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Abstract. Let R be a prime ring with its Utumi ring of quotients U ,

C = Z(U) the extended centroid of R, L a non-central Lie ideal of R and

0 6= a ∈ R. If R admits a generalized derivation F such that a(F (u2) ±

F (u)2) = 0 for all u ∈ L, then one of the following holds:

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = ∓x for all x ∈ R;

(3) char (R) = 2 and R satisfies s4;

(4) char (R) 6= 2, R satisfies s4 and there exists b ∈ U such that F (x) =

bx for all x ∈ R.

We also study the situations (i) a(F (xmyn) ± F (xm)F (yn)) = 0 for

all x, y ∈ R, and (ii) a(F (xmyn) ± F (yn)F (xm)) = 0 for all x, y ∈ R in

prime and semiprime rings.
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1. Introduction

Let R be an associative prime ring with center Z(R) and U the Utumi

quotient ring of R. The center of U , denoted by C, is called the extended

centroid of R (we refer the reader to [2] for these objects). For given x, y ∈ R,

the Lie commutator of x, y is denoted by [x, y] = xy−yx. An additive mapping

d : R → R is called a derivation, if it satisfies the rule d(xy) = d(x)y + xd(y)

for all x, y ∈ R. In particular, d is said to be an inner derivation induced by

an element a ∈ R, if d(x) = [a, x] for all x ∈ R. In [5], Bresar introduced

the definition of generalized derivation: An additive mapping F : R → R is

called generalized derivation, if there exists a derivation d : R → R such that

F (xy) = F (x)y + xd(y) holds for all x, y ∈ R.

Let S be a nonempty subset of R and F : R → R be an additive mapping.

Then we say that F acts as homomorphism or anti-homomorphism on S if

F (xy) = F (x)F (y) or F (xy) = F (y)F (x) holds for all x, y ∈ S respectively.

The additive mapping F acts as a Jordan homomorphism on S if F (x2) = F (x)2

holds for all x ∈ S.

Many results in literature indicate that global structure of a prime ring R

is often tightly connected to the behavior of additive mappings defined on R.

Asma, Rehman, Shakir in [1] proved that if d is a derivation of a 2-torsion

free prime ring R which acts as a homomorphism or anti-homomorphism on a

non-central Lie ideal of R such that u2 ∈ L, for all u ∈ L, then d = 0. At this

point the natural question is what happens in case the derivation is replaced

by generalized derivation. Some papers have investigated, when generalized

derivation F acts as homomorphism or anti-homomorphism on some subsets

of R and then determined the structure of ring R as well as associated map

F (see [1, 3, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 26, 27]). In [18] Golbasi and

Kaya proved the following: Let R be a prime ring of characteristic different

from 2, F a generalized derivation of R associated to a derivation d, L a Lie

ideal of R such that u2 ∈ L for all u ∈ L. If F acts as a homomorphism or

anti-homomorphism on L, then either d = 0 or L is central in R. More recently

in [9], Filippis studied the situation when generalized derivation F acts as a

Jordan homomorphism on a non-central Lie ideal L of R.

Recently in [26], Rehman and Raza proved the following: Let R be a prime

ring of char (R) 6= 2, Z the center of R, and L a nonzero Lie ideal of R. If R

admits a generalized derivation F associated with a derivation d which acts as

a homomorphism or as anti-homomorphism on L, then either d = 0 or L ⊆ Z.

In the above result, Rehman and Raza [26] did not give the complete struc-

ture of the map F .

In the present article, we investigate the situations with left annihilator

condition and we determine the structure of generalized derivation map F .

The main results of this paper are as follows:
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Theorem 1.1. Let R be a prime ring with its Utumi ring of quotients U , C =

Z(U) the extended centroid of R, L a non-central Lie ideal of R and 0 6= a ∈ R.

If R admits a generalized derivation F such that a(F (u2)± F (u)2) = 0 for all

u ∈ L, then one of the following holds:

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = ∓x for all x ∈ R;

(3) char (R) = 2 and R satisfies s4;

(4) char (R) 6= 2, R satisfies s4 and there exists b ∈ U such that F (x) = bx

for all x ∈ R.

