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ABSTRACT. A submanifold M™ of the Euclidean space E»T™ is said to
be biharmonic if its position map x : M™ — E"t™ satisfies the condi-
tion A2z = 0, where A stands for the Laplace operator. A well-known
conjecture of Bang-Yen Chen says that, the only biharmonic submani-
folds of Euclidean spaces are the minimal ones. In this paper, we con-
sider a modified version of the conjecture, replacing A by its extension,
Li-operator (namely, Li-conjecture). The Li-conjecture states that any
Li-biharmonic Euclidean hypersurface is 1-minimal. We prove that the
Li-conjecture is true for Li-biharmonic hypersurfaces with three distinct
principal curvatures and constant mean curvature of a Euclidean space

of arbitrary dimension.
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1. INTRODUCTION

The concept of harmonic maps plays important roles in differential geometry,
computational geometry and physical theories of elastics and fluid mechanics.
In applied mathematics, some partial differential equations have analytical so-
lutions in terms of harmonic functions (see for instance [13, 14]). Sometimes,
it becomes very difficult to find harmonic functions whereas biharmonic ones
make help us to solve related differential equations. As a geometric example,
there exists no harmonic map as T? — S? (whatever the metrics chosen) in the
homotopy class of Brower degree +1 and hence, it is useful to find a biharmonic
map from T? into S? ([9]). Obviously, harmonic maps are biharmonic but not
vis versa. If a map biharmonic is non-harmonic, then it is said to be proper-
biharmonic. Proper-biharmonic maps facilitate the study of pseudo-umbilical
and parallel submanifolds.

A well-known conjecture of Bang-Yen Chen (in 1987) says that every bihar-
monic Riemannian submanifold of Euclidean m-space (of arbitrary dimension
m), E™, is minimal. Chen himself has proven his conjecture for Euclidean
surfaces in 3-space, E>. The conjecture has been affirmed in some extended
cases. In 1992, I. Dimitri¢ proved that any biharmonic hypersurface in E™
(of arbitrary dimension m) with at most two distinct principal curvatures is
minimal ([7]). Also, in 1995, T. Hasanis and T. Vlachos have proven Chen
conjecture on the 3-dimensional Euclidean hypersurfaces ([12]). K. Akutagawa
and S. Maeta ([2]) have studied on a general version of the conjecture on com-
pelet biharmonic submanifolds of the Euclidean spaces. In 2013, B.Y. Chen
and M.I. Munteanu ([6]) affirmed the conjecture for every §(2)-ideal or §(3)-
ideal hypersurface of the Euclidean space of arbitrary dimension. Recently, R.
Gupta ([11]) has proven that every biharmonic hypersurface with three distinct
principal curvatures in E™ is minimal. On the other hand, there exists a nice
relation between the finite type hypersurfaces and biharmonic ones (see [7]).
The theory of finite type hypersurfaces has been interested by B.Y. Chen and
followed by L.J. Alias, S.M.B. Kashani and others (see [3, 5, 15]). One can see
main results in the last chapter of Chen’s book ([5]). In [15], S.M.B. Kashani
has introduced the notion of L.-finite type hypersurface as an extension of fi-
nite type hypersurface in the Euclidean space, followed by the first author in
her doctoral thesis.

The map L,, as a natural extension of the Laplace operator Ly = A, stands
for the linearized operator of (r 4+ 1)th mean curvature of a hypersurface M"
in E"*! forr =0,--- ,n—1 (see [3, 17]). The L,-operator is given by L,(f) =
tr(P, o V2f) for any smooth function f on M™, where P, is the r-th Newton
transformation associated to the second fundamental from of M"™ and V?2f is
the hessian of f.
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It seems interesting to generalize the definition of biharmonic hypersurface
by replacing A by L,. We call these hypersurfaces L,.-biharmonic. Recently,
M. Aminian and S.M.B. kashani ([4]) have stated a general version of Chen
conjecture, which says that, every Euclidean hypersurface z : M™ — En+!
satisfying the condition L2z = 0 for some r, (0 < r < n — 1) is r-minimal.
They proved that the L,-conjecture is true for Euclidean hypersufaces with at
most two principal curvatures and L,-finite type hypersurfaces. In this paper,
we prove that the Li-conjecture is true for Euclidean hypersufaces with three
distinct principal curvature and constant mean curvature. Here is our main
result:

Theorem 1.1. Every L, -biharmonic hypersurface in E" 1 with constant mean
curvature and three distinct principal curvatures is 1-minimal.

