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Abstract. In this paper, we define the almost uniform convergence and

the almost everywhere convergence for cone-valued functions with respect

to an operator valued measure. We prove the Egoroff theorem for P-

valued functions and operator valued measure θ : R → L(P,Q), where R

is a σ-ring of subsets of X 6= ∅, (P,V) is a quasi-full locally convex cone

and (Q,W) is a locally convex complete lattice cone.
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1. Introduction

The theory of locally convex cones as developed in [7] and [9] uses an order

theoretical concept or convex quasi-uniform structure to introduce a topological

structure on a cone. For recent researches see [1, 2, 3, 4, 8].

A cone is a set P endowed with an addition and a scalar multiplication for

nonnegative real numbers. The addition is assumed to be associative and com-

mutative, and there is a neutral element 0 ∈ P. For the scalar multiplication

the usual associative and distributive properties hold, that is α(βa) = (αβ)a,
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118 D. Ayaseh, A. Ranjbari

(α + β)a = αa + βa, α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P

and α, β ≥ 0.

An ordered cone P carries a reflexive transitive relation ≤ such that a ≤ b

implies a+ c ≤ b+ c and αa ≤ αb for all a, b, c ∈ P and α ≥ 0. The extended

real numbers R = R∪ {+∞} is a natural example of an ordered cone with the

usual order and algebraic operations in R, in particular 0 · (+∞) = 0.

A subset V of the ordered cone P is called an abstract neighborhood system,

if the following properties hold:

(1) 0 < v for all v ∈ V;

(2) for all u, v ∈ V there is a w ∈ V with w ≤ u and w ≤ v;

(3) u+ v ∈ V and αv ∈ V whenever u, v ∈ V and α > 0.

For every a ∈ P and v ∈ V we define

v(a) = {b ∈ P|b ≤ a+ v} resp. (a)v = {b ∈ P|a ≤ b+ v},

to be a neighborhood of a in the upper, resp. lower topologies on P. Their

common refinement is called the symmetric topology generated by the neigh-

borhoods vs(a) = v(a)∩(a)v. If we suppose that all elements of P are bounded

below, that is for every a ∈ P and v ∈ V we have 0 ≤ a + λv for some λ > 0,

then the pair (P,V) is called a full locally convex cone. A locally convex cone

(P,V) is a subcone of a full locally convex cone, not necessarily containing

the abstract neighborhood system V. For example, the extended real number

system R = R∪ {+∞} endowed with the usual order and algebraic operations

and the neighborhood system V = {ε ∈ R|ε > 0} is a full locally convex cone.

A subset B of the locally convex cone (P,V) is called bounded below whenever

for every v ∈ V there is λ > 0, such that 0 ≤ b+ λv for all b ∈ B.

For cones P and Q a mapping T : P → Q is called a linear operator if

T (a + b) = T (a) + T (b) and T (αa) = αT (a) hold for all a, b ∈ P and α ≥ 0.

If both P and Q are ordered, then T is called monotone, if a ≤ b implies

T (a) ≤ T (b). If both (P,V) and (Q,W) are locally convex cones, the operator

T is called (uniformly) continuous if for every w ∈ W one can find v ∈ V such

that T (a) ≤ T (b) + w whenever a ≤ b+ v for a, b ∈ P.

A linear functional on P is a linear operator µ : P → R = R ∪ {+∞}. The

dual cone P∗ of a locally convex cone (P,V) consists of all continuous linear

functionals on P and is the union of all polars v◦ of neighborhoods v ∈ V,

where µ ∈ v◦ means that µ(a) ≤ µ(b) + 1, whenever a ≤ b + v for a, b ∈ P.

In addition to the given order ≤ on the locally convex cone (P,V), the weak

pereorder 4 is defined for a, b ∈ P by

a 4 b if a ≤ γb+ εv

for all v ∈ V and ε > 0 with some 1 ≤ γ ≤ 1 + ε (for details, see [9], I.3). It is

obviously coarser than the given order, that is a ≤ b implies a 4 b for a, b ∈ P.
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Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones 119

Given a neighborhood v ∈ V and ε > 0, the corresponding upper and lower

relative neighborhoods vε(a) and (a)vε for an element a ∈ P are defined by

vε(a) = {b ∈ P|b ≤ γa+ εv for some 1 ≤ γ ≤ 1 + ε},

(a)vε = {b ∈ P|a ≤ γb+ εv for some 1 ≤ γ ≤ 1 + ε}.