Theorem 1.2. Let R be a noncommutative prime ring of characteristic differ-

ent from 2 with its Utumi ring of quotients U , C = Z(U) the extended centroid

of R, F a generalized derivation on R and 0 6= a ∈ R.

(1) If a(F (xmyn) ± F (xm)F (yn)) = 0 for all x, y ∈ R, then there exists

b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0 or F (x) = ∓x

for all x ∈ R.

(2) If a(F (xmyn) ± F (yn)F (xm)) = 0 for all x, y ∈ R, then there exists

b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0.

Theorem 1.3. Let R be a noncommutative 2-torsion free semiprime ring,

U the left Utumi quotient ring of R, C = Z(U) the extended centroid of R,

F (x) = bx+ d(x) a generalized derivation on R associated to the derivation d

and 0 6= a ∈ R. If any one of the following holds:

(1) a(F (xmyn)± F (xm)F (yn)) = 0 for all x, y ∈ R,

(2) a(F (xmyn)± F (yn)F (xm)) = 0 for all x, y ∈ R,

then there exist orthogonal central idempotents e1, e2, e3 ∈ U with e1+e2+e3 =

1 such that d(e1U) = 0, e2a = 0, and e3U is commutative.

The following remarks are useful tools for the proof of main results.

Remark 1.4. Let R be a prime ring and L a noncentral Lie ideal of R. If

char(R) 6= 2, by [4, Lemma 1] there exists a nonzero ideal I of R such that

0 6= [I,R] ⊆ L. If char(R) = 2 and dimCRC > 4, i.e., char(R) = 2 and R does

not satisfy s4, then by [22, Theorem 13] there exists a nonzero ideal I of R such

that 0 6= [I,R] ⊆ L. Thus if either char(R) 6= 2 or R does not satisfy s4, then

we may conclude that there exists a nonzero ideal I of R such that [I, I] ⊆ L.

Remark 1.5. We denote by Der(U) the set of all derivations on U . By a

derivation word ∆ of R we mean ∆ = d1d2d3 . . . dm for some derivations di ∈

Der(U).

Let Dint be the C-subspace of Der(U) consisting of all inner derivations on

U and let d be a non-zero derivation on R. By [21, Theorem 2] we have the

following result:
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If Φ(x1, x2, · · · , xn, d(x1), d(x2) · · · d(xn)) is a differential identity on R, then

one of the following holds:

(1) d ∈ Dint;

(2) R satisfies the generalized polynomial identity Φ(x1, x2, · · · , xn, y1, y2, · · · , yn).

Remark 1.6. In [23], Lee extended the definition of generalized derivation as

follows: by a generalized derivation we mean an additive mapping F : I → U

such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ I, where I is a dense

left ideal of R and d is a derivation from I into U . Moreover, Lee also proved

that every generalized derivation can be uniquely extended to a generalized

derivation of U , and thus all generalized derivations of R will be implicitly

assumed to be defined on the whole of U . Lee obtained the following: every

generalized derivation F on a dense left ideal of R can be uniquely extended

to U and assumes the form F (x) = ax+ d(x) for some a ∈ U and a derivation

d on U .

2. Proof of the Main Results

Now we begin with the following Lemmas:

Lemma 2.1. Let R = M2(C) be the ring of all 2 × 2 matrices over the field

C of characteristic different from 2 and b, c ∈ R. Suppose that there exists

0 6= a ∈ R such that

a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2} = 0,

for all x, y ∈ R. Then c ∈ C · I2.

Proof. If c ∈ C · I2, then nothing to prove. Let c /∈ C · I2. In this case R is a

dense ring of C-linear transformations over a vector space V . Assume that there

exists 0 6= v ∈ V such that {v, cv} is linearly C-independent. By density, there

exist x, y ∈ R such that xv = v, xcv = 0; yv = 0, ycv = v. Then [x, y]v = 0,

[x, y]cv = v and hence a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2}v = av.