2. PRELIMINARIES

In this section, we recall preliminaries from [3, 10]. Let x : M™ — E"+!
be an isometric immersion from a Riemannian manifold M"™ of dimension n
into the Euclidean space E"*!, with a unite normal vector field (Gauss map)
N. The symbols V° and V stands for Levi-Civita connections on E"*! and
M™", respectively. The Gauss formula on M™ is given by V&Y = VxY+ <
SX,Y > N, where S : X(M) — X(M) is the shape operator (or Weingarten
endomorphism) of M" defined by SX = —V%N, for every tangent vector
fields X and Y on M™. As it is known, at each point p € M, S, is a self-
adjoint linear endomorphism on the tangent space, T, M, and its eigenvalues
A1(p), -+, An(p) are defined as the principal curvatures and the corresponding
orthonormal vectors (local basis) {ey, - - , e, } are called the principal directions
on M™. The characteristic polynomial of .S is defined by

n

Qs(t) = det(t] — §) = > _(—1)*axt" ",

k=0
where ag = 1 and for K =1,--- ,n, ai is given by
ap = Z )\1‘1 . )\Zk (21)
1<iy <<ip<n

The r-th mean curvature H, of M™ is defined by (7:) H,=a,forl<r<mn
and Hy = 1. If H, 1 = 0, the hypersurface M™ is said to be r-minimal. The r-
th Newton transformation of M™ is the operator P, : X(M™) — X(M™) defined

by
r ) n . r . .
P = _1)J H. .S — 1V a. .87
I C I (R LR S e
Jj=0 J=0
Equivalently,

Py=1I, P, = <”)HI SoP,.
T
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At each point p € M, the restricted map P, : T,M — T, M is a self-adjoint
linear operators that commutes with S and its eigenvalues with respect to the
orthonormal (local) basis {ej,--- ,e,} of principal directions on M™ are given
by Pre; = p;re; (fori =1,---,n), where

M = Z )\il cee )\ir'

1<iy <+ <ip<n
i #

We will use a helpful formula from [3] as:

n(n —1)(n — 2)
2

Associated to the Newton transformation P,., we consider the second-order
linear differential operator L, : C*°(M) — C*°(M) given by L,(f) = tr(P, o
V2f), where V2f : X(M) — X(M) denotes a self-adjoint linear operator metri-
cally equivalent to the Hessian of f, given by < V2f(X),Y >=< Vx(Vf),Y >
for every vector fields X and Y on M. In terms of the local orthonormal basis
{e1,...,en}, L-(f) is given by

L”‘(f) = Z ,U*i,r(eieif - Veieif)~ (23)

=1

tr(S?o Py) = (2HH, — H3). (2.2)

3. L,-BIHARMONIC HYPERSURFECES IN E"*!

Let z : M™ — E™! be a connected orientable hypersurface immersed
into the Euclidean space, with Gauss map N. By definition, M™ is called
a L,-biharmonic hypersurface if its position vector field satiesfies the condition
L2z = 0. By the equality L,z = ¢, H, 11N from [3], the condition L2z = 0 has
another equivalent expression as L,.(H,+1N) = 0. It is clear that the r-minimal
hypersurface is L,-biharmonic. By formulae in [3] page 122, we have

sz = _QCT(SOPr)vHrJrl_Cr( Z 1) HrJrlvHrJrl_Cr(tr(SQOPT)HTJrl_LTHT+1)Na
r
(3.1)
where ¢, = (r + 1)(Til).
By using this formula for L2z and the identifying normal and tangent parts
of the L,-biharmonic condition L2z = 0, one obtains necessary and sufficient

conditions for M™ to be L,-biharmonic in E"*!, namely

L,H, 1 =1tr(S*o P.)H, 1, (3.2)
and
1 n
(S0 P)(VH 1) =~ <7« " 1) Hyo VH, .. (3.3)
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3.1. Proof of theorem 1.1. From now on, we concentrate on L;-biharmonic
hypersurfaces M™ in a Euclidean space E**! with three distinct principal
curvatures and constant mean curvature H. We assume that the 2th mean
curvature Hs is not constant, so there exists of an open connected subset U
of M, with VHy(p) # 0 for all p € U. We shall contradict the condition
VHy(p) #£0, Vp eU.