Their intersection vsε(a) = vε(a)∩(a)vε is the corresponding symmetric relative

neighborhood. Suppose v ∈ V. If we consider the abstract neighborhood

system Vv = {αv : α > 0} on P, then the corresponding upper (lower or

symmetric) relative topology on P is called upper (lower or symmetric) relative

v-topology.

We shall say that a locally convex cone (P,V) is a locally convex ∨-semilattice

cone if its order is antisymmetric and if for any two elements a, b ∈ P their

supremum a ∨ b exists in P and if

(∨1) (a+ c) ∨ (b+ c) = a ∨ b+ c holds for all a, b, c ∈ P,

(∨2) a ≤ c + v and b ≤ c + w for a, b, c ∈ P and v, w ∈ V imply that

a ∨ b ≤ c+ (v + w).

Likewise, (P,V) is a locally convex ∧-semilattice cone if its order is antisym-

metric and if for any two elements a, b ∈ P their infimum a∧ b exists in P and

if

(∧1) (a+ c) ∧ (b+ c) = a ∧ b+ c holds for all a, b, c ∈ P,

(∧2) c ≤ a + v and c ≤ b + w for a, b, c ∈ P and v, w ∈ V imply that

c ≤ a ∧ b+ (v + w).

If both sets of the above conditions hold, then (P,V) is called a locally convex

lattice cone (cf. [9]).

We shall say that a locally convex cone (P,V) is a locally convex ∨c- semi-

lattice cone if P carries the weak preorder (that is the given order coincides

with the weak preorder for the elements and the neighborhoods in P), this

order is antisymmetric and if

(∨c
1) every non-empty subset A ⊆ P has a supremum supA ∈ P and sup(A+

b) = supA+ b holds for all b ∈ P,

(∨c
2) let ∅ 6= A ⊆ P, b ∈ P and v ∈ V. If a ≤ b + v for all a ∈ A, then

supA ≤ b+ v.

Likewise, (P,V) is said to be a locally convex ∧c-semilattice cone if P carries

the weak preorder, this order is antisymmetric and if

(∧c
1) every bounded below subset A ⊂ P has an infimum inf A ∈ P and inf(A+

b) = inf A+ b holds for all b ∈ P,

(∧c
2) let A ⊂ P be bounded below, b ∈ P and v ∈ V. If b ≤ a+ v for all a ∈ A,

then b ≤ infA+ v.

Combining both of the above notions, we shall say that a locally convex cone

(P,V) is a locally convex complete lattice cone if P is both a ∨c-semilattice cone

and a ∧c-semilattice cone.
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As a simple, example the locally convex cone (R,V), where R = R ∪ {∞}

and V = {ε ∈ R : ε > 0}, is a locally convex lattice cone and a locally convex

complete lattice cone.

Suppose (P,V) is a locally convex complete lattice cone. A net (ai)i∈I in

P is called bounded below if there is i0 ∈ I such that the set {ai | i ≥ i0} is

bounded below. We define the superior and the inferior limits of a bounded

below net (ai)i∈I in P by

lim inf
i∈I

ai = sup
i∈I

(inf
k≥i

ak) and lim sup
i∈I

ai = inf
i∈I

(sup
k≥i

ak).

If lim infi∈I ai and lim supi∈I ai coincide, then we denote their common value

by limi∈I ai and say that the net (ai)i∈I is order convergent. A series
∑∞

i=1 ai

in (P,V) is said to be order convergent to s ∈ P if the sequence sn =
∑n

i=1 ai

is order convergent to s.

2. Egoroff Theorem for Operator-valued Measures in Locally

Convex Cones

The classical Egoroff theorem states that almost everywhere convergent se-

quences of measurable functions on a finite measure space converge almost

uniformly. In this paper, we prove the Egoroff theorem for operator-valued

measures in locally convex cones.

We shall say that a locally convex cone (P,V) is quasi-full if

(QF1) a ≤ b+ v for a, b ∈ P and v ∈ V if and only if a ≤ b+ s for some s ∈ P

such that s ≤ v, and

(QF2) a ≤ u + v for a ∈ P and u, v ∈ V if and only if a ≤ s + t for some

s, t ∈ P such that s ≤ u and t ≤ v.

The collection R of subsets of a set X is called a (weak) σ-ring whenever:

(R1) ∅ ∈ R,

(R2) If E1, E2 ∈ R, then E1 ∪ E2 ∈ R and E1\E2 ∈ R,

(R3) If En ∈ R for n ∈ N and En ⊆ E for some E ∈ R, then
⋃

n∈N
En ∈ R

(see [9]).