Of course for any u ∈ V , {u, v} linearly C-dependent implies au = 0. Since

a 6= 0, there exists w ∈ V such that aw 6= 0 and so {w, v} are linearly C-

independent. Also a(w + v) = aw 6= 0 and a(w − v) = aw 6= 0. By the

above argument, it follows that w and cw are linearly C-dependent, as are

{w+v, c(w+v)} and {w−v, c(w−v)}. Therefore there exist αw, αw+v, αw−v ∈

C such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

In other words we have

αww + cv = αw+vw + αw+vv (2.1)

and

αww − cv = αw−vw − αw−vv. (2.2)
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By comparing (2.1) with (2.2) we get both

(2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0 (2.3)

and

2cv = (αw+v − αw−v)w + (αw+v + αw−v)v. (2.4)

By (2.3), and since {w, v} are C-independent and char (R) 6= 2, we have

αw = αw+v = αw−v. Thus by (2.4) it follows 2cv = 2αwv. This leads a

contradiction with the fact that {v, cv} is linear C-independent.

In light of this, we may assume that for any v ∈ V there exists a suitable

αv ∈ C such that cv = αvv, and standard argument shows that there is α ∈ C

such that cv = αv for all v ∈ V . Now let r ∈ R, v ∈ V . Since cv = αv,

[c, r]v = (cr)v − (rc)v = c(rv)− r(cv) = α(rv)− r(αv) = 0.

Thus [c, r]v = 0 for all v ∈ V i.e., [c, r]V = 0. Since [c, r] acts faithfully as a

linear transformation on the vector space V , [c, r] = 0 for all r ∈ R. Therefore,

c ∈ Z(R), a contradiction. �

Lemma 2.2. Let R = M2(C) be the ring of all 2 × 2 matrices over the field

C of characteristic different from 2 and 0 6= p ∈ R. Suppose that there exists

0 6= a ∈ R such that

a(pxmyn − pxmpyn) = 0,

for all x, y ∈ R. Then either ap = 0 or p = 1.

Proof. Putting x = y = I2, we get ap = ap2. In this case R is a dense ring

of C-linear transformations over a vector space V . Assume that there exists

0 6= v ∈ V such that {v, pv} is linearly C-independent. By density, there

exist x, y ∈ R such that xv = v, xpv = 0; yv = v, ypv = 0. Then we get

0 = a(pxmyn − pxmpyn)v = apv. Then by same argument as in Lemma 2.1,

we get either ap = 0 or p ∈ C · I2. When 0 6= p ∈ C · I2, from ap = ap2, we get

0 = a(p− 1). Since a 6= 0, we conclude p = 1. �

Lemma 2.3. Let R = M2(C) be the ring of all 2 × 2 matrices over the field

C of characteristic different from 2 and 0 6= p ∈ R. Suppose that there exists

0 6= a ∈ R such that

a(pxmyn − pynpxm) = 0,

for all x, y ∈ R. Then ap = 0.

Proof. Putting x = y = I2, we get ap = ap2. Here R is a dense ring of

C-linear transformations over a vector space V . Assume that there exists

0 6= v ∈ V such that {v, pv} is linearly C-independent. By density, there

exist x, y ∈ R such that xv = v, xpv = 0; yv = 0, ypv = pv. Then we have

0 = a(pxmyn − pynpxm)v = −ap2v = −apv. Then by same argument as in

Lemma 2.1, we get either ap = 0 or p ∈ C · I2. When 0 6= p ∈ C · I2, by

hypothesis, we get 0 = a[xm, yn]. Then for x = e11 and y = e11 + e12, we have
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0 = a[xm, yn] = a[e11, e11 + e12] = ae12. Again, for x = e22 and y = e22 + e21,

we have 0 = a[xm, yn] = a[e22, e22 + e21] = ae21. These imply a = 0, a

contradiction. �

Lemma 2.4. Let R be a noncommutative prime ring with extended centroid C

and b, c ∈ R. Suppose that 0 6= a ∈ R such that

a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2} = 0

for all x, y ∈ R. Then one of the following holds:

(1) c ∈ C and a(b+ c) = 0;

(2) b, c ∈ C and b+ c = 1;

(3) char (R) = 2 and R satisfies s4;

(4) char (R) 6= 2, R satisfies s4 and c ∈ C.