We assume that {e1, ea,...,e,_1,e,} be alocal orthonormal frame of princi-
pal directions of the shape opreator, S, on U such that Se; = A\je; (1 <i<n).
Then we have Pye; = p; 2e;, for every i. We have

2
2 n(n —1) 1§;§n J

From (3.3) (using the inductive definition of P) we get
3

Observe from (3.5) that V Hs is an eigenvector of Py with the corresponding

eigenvalue Zn(n —1)H,. Without loss of generality, we can choose e; such that
e is parallel to V Hs. Since the shape operator S and P, can be simultaneously
diagonalized, therefore the shape operator S of M™ takes the form with respect

to a suitable orthonormal frame {eq,es,...,en_1,€p}
A1
A2
(3.6)
An—l
An
Then we have
3
H12 = *’I’L(’n - 1)H2 (37)

4
We can decompose VHy = Y | e;(H2)e;. Since e is parallel to VHa, it
follows that

61(];I2)7é07 BZ(HQ):O’LZQ,,TL (38)

We write

n
Veej =Y wher, i,j=1,2,...,n. (3.9)
k=1

The compatibility conditions V., < e;,e; >= 0 and V., < e;,e; >= 0
imply respectively that

wi; =0, wl, +wh; =0, (3.10)
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for ¢ # j and 7,5,k = 1,2,...,n. Furthermore, it follows from the Codazzi
equation that

ei(Nj) = (i = Ay, (3.11)
(N = Aty = = Ay (3.12)
for distinct 4,5,k =1,2,...,n.
Since p1,9 = Zn(n — 1)Hs, from (3.4) we have
Hy = —2 )\ (M — nH), (3.13)
n(n —1)
therefore, we get
e1(M) £0, e;(AM)=0i=2,...n. (3.14)
One can compute that
lei,ej](M) =0, 4, =2,...,n,
which yields directly
wilj = wjl-l-, (3.15)

fori£jandi,j=2,...,n.
Now we show that A; # Ay for j = 2,...,n. In fact, if A\; = A\ for j # 1, by
putting ¢ = 1 in (3.11) we have that
0= (A = Xl =e1(N;) =er(M),

which contradicts the first expression of (3.14).

Since M™ has three distinct principal curvatures, we can assume that Ay =
Az =---=X—1 =Aand A\, # A, hence \,, =nH — A\ — (n — 2)\.

Consider Egs. (3.11) and (3.12).

Fori,j=2,3,...,n—1,and 7 # j in (3.11). One has

ej(A) =0, forj=2,...,n—1 (3.16)
For j =1andi# 1in (3.11), by (3.14) we have w}; = 0 (i # 1). Moreover, by
the first expression of (3.10) we have
Wi =0,i=1,2,...,n.
Fori=2,...,n—1,7 =nin (3.11), by (3.16) we have
wr:=0,1=2,3,...,n—1.

Fori=1,7=2,3,...,nin (3.11), we obtain
no___alt@®@=2)) L el
nl 2A + (n—2)A—nH’ 1T\ =\
Fori=n,7=2,3,...,n—11in (3.11), we obtain

I nH =X — (n— 1N

W,

L j=23,...,n—1.  (3.17)

j=23,....n—1.
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Fori=1,j#kand j,k=23,...,n—1in (3.12), we have
wl, =0, j#k and jk=2,3,...,n— 1.
Fori=mn,j#kand j,k=2,3,...,n—1, in (3.12), we get
wl =0,7#k and jk=2,3,...,n—1.
Fori=nand j=1,k=2,3,...,n—1in (3.12), and using (3.15) we get
Wiy =W =0, k=2,3,...,n—1.
Similarly, we can also obtain
wip=wpy =0, k=2,3,...,n— L

Let us introduce two smooth functions o and 3 as followes:
o= 61(/\) 8= 61()\1 + (Tl — 2))\)
)\1—)\7 2)\1+(n—2))\—nH
We have the following:

(3.18)

Lemma 3.1. Let M™ be an n-dimensional biharmonic hypersurface with three
distnct principle curvature in Euclidean space, having the shape operator given

by (3.6) with respect to suitable orthonormal farame {e1,ea,...,en_1,€,}. Then
we obtain
Vee1 =0, Ve,e1 =ae;, i =2,...,n—1, V. €1 = —fen,

en(A)
nH—X —(n—1)A

n—1
Ve,ei = —ae; + E wle; —
i#5,=2

en, 1=2,3,...,n—1,

n—1
Ve, €5 = Z wfjek, ,j=2,3,...,n—1,
i#£j,k=2
en(A)

velen = 07 ve,,,en = 5617 Veien = nH — )\1 — (n — 1))\

e, 1=2,3,...,n—1.
(3.19)
where wfj satisfies (3.10) fori,j,k=1,2,....,n—1,n.
Recall the definition of the Gauss curvature tensor
R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z.