Any σ-algebra is a σ-ring and a σ-ring R is a σ-algebra if and only if X ∈ R.

However, we can associate with R in a canonical way the σ-algebra

UR = {A ⊂ X : A ∩ E ∈ R for all E ∈ R}.

A subset A of X is said to be measurable whenever A ∈ UR.

We consider the symmetric relative topology on P. The function f : X → P

is measurable with respect to the σ-ring R if for every v ∈ V,

(M1) f
−1(O) ∩ E ∈ R for every open subset O of P and every E ∈ R,

(M2) f(E) is separable in P for every E ∈ R.

The operator–valued measures in locally convex cones have been defined in

[9]. Let (P,V) be a quasi-full locally convex cone and let (Q,W) be a locally

convex complete lattice cone. Let L(P,Q) denote the cone of all (uniformly)
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Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones 121

continuous linear operators from P to Q. Recall from Section 3 in Chapter

I from [9] that a continuous linear operator between locally convex cones is

monotone with respect to the respective weak preorders. Because Q carries

its weak preorder, this implies monotonicity with respect to the given orders

of P and Q as well. Let X be a set and R a σ-ring of subsets of X. An

L(P,Q)-valued measure θ on R is a set function

E → θE : R → L(P,Q)

such that θ∅ = 0 and

θ(
⋃

n∈N
En) =

∑

n∈N

θEn

holds whenever the sets En ∈ R are disjoint and
⋃∞

n=1 En ∈ R. Convergence

for the series on the right-hand side is meant in the following way: For every

a ∈ P the series
∑

n∈N
θEn

(a) is order convergent in Q. We note that the order

convergence is implied by convergence in the symmetric relative topology.

Let (P,V) be a quasi-full locally convex cone and let (Q,W) be a locally

convex complete lattice cone. Suppose θ is a fixed L(P,Q)-valued measure on

R. For a neighborhood v ∈ V and a set E ∈ R, semivariation of θ is defined as

follows:

|θ|(E, v) = sup

{

∑

i∈N

θEi
(si) : si ∈ P, si ≤ v,Ei ∈ R disjoint subsets of E

}

.

It is proved in Lemma 3.3 chapter II from [9], that if v ∈ P, then |θ|(E, v) =

θE(v).

Proposition 2.1. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a

locally convex complete lattice cone and θ be a fixed L(P,Q)-valued measure on

R.

(a) If for E ∈ R, θE = 0, then for every v ∈ V, |θ|(E, v) = 0,

(b) If for every v ∈ V, |θ|(E, v) = 0, then θE(a) = 0 for every bounded element

a of P.

Proof. For (a), let θE = 0 and F1, · · · , Fn, n ∈ N be a partition of E. Then

for 0 ≤ si ≤ v, i = 1, · · · , n, we have 0 ≤ θFi
(si) ≤ θE(si) = 0. Since the order

of Q is antisymmetric, for every i ∈ {1, · · · , n}, we have θFi
(si) = 0. Then

|θ|(E, v) = 0.

For (b), let a ∈ P and for every v ∈ V, |θ|(E, v) = 0. Since a is bounded,

for v ∈ V, there is λ > 0 such that 0 ≤ a + λv and a ≤ λv. Now we have

0 ≤ θE(a) + |θ|(E, λv) and θE(a) ≤ |θ|(E, λv) by Lemma II,3.4 of [9]. This

shows that 0 ≤ θE(a) and θE(a) ≤ 0. Since the order of Q is antisymmetric,

we have θE(a) = 0. �

Corollary 2.2. Let (P,V) be a quasi-full locally convex cone, (Q,W) be a

locally convex complete lattice cone and θ be a fixed L(P,Q)-valued measure on
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R. If all elements of P are bounded, then for E ∈ R, θE = 0 if and only if

|θ|(E, v) = 0 for all v ∈ V.

Definition 2.3. Let R be a σ-ring of subsets of X. The set A ∈ R is said

to be of positive v-semivariation of the measure θ if |θ|(A, v) > 0. Also, we

say that the set A has bounded v-semivariation of the measure θ, if |θ|(A, v) is

bounded in (Q,W).

Definition 2.4. Let θ be an operator-valued measure on X. We shall say that

θ is generalized strongly v-continuous (GSv-continuous, for short) if for every

set of bounded v-semivariation E ∈ R and every monotone sequence of sets

(En)n∈N ∈ R, En ⊂ E, n ∈ N the following holds

lim
n∈N

|θ|(En, v) = |θ|(lim
n∈N

En, v) v ∈ V,

where the limit in the left hand side of the equality means convergence with

respect to the symmetric relative topology of (Q,W).