Proof. By assumption, R satisfies the generalized polynomial identity (GPI)

f(x, y) = a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2}.

By Chuang [6, Theorem 2], this generalized polynomial identity (GPI) is also

satisfied by U . Now we consider the following two cases:

Case-I. U does not satisfy any nontrivial GPI.

Let T = U ∗C C{x, y}, the free product of U and C{x, y}, the free C-algebra

in noncommuting indeterminates x and y. Thus

a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2, }

is zero element in T = U ∗C C{x, y}. Let c /∈ C. Then {1, c} is C-independent.

Then from above

a{[x, y]2c− (b[x, y] + [x, y]c)[x, y]c, }

which is

a{[x, y]− b[x, y]− [x, y]c)}[x, y]c,

is zero in T . Again, since c /∈ C, we have that a[x, y]c[x, y]c is zero element in

T , implying a = 0 or c = 0, a contradiction. Thus we conclude that c ∈ C.

Then the identity reduces to

a{(b+ c)[x, y]− (b+ c)[x, y](b+ c)}[x, y],

is zero element in T . Again, if b + c /∈ C, then a(b + c)[x, y]2 becomes zero

element in T , implying a(b+ c) = 0. If b+ c ∈ C, then a(b+ c)(b+ c− 1)[x, y]2

becomes zero element in T , implying b+c = 0 or b+c = 1. When b+c = 0, then

a(b+ c) = 0, which is our conclusion (1). When b+ c = 1, then b = 1− c ∈ C,

which is our conclusion (2).

Case-II. U satisfies a nontrivial GPI.
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Thus we assume that

a{(b[x, y]2 + [x, y]2c)− (b[x, y] + [x, y]c)2} = 0,

is a nontrivial GPI for U . In case C is infinite, we have f(x, y) = 0 for all

x, y ∈ U ⊗C C, where C is the algebraic closure of C. Since both U and

U ⊗C C are prime and centrally closed [17], we may replace R by U or U ⊗C C

according to C finite or infinite. Thus we may assume that R centrally closed

over C which either finite or algebraically closed and f(x, y) = 0 for all x, y ∈ R.

By Martindale’s Theorem [25], R is then primitive ring having non-zero socle

soc(R) with C as the associated division ring. Hence by Jacobson’s Theorem

[20], R is isomorphic to a dense ring of linear transformations of a vector space

V over C. Since R is noncommutative, dimCV ≥ 2. If dimCV = 2, then

R ∼= M2(C). In this case by Lemma 2.1, either c ∈ C or char (R) = 2. This

gives conclusions (3) and (4).

Let dimCV ≥ 3. Let for some v ∈ V , v and cv are linearly independent over

C. By density there exist x, y ∈ R such that

xv = v, xcv = 0;

yv = 0, ycv = v.

Then [x, y]v = 0, [x, y]cv = v and hence a{(b[x, y]2 + [x, y]2c) − (b[x, y] +

[x, y]c)2}v = av.

This implies that if av 6= 0, then by contradiction we may conclude that

v and cv are linearly C-dependent. Now choose v ∈ V such that v and cv

are linearly C-independent. Set W = SpanC{v, cv}. Then av = 0. Since

a 6= 0, there exists w ∈ V such that aw 6= 0 and then a(v − w) = aw 6= 0.

By the previous argument we have that w, cw are linearly C-dependent and

(v − w), c(v − w) too. Thus there exist α, β ∈ C such that cw = αw and

c(v − w) = β(v − w). Then cv = β(v − w) + cw = β(v − w) + αw i.e.,

(α − β)w = cv − βv ∈ W . Now α = β implies that cv = βv, a contradiction.

Hence α 6= β and so w ∈ W . Again, if u ∈ V with au = 0 then a(w + u) 6= 0.

So, w + u ∈ W forcing u ∈ W . Thus it is observed that w ∈ V with aw 6= 0

implies w ∈ W and u ∈ V with au = 0 implies u ∈ W . This implies that

V = W i.e., dimCV = 2, a contradiction.

