < n—2. It is straight forward
to show that every 2 adjacent vertex labels that are distinct are relatively prime.
Hence, P(2,n) is semi-edge-prime. a

Note that the above labelings give edge-prime labelings for P(2,4) and P(2,5),
respectively, and the following labelings give edge-prime labeling for P(2,6)
and P(2,7), respectively.

10 8
Conjecture 5.1. Forn > 8, P(2,n) is edge-prime.

ACKNOWLEDGMENTS

The authors thank the referees for their valuable comments.

REFERENCES

1. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, New York, MacMillan,
1976.

2. T. Deretsky, S.M. Lee, J. Mitchem, On Vertex Prime Labelings of Graphs, Graph Theory,
Combinatorics and Applications, 1, (1991), 359-369.

3. F. Harary, R. Guy, On the Mdbius Ladders, Canad. Math. Bull., 10, (1967), 493-496.

4. P. Haxell, O. Pikhurko, A. Taraz, Primality of Trees, J. Combinatorics, 2, (2011), 481-
500.


http://dx.doi.org/10.7508/ijmsi.2017.2.001
http://ijmsi.com/article-1-924-en.html

[ Downloaded from ijmsi.com on 2025-10-31]

[ DOI: 10.7508/ijmsi.2017.2.001 ]

14

W.-C. Shiu, G.-C. Lau, S.-M. Lee

. J.A. Gallian, A Dynamic Survey of Graph Labeling, Flectronic J. Comb., (2016), #DS6.
. E. Salehi, Integer-magic Spectra of Cycle Related Graphs, Iranian Journal of Mathe-

matical Sciences and Informatics, 1(2), (2006), 53-63.

. M.A. Seoud, M.Z. Youssef, On Prime Labelings of Graphs, Congr. Numer., 141, (1999),

203-215.

. A. Tout, A.N. Dabboucy, K. Howalla, Prime Labeling of Graphs, Nat. Acad. Sci. Letters,

11, (1982), 365-368.

. M. T. Varela, On Barycentric-Magic Graphs, Iranian Journal of Mathematical Sciences

and Informatics, 10(1), (2015), 121-129.


http://dx.doi.org/10.7508/ijmsi.2017.2.001
http://ijmsi.com/article-1-924-en.html
http://www.tcpdf.org