Example 2.5. Let X = N ∪ {+∞} and P = Q = R̄. We consider on R the

abstract neighborhood system V = {ε ∈ R : ε > 0}. Then L(P,Q) contains all

nonnegative reals and the linear functional 0̄ acting as

0̄(x) =

{+∞ x=+∞

0 else.

We set R = {E ⊂ X : E is finite}. Then R is a σ-ring on X. We define the

set function θ on R as following: for x ∈ X, θ∅ = 0, θ{n}(x) = nx for n ∈ N

and θ{+∞}(x) = 0̄(x). For E = {a1, · · · , an} ∈ R, n ∈ N, we define θE(x) =
∑n

i=1 θ{ai}(x) for x ∈ X. Then θ is clearly an operator-valued measure on R.

For n ∈ N and ε > 0, we have |θ|({n}, ε) = θ{n}(ε) = nε and |θ|({+∞}, ε) =

θ{∞}(ε) = 0(ε) = 0. Therefore each E ∈ R has finite ε-semivariation for all

ε > 0. Let E ∈ R. If (En)n∈N ⊂ R is a monotone sequence of subsets of E such

that limn∈N En = F , then there is n0 ∈ N such that En = F for all n ≥ n0.

Then θ is clearly GSε-continuous for each ε > 0.

Definition 2.6. A sequence (fn)n∈N of measurable functions is said to be θ-

almost uniformly convergent to a measurable function f on E ∈ R if for every

ε > 0, w ∈ W and v ∈ V there exists a subset F = F (ε, v, w) of E and n0 ∈ N

such that for every n > n0,

fn(x) ∈ vsε(f(x)) and |θ|(F, v) ∈ ws
ε(0),

for all x ∈ E\F .

Theorem 2.7 (Egoroff Theorem). Let R be a σ-ring of subsets of X, (P,V)

be a full locally convex cone and (Q,W) be a locally convex complete lattice

cone. For v ∈ V, suppose θ : R → L(P,Q) is a GSv-continuous operator

valued measure, and E ∈ R has bounded v-semivariation. If f : X → P

is a measurable function, and (fn : X → P)n∈N is a sequence of measurable
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functions, such that for every t ∈ E, fn(t) → f(t) with respect to the symmetric

relative v-topology of (P,V), then (fn)n∈N is θ-almost uniformly convergent to

f on E, with respect to the symmetric relative v-topology of (P,V).

Proof. We identify v ∈ V with the constant function x → v from X into P.

For m,n ∈ N, we set

Bm
n =

∞
⋂

i=n

{x ∈ E : fi(x) �v f(x) +
1

m
v and f(x) �v fi(x) +

1

m
v}.

For every n,m ∈ N we have Bm
n ∈ R by Theorem II.1.6 from [9]. Clearly,

Bm
n ⊂ Bm

n+1 for all n,m ∈ N. We claim that E =
⋃∞

n=1 B
m
n . Let x ∈ E and

m ∈ N. Then (fn(x))n∈N is convergent to f(x) with respect to the symmetric

relative v-topology. This shows that for each ε > 0 there is n0 ∈ N such that

fn(x) ∈ (
1

m
v)sε(f(x)) for all n ≥ n0. Therefore fn(x) ≤ γf(x) + ε(

1

m
v) and

fn(x) ≤ γf(x) + ε(
1

m
v) for all n ≥ n0 and some 1 ≤ γ ≤ 1 + ε. This yields

that fn(x) ≤ γf(x) + (1 + ε)(
1

m
v) and fn(x) ≤ γf(x) + (1 + ε)(

1

m
v) for all

n ≥ n0 and some 1 ≤ γ ≤ 1 + ε. Now Lemma I.3.1 from [9] shows that

fn(x) �v f(x) +
1

m
v and f(x) �v fn(x) +

1

m
v for all n ≥ n0. Thus x ∈ Bm

n0
.

Then (E \ Bm
n )n∈N is a decreasing sequence of subsets of E, such that

limn→∞ E \ Bm
n = ∅. Therefore for every m ∈ N, |θ|(E \ Bm

n , v) is con-

vergent to |θ|(∅, v) = 0 with respect to the symmetric relative topology of

(Q,W) by the assumption. For ε > 0 and m ∈ N we choose nm such that

|θ|(E \Bm
nm

, v) ≤
ε

2m
w. We set

F =

∞
⋃

m=1

E \Bm
nm

.