Hence, in any case, v and cv are linearly C-dependent for all v ∈ V . Thus

for each v ∈ V , cv = αvv for some αv ∈ C. It is very easy to prove that αv is

independent of the choice of v ∈ V . Thus we can write cv = αv for all v ∈ V

and α ∈ C fixed. Now let r ∈ R, v ∈ V . Since cv = αv,

[c, r]v = (cr)v − (rc)v = c(rv)− r(cv) = α(rv)− r(αv) = 0.
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Thus [c, r]v = 0 for all v ∈ V i.e., [c, r]V = 0. Since [c, r] acts faithfully as a

linear transformation on the vector space V , [c, r] = 0 for all r ∈ R. Therefore,

c ∈ Z(R).

Thus our identity reduces to

a{(b′[x, y]2)− (b′[x, y])2} = 0,

for all x, y ∈ R, where b′ = b+ c.

Let for some v ∈ V , v and b′v are linearly independent over C. Since

dimCV ≥ 3, there exists u ∈ V such that v, b′v, u are linearly independent over

C. By density there exist x, y ∈ R such that

xv = v, xb′v = 0, xu = v;

yv = 0, yb′v = u, yu = v.

Then [x, y]v = 0, [x, y]b′v = v, [x, y]u = v and hence 0 = a{(b′[x, y]2) −

(b′[x, y])2}u = ab′v. Then by same argument as before, we have either ab′ = 0

or v and b′v are linearly C-dependent for all v ∈ V . In the first case, 0 =

ab′ = a(b + c), which is conclusion (1). In the last case, again by standard

argument, we have that b′ ∈ C. If b′ = 0, then also ab′ = a(b + c) = 0 which

gives conclusion (1). So assume that 0 6= b′ ∈ C. Then our identity reduces to

ab′(b′ − 1)[x, y]2 = 0,

for all x, y ∈ R. This gives 0 = ab′(b′ − 1) = a(b′ − 1). Since a 6= 0, we get

b′ = 1. This gives conclusion (2). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First we consider the case when

a(F (u2)− F (u)2) = 0,

for all u ∈ L. If char (R) = 2 and R satisfies s4, then we have our conclusion

(3). So we assume that either char (R) 6= 2 or R does not satisfy s4. Since L

is a noncentral by Remark 1.4, there exists a nonzero ideal I of R such that

[I, I] ⊆ L. Thus by assumption I satisfies the differential identity

a(F ([x, y]2)− F ([x, y])2) = 0.

Now since R is a prime ring and F is a generalized derivation of R, by Lee [23,

Theorem 3], F (x) = bx+d(x) for some b ∈ U and derivation d on U . Since I,R

and U satisfy the same differential identities [24], without loss of generality, U

satisfies

a(b[x, y]2 + d([x, y]2)− (b[x, y] + d([x, y]))2) = 0. (2.5)

Here we divide the proof into two cases:
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Case 1. Let d be inner derivation induced by element c ∈ U , that is,

d(x) = [c, x] for all x ∈ U . It follows that

a(b[x, y]2 + [c, [x, y]2]− (b[x, y] + [c, [x, y]])2) = 0,

that is

a((b+ c)[x, y]2 − [x, y]2c− ((b+ c)[x, y]− [x, y]c)2) = 0,

for all x, y ∈ U . Now by Lemma 2.4, one of the following holds:

(1) c ∈ C and 0 = a(b + c − c) = ab. Thus F (x) = bx for all x ∈ R, with

ab = 0.

(2) b+ c, c ∈ C and b+ c− c = 1. Thus F (x) = x for all x ∈ R.

(3) char (R) 6= 2, R satisfies s4 and c ∈ C. Thus F (x) = bx for all x ∈ R.

Case 2. Assume that d is not inner derivation of U . We have from (2.5)

that U satisfies

a(b[x, y]2 + d([x, y])[x, y] + [x, y]d([x, y])− (b[x, y] + d([x, y]))2) = 0,

that is

a(b[x, y]2 + ([d(x), y] + [x, d(y)])[x, y] + [x, y]([d(x), y] + [x, d(y)])

−(b[x, y] + [d(x), y] + [x, d(y)])2) = 0.