Using Lemma 3.1, Gauss equation and comparing the coefficients with respect
to a orthonormal basis {ej,ea,...,e,_1,€,}, we find the following:
oX:el, Y:€2, Z:€1,

er(a) +a? = =\ (3.20)
.X:eh Y:€2, Z:e’ru

“ (nH—)\l—(n—l))\>JranH_)\l_(n_l))\O» (3.21)
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.X:€17YZ€7L,Z:€1,
—e1(B) + B2 = =\ (nH — A\ — (n — 2)\); (3.22)
.X:€37YZ€n,Z:61,

en(N)

en(@) + o+ B =

=0; (3.23)

.X:en7 YZGQ» Z:env

en(N) ea(\) 2 -
o ("H — M= (n— I)A)Mﬂ_ (nH - (= m) - A(nH_Al(_?)(ZZ;)Z))A).

Now, we consider the Lj-biharmonic equation (3.2). It follows from (2.3)
and (3.19) that

()\1 — nH)6161

_nn—1

—~

H3) +[(n = 2)(A = nH)a + (A + (n — 2)A) ] e1 (Ha)

(" =2) b2l Hy — Hy) = 0. (3.25)

~—

o N

From (3.8) and (3.19), we obtain
ee1(Hy)=0,1=23,...,n—1,n. (3.26)
Differentiating o and g along e,,, we get equations

(M = Nen(a) — aen(N) = ener (),

(A + (n=2)A —nH)e, () + (n = 2)Ben(A) = (n — 2)ener(N),
respectively and eliminating e, e (), we have
A+ (n=2)A —nH)en(8) = (n = 2) [(A — Men(@) — (a + Ben(N)] .
Putting the value of e, (a) from (3.23) in the above equation, we find

en(A)(n—2)(a+ B)(nA —nH)
M+ (n—2A—nH)(nH — X — (n— 1))’

Differentiating (3.25) along e,, and using (3.26), (3.23) and e, (3), we get

(a+B)A
201 + (Tl — 2))\ —nH

en(B) =

(n —2)en(X)

el(Hg) — HQ(TLH - )\1 - (n - 1))\)B:| =0.

(3.27)
where A := 4nHX\; — 2X\1% — 2(n — 1)A\; 4 2n(n — 1)HX — 2n2H? and
B :=n2H?2+3)2+(3(n—2)2=3)A2+(2n—4n(n—2)) HA—4nH\; +6(n—2)A\;.
We claim that e, () = 0. Indeed, if e, () # 0, then

(a+B)A

220+ (n—2)A — nHel(Hz) — H(nH =2 — (n=1N)B =0, (3.28)
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Now, differentiating (3.28) along e,,, we have

(a+B) [A((n — 41 +2(n — 2)°A + (n — 2n(n — 2))H) + C] e1(H>)
(2M\ + (n —2)A —nH)?

+HyD =0,

(3.29)
where C := (2n(n—1)H —2(n—1D)A\))(nH -\ —(n—DAN) 2\ +(n—2)A—nH)
and
D =: —(nH — Xy — (n — 1)A)?[(6(n — 2)% — 6)\ + (2n — 4n(n — 2))H + 6(n —
2))\1] + (n — 1)(nH — )\1 — (n — 1))\)3

Eliminating e; (H3) from (3.28) and (3.29), we obtain
—AD2M + (n—=2)A —nH) = (nH — X1 — (n — )A)B[A((n — 4)\1
+2(n —2)’A 4 (n — 2n(n — 2))H) + C] (3.30)

After four times differentiating (3.30) along e,,, we get that nH = Ay, which
is not possible since A; is not constant. Consequently, e, (A) = 0. Therefore,
(3.24) reduces to

aff = AnH — A — (n—2)A). (3.31)
Note that (3.13) yields
A(n —2) 4
€1 (HQ) = 77_(2)\1 7TLH)€1 (A)+ (2>\1+(7’L*2)>\7RH)(2)\1 7TLH)5

nin —1) n(n—1)

By using (3.32), (3.31), (3.22) and (3.20), we obtain

i((z_?;/\lx@1 — )2\, — nH)

+ ﬁ(nlf — M — (n—=2)A) 2\ — nH)((3n — 2)A\ + 2\ — 2nHA — nH\;)

(3.32)

ere1(Ha) =

CM+n—2)A—nH)f—(n—2) (A1 — Na

- 2 H,).
+ |—na+ 36+ o il e1(Hy)
(3.33)
Combining (3.25) with (3.33) gives
(Proa+ Paof)er(Hz) = Psg, (3.34)

where P 2, P> and P3¢ are polynomials in terms of A and A; of degrees 2, 2
and 6 respectively.