Then we have

|θ|(F, v) ≤
∞
∑

m=1

|θ|(Bm
nm

, v) ≤
∞
∑

m=1

ε

2m
w = εw.

Also, we have 0 ≤ |θ|(F, v) + εw. Then |θ|(F, v) ∈ ws
ε(0).

Now, we show that the convergence on E \ F is uniform. Let δ > 0. There

is k ∈ N such that
2

k
+

1

k2
≤ δ. We have

E \ F = E \ (
∞
⋃

m=1

E \Bm
nm

) =
∞
⋂

m=1

Bm
nm

⊂ Bk
nk

Now for each n ≥ nk and every x ∈ E \ F we have fn(x) �v f(x) +
1

k
v and

f(x) �v fn(x)+
1

k
v. The definition of �v shows that for ε = 1

k
there is 1 ≤ γ ≤
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124 D. Ayaseh, A. Ranjbari

1 + 1
k
such that fn(x) ≤ γ(f(x) +

1

k
v) +

1

k
v and f(x) ≤ γ(fn(x) +

1

k
v) +

1

k
v.

Therefore fn(x) ≤ γf(x) + (
2

k
+

1

k2
)v ≤ γf(x) + δv and f(x) ≤ γfn(x) + (

2

k
+

1

k2
)v ≤ γfn(x)+ δv. Since 1 ≤ γ ≤ 1+

1

k
≤ 1+

2

k
+

1

k2
≤ 1+ δ, we realize that

(fn)n∈N is uniformly convergent to f on E \ F , with respect to the symmetric

relative topology. �

Remark 2.8. If in the assumptions of Theorem 2.7, (P,V) is a quasi-full locally

convex cone, then the theorem holds again. In fact every quasi-full locally

convex cone can be embedded in a full locally convex cone as elaborated in

([9], I, 6.2).

Definition 2.9. W say that a sequence (fn : X → P)n∈N of measurable

functions is θ-almost everywhere convergent (with respect to the symmetric

topology of (P,V)) to f , if the set {x ∈ X : fn(x) 9 f(x)} is contained in a

subset E of X with θE = 0.

Definition 2.10. Let v ∈ V. We say that the sequence (fn : X → P)n∈N

of measurable functions is |θ|v-almost everywhere convergent (with respect to

symmetric topology of (P,V)) to f , if the set {x ∈ X : fn(x) 9 f(x)} is

contained in a subset E of X with |θ|(E, v) = 0.

Lemma 2.11. Let R be a σ-ring of subsets of X, (P,V) be a full locally convex

cone and (Q,W) be a locally convex complete lattice cone. Then

(a) θ-almost everywhere convergence implies |θ|v-almost everywhere conver-

gence for each v ∈ V.

(b) If all elements of (P,V) are bounded and a sequence (fn : X → P)n∈N is

|θ|v-almost everywhere convergent to f for each v ∈ V, then (fn : X → P)n∈N

is θ-almost everywhere convergent to f .

Proof. The assertions are proved by the help of Proposition 2.1. �

Theorem 2.12. If in the Egoroff theorem (2.7), fn → f , θ-almost everywhere

or |θ|v-almost everywhere, then the assertion of theorem holds.

Proof. Suppose fn → f , θ-almost everywhere, then there is a subset A of E,

which is contained in some B ∈ R with θB = 0. Now E\B ∈ R and it has

bounded v-semivariation. We apply the theorem 2.7 for E\B and obtain a

subset F satisfying in definition 2.6. Now clearly fn is θ-almost uniformly

convergent to f on E\(F ∩ B). A similar argument yields our claim for |θ|v-

almost everywhere convergence. �

Theorem 2.13. Let the symmetric relative w-topology of (Q,W) be Hausdorff

for each w ∈ W and let (fn : X → P)n∈N be a sequence of measurable functions

which converges to f , θ-almost uniformly on E ∈ R. Then {fn}n∈N, is |θ|v-

almost every where convergent to f for each v ∈ V.
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Proof. For each n ∈ N, v ∈ V and w ∈ W there is Fn = Fn(v, w) ∈ R such that

Fn ⊂ E and |θ|(Fn, v) ∈ ws
1

n

(0) and (fn) is convergent to f on E\Fn. Now, we

set F =
⋂∞

n=1 Fn. Since (Q,W) is separated, we have |θ|(F, v) = 0. Clearly,

(fn(x))n∈N is convergent to f(x) for each x ∈ E\F =
⋃∞

n=1 E\Fn. �
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