Then by Kharchenko’s Theorem [21], U satisfies

a(b[x, y]2 + ([u, y] + [x, z])[x, y] + [x, y]([u, y] + [x, z])

−(b[x, y] + [u, y] + [x, z])2) = 0.
(2.6)

Since R is noncommutative, we may choose q ∈ U such that q /∈ C. Then

replacing u by [q, x] and z by [q, y] in (2.6), we get

a(b[x, y]2 + ([[q, x], y] + [x, [q, y]])[x, y] + [x, y]([[q, x], y] + [x, [q, y]])

−(b[x, y] + ([[q, x], y] + [x, [q, y]]))2) = 0,

which is

a(b[x, y]2 + [q, [x, y]2])− (b[x, y] + [q, [x, y]])2) = 0.

Then by Lemma 2.4, we have q ∈ C, a contradiction.

Now replacing F with −F in the above result, we obtain the conclusion for

the situation a(F (u2) + F (u)2) = 0 for all u ∈ L.

Corollary 2.5. Let R be a prime ring with extended centroid C, L a non-

central Lie ideal of R and 0 6= a ∈ R. If R admits the generalized derivation F

such that either a(F (XY ) ± F (X)F (Y )) = 0 for all X,Y ∈ L or a(F (XY ) ±

F (Y )F (X)) = 0 for all X,Y ∈ L, then one of the following holds:

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = ∓x for all x ∈ R;

(3) char (R) = 2 and R satisfies s4;

(4) char (R) 6= 2, R satisfies s4 and there exists b ∈ U such that F (x) = bx

for all x ∈ R.
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Proof of Theorem 1.2. First consider the case when a(F (xmyn)−F (xm)F (yn)) =

0 for all x, y ∈ R. Let G1 be the additive subgroup of R generated by the set

S1 = {xm|x ∈ R} and G2 be the additive subgroup of R generated by the set

S2 = {xn|x ∈ R}. Then by assumption

a(F (xy)− F (x)F (y)) = 0 ∀x ∈ G1, ∀y ∈ G2.

Then by [7], either G1 ⊆ Z(R) or char (R) = 2 and R satisfies s4, except when

G1 contains a noncentral Lie ideal L1 of R. G1 ⊆ Z(R) implies that xm ∈ Z(R)

for all x ∈ R. It is well known that in this case R must be commutative, which

is a contradiction. Since char (R) 6= 2, we are to consider the case when G1

contains a noncentral Lie ideal L1 of R. In this case by [4, Lemma 1], there

exists a nonzero ideal I1 of R such that [I1, I1] ⊆ L1.

Thus we have

a(F (xy)− F (x)F (y)) = 0 ∀x ∈ [I1, I1], ∀y ∈ G2.

Analogously, we see that there exists a nonzero ideal I2 of R such that

a(F (xy)− F (x)F (y)) = 0 ∀x ∈ [I1, I1], ∀y ∈ [I2, I2].

By Lee [23, Theorem 3], F (x) = bx + d(x) for some b ∈ U and derivations d

on U . Since I1, I2, R and U satisfy the same differential identities [24], without

loss of generality,

a(F (xy)− F (x)F (y)) = 0 ∀x, y ∈ [R,R],

and in particular

a(F (x2)− F (x)2) = 0 ∀x ∈ [R,R].

Then by Theorem 1.1, we get

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = x for all x ∈ R;

(3) R satisfies s4 and there exists b ∈ U such that F (x) = bx for all x ∈ R.

In the last conclusion, R satisfies polynomial identity and hence R ⊆ M2(C)

for some field C and M2(C) satisfies a(bxmyn − bxmbyn) = 0. By lemma 2.2,

we get either ab = 0 or b = 1. If ab = 0, then F (x) = bx for all x ∈ R, with

ab = 0, which is our conclusion (1). If b = 1 then F (x) = x for all x ∈ R, which

is our conclusion (2).

Now replacing F with −F in the hypothesis a(F (xmyn)−F (xm)F (yn)) = 0,

we get 0 = a((−F )(xmyn) − (−F )(xm)(−F )(yn)), that is 0 = a(F (xmyn) +

F (xm)F (yn)) for all x, y ∈ R implies one of the following:

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = −x for all x ∈ R;

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
7.