Differentiating (3.34) along e; and using (3.31), (3.22), (3.20) and (3.34), we
get following relation

Pyga+ Ps g = Psse1(Ha), (3.35)

where P g, P5g and FPs 5 are polynomials in terms of A and A; of degrees
8, 8 and 5 respectively.
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Also, we have

61(H2) = ﬁ(?/\l — TZH) (B(z/\l =+ (n — 2))\ — nH) — (n — 2)04()\1 — /\)) .
(3.36)
Combining (3.35) and (3.36), we obtain
<P4,8 + MPG,S()Q - )\)(2)\1 - nH)> o
i 41) (3.37)
+ <P5,8 - mpﬁ,:a@)q +(n—2)A—nH)(2\ — nH)) B =0.

On the other hand, combining (3.36) with (3.34) and using (3.31), we find
Pyo(2M +(n—2)A—nH)(2\; —nH)B? — P o(n—2)(A\1 —\)(2\ —nH)a? = L,

(3.38)
where L is given by
L=XnH -\ — (n—2)\)(2\; — nH)
(Pa2(n —2)(A1 = A) = P12(2A1 + (n — 2)A —nH)) (3.39)
+ WP&G'

Using (3 37) and (3.31), we get

Pss2M\ 4+ (n—=2)A—nH)(2\1 —nH) — P,
o = n(n 1) 65( 1 ( ) )( 1 ) 578)\(TLH—)\1 B (n—2))\),
P48+ P6 5(/\1 )\)(2/\1 —TLH)

n(n 1)

8% = n((n 1)) Pos(A1 = A)(2M —nH) — Pyg

P55 — n(n 1)P6 520 + (n —2)A —nH)(2\1 — nH)

(3.40)

Eliminating o and 2 from (3.38), we obtain

)\(nH — )\1 - (n — 2))\)(2)\1 — TLH)

2
[Pra(n—2)(A1 = A)(Ps s — ﬁﬂ;ﬁ@h +(n—2)A —nH)(2\; — nH))
2
_ P2’2(2)\1 + (7’L — 2))\ — nH)(P4’8 + mPG’S()\l — )\)(2)\1 — nH)) ]

=L(Psg — 71(%_1)]36,5(2)\1 + (n—2)A—nH)(2\; —nH))
(Pag + :mpw()\l —N)(2\1 — nH)),

(3.41)

which is a polynomial equation of degree 22 in terms of A\ and A;.
Now consider an integral curve of e; passing through p = v(to) as v(t), ¢ € I.

AnH — XA — (n—2)A).
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Since e;(\1) = e;(A\) =0fori=2,...,nand e;(\1), e1(\) # 0, we can assume
t =1t(A\) and Ay = A1 () in some neighborhood of A\g = A(tg). Using (3.37), we
have

& - d)\l dt o 61()\1)

dh  dt d eV
_ M+ (n—2)A—nH)B—(n—2) (M1 — N

(M= ANa
B (P4,8 + n((Z ? Ps5(A1 — A)(2A1 — TLH)) (21 + (n —2)\ — nH) )
(n(n 5 Pes(221 + (0 — 2)A — nH)(2\ — nH) — PS,S) (A1 — A)
(3.42)

Differentiating (3.41) with respect to A and substituting d>‘1 from (3.42), w
get

FOLN) =0, (3.43)

another algebraic equation of degree 30 in terms of A\; and A.
We rewrite (3.41) and (3.43) respectively in the following forms

22 ) 30 )
> RN, > a()N, (3.44)
=0 =0

where fi(A\1) and g;(A\1) are polynomial functions of A\;. We eliminate A\3°
between these two polynomials of (3.44) by multiplying g3oA® and foo respec-
tively on the first and second equations of (3.44), we obtain a new polynomial
equation in A of degree 29. Combining this equation with the first equation
of (3.44), we successively obtain a polynomial equation in A of degree 28. In
a similar way, by using the first equation of (3.44) and its consequences we
are able to gradually eliminate A. At last, we obtain a non-trivial algebraic
polynomial equation in \; with constant coefficients. Therefore, we conclude
that the real function A\; must be a constant, which is a contradiction. Hence
H, is constant on M™. If Hy # 0, by using (3.2) and (2.2) we obtain that Hj
is constant. Therefore all the mean curvatures H, are constant functions, this
is equivalent to M™ is isoparametric. An isoparametric hypersurface of Fu-
clidean space can have at most two distinct principal curvatures ([18]), which
is a contradiction. So Ho = 0.
In conclusion, we get Theorem 1.1.
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