2.
01

0 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
25

-1
0-

31
 ]

 

                            10 / 13

http://dx.doi.org/10.7508/ijmsi.2017.2.010
http://ijmsi.com/article-1-845-en.html


Left Annihilator of Identities Involving Generalized Derivations . . . 151

Now consider the case when a(F (xmyn)−F (yn)F (xm)) = 0 for all x, y ∈ R.

By similar argument as above we get

a(F (xy)− F (y)F (x)) = 0 ∀x, y ∈ [R,R],

and in particular

a(F (x2)− F (x)2) = 0 ∀x ∈ [R,R].

Then by Theorem 1.1, we get

(1) there exists b ∈ U such that F (x) = bx for all x ∈ R, with ab = 0;

(2) F (x) = x for all x ∈ R;

(3) R satisfies s4 and there exists b ∈ U such that F (x) = bx for all x ∈ R.

In the conclusion (3), R satisfies polynomial identity and hence R ⊆ M2(C)

for some field C and M2(C) satisfies a(bxmyn− bynbxm) = 0. Then by Lemma

2.3, we have ab = 0, which is our conclusion (1).

Now replacing F with −F in the hypothesis a(F (xmyn)−F (yn)F (xm)) = 0,

we get 0 = a((−F )(xmyn) − (−F )(yn)(−F )(xm)). That is, 0 = a(F (xmyn) +

F (yn)F (xm)) for all x, y ∈ R. This implies that there exists b ∈ U such that

F (x) = bx for all x ∈ R with ab = 0 or F (x) = −x. This completes the proof.

In particular, we have the following corollary.

Corollary 2.6. Let R be a prime ring of characteristic different from 2 and

0 6= a ∈ R. Suppose that R admits the generalized derivation F associated with

a nonzero derivation d of R. If any one of the following conditions is satisfied:

(1) a(F (xmyn)± F (xm)F (yn)) = 0 for all x, y ∈ R;

(2) a(F (xmyn)± F (yn)F (xm)) = 0 for all x, y ∈ R,

then R is commutative.

Proof of Theorem 1.3. First we consider the case a(F (xmyn)+F (xm)F (yn)) =

0 for all x, y ∈ R. Other cases are similar. We know the fact that any deriva-

tion of a semiprime ring R can be uniquely extended to a derivation of its left

Utumi quotient ring U and so any derivation of R can be defined on the whole

of U [24, Lemma 2]. Moreover R and U satisfy the same GPIs as well as same

differential identities. Thus

a(bxmyn + d(xmyn) + (bxm + d(xm))(byn + d(yn))) = 0

for all x, y ∈ U . Let M(C) be the set of all maximal ideals of C and P ∈ M(C).

Now by the standard theory of orthogonal completions for semiprime rings (see

[24, p.31-32]), we have PU is a prime ideal of U invariant under all derivations

of U . Moreover,
⋂
{PU | P ∈ M(C) } = 0. Set U = U/PU. Then derivation d

canonically induces a derivation d on U defined by d(x) = d(x) for all x ∈ U .

Therefore,

a(bxmyn + d(xmyn) + (bxm + d(xm))(byn + d(yn))) = 0
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for all x, y ∈ U . By the prime ring case of Corollary 2.6, we have either

d = 0 or [U,U ] = 0 or a = 0. In any case we have ad(U)[U,U ] ⊆ PU for

all P ∈ M(C). Since
⋂
{PU | P ∈ M(C) } = 0, ad(U)[U,U ] = 0. In par-

ticular, ad(R)[R,R] = 0. This implies 0 = ad(R)[R2, R] = ad(R)R[R,R] +

ad(R)[R,R]R = ad(R)R[R,R]. In particular, ad(R)R[R, ad(R)] = 0. There-

fore, [ad(R), R]R[ad(R), R] = 0. Since R is semiprime, we obtain that ad(R) ⊆

Z(R). By Theorem 3.2 in [10], there exist orthogonal central idempotents e1,

e2, e3 ∈ U with e1 + e2 + e3 = 1 such that d(e1U) = 0, e2a = 0, and e3U is

commutative. Hence the theorem is proved.
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