[ Downloaded from ijmsi.com on 2025-11-29 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 13, No. 2 (2018), pp 45-57
DOLI: 10.7508/ijmsi.2018.13.004

Szeged Dimension and P, Dimension of Composite Graphs

Yaser Alizadeh

Department of Mathematics, Hakim Sabzevari University,
Sabzevar, Iran.

E-mail: y.alizadeh@hsu.ac.ir

ABSTRACT. Let G be a simple connected graph. In this paper, Szeged
dimension and PI,, dimension of graph G are introduced. It is proved that
if G is a graph of Szeged dimension 1 then line graph of GG is 2-connected.
Trees of Szeged dimension 1 are characterized. The Szeged dimension
and PI, dimension of five composite graphs: sum, corona, composition,
disjunction and symmetric difference with strongly regular components
are computed. Also explicit formulas of Szeged and PI, indices for these
composite graphs are obtained.
Keywords: Szeged dimension, PI, dimension, Composite graphs, Strongly
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1. INTRODUCTION

All graphs throughout the paper are considered simple connected graphs
with at least two vertices. The distance between vertices u and v is denoted
by d(u,v). The eccentricity of vertex v is denoted by e(v) and defined as
the largest distance between v and any other vertices w in G. The maximum
and minimum eccentricity among all vertices of G are called diameter of G,
diam(G) and radius of G, rad(G) respectively. The Wiener index [21] is one of
the oldest and most thoroughly investigated topological indices. The Wiener
index of graph G is defined as sum of distances between all pairs of vertices of
G. Generalization of the Wiener index for cyclic graphs, that is known under
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the name of Szeged index was introduced by Ivan Gutman [8]. The Szeged
and the Wiener indices are the same for trees. P. V. Khadikar et al. [12, 13]
proposed another Szeged-like index called Padmakar-Ivan (PI) index. Since
the PI index is as sum edges weight, it is natural to introduce another index
called vertex PI index, PI, which is viewed as vertex-version.

Let e = uv be an edge of graph G. The number of vertices of G lying
closer to vertex u than vertex v is denoted by m,(e). Analogously, n,(e) is
the number of vertices of G lying closer to vertex v than vertex u.The Szeged
index and the vertex Padmakar-Ivan index [14] of G are denoted by Sz(G)
and PI,(G) respectively and defined as:

Sz(G) = Y nule)n(e),
e=uveE(G)

PI,(G) = Z ny(e) + ny(e)

e=uwveE(G)

Many methods proposed for calculating the Szeged, the PI and the PI, in-

dices of molecular graphs, composite graphs and topological indices of molecu-
lar graphs. For more information see [2, 3, 6,9, 11, 14, 15, 18, 17, 19, 20, 23, 22].
Study of topological indices under graph operations is interested in graph the-
ory literature. For example see [1, 4, 7, 10, 14, 15, 16].
Let e = uv € E(G) and Sg(e) = ny(e)ny(e) and Pg(e) = ny(e) + ny(e). We
call the number of different Sg(e) and Pg(e), (simply (S(e) and P(e)) Szeged
dimension, dimg,(G) and PI, dimension dimpy, (G) of G respectively. Let
{51,52...5;} and {Py, P>...P,,} be the different S(e) and P(e) of G. Let G
contains ¢; edges of weight s; and r; edges of weight p;. Then

k
Sz(G) = > 1S

i=1
PI(G) = Y rP

j=1

The Szeged and PI, dimensions are interesting because they tell that how
complex is the computation of these topological indices of a graph.

The line graph L(G) of graph G has a vertex for each edge of G, and two of
these vertices are adjacent if and only if the corresponding edges in G have
a common vertex. A cut vertex is any vertex that when removed increases
the number of connected components. A graph with no cut-vertex is called 2-
connected graph. A bridge is an edge that when removed increase the number
of components. A graph G is vertex transitive if for all pairs of vertices u
and v, there is an automorphism of G, a € Aut(G) such that a(u) = v. A
graph is edge transitive if its line graph is vertex transitive. In this paper,
Some non-vertex transitive graphs of the Szeged and PI, dimensions 1 are
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introduced. For such graphs, some structural properties such as 2-connectivity
of their line graph is proved. In [16] the Szeged index were studied under two
graph operations Sum and Cartesian product. There is not an explicit formula
for the Szeged index of sum of two graphs. But in the special case when the
components are regular and triangle-free the Szeged index was formulated [16].
In this paper, the Szeged and PI, dimensions for five composite graphs: sum,
corona, composition, disjunction and symmetric difference are investigated. An
explicit relation has not been obtained for the Szeged index of these composite
graphs. To formulate the Szeged index composite graphs, we consider the
components as strongly regular graphs. Also explicit formulas of Szeged and
PI, indices for these composite graphs is obtained. Let G; and G2 be two
graphs. number of vertices and number of edges of G; are denoted by n; and
e; for i = 1,2 respectively. In the following these five composite graphs are
introduce. The sum of two graphs G; and Gs is denoted by G; + G2 and is
defined as the graph with the vertex set V (G1) UV (G2) and the edge set

E (Gl + Gz) =F (Gl) Ukl (GQ) U {U1UQ |U1 S V(Gl),U2 S V(Gg) } .

It is easy to see that diam(G1 + Go) < 2. For a vertex u of G1, degg, ¢, (u) =
degg, (u) + ng. and for a vertex v of Ga, degg, 1, (v) = degg, (v) + ny. The
composition of graphs G and Gs is denoted by G7 [G2] and it is the graph
with vertex set V(G1) x V(G2) and two vertices v = (u1,u2) and v = (v1, v2)
are adjacent if (u; is adjacent with v1) or (u; = vy and usand vy are adja-
cent). It is proved that diam(G [G2]) = max{2, diam(G1)} degq, jc.)((u,v)) =
nadege, (1) + degg, (v). The disjunction G; V G is the graph with vertex set
V(G1) x V(G2) and

E (G1 V GQ) = {(Ul,UQ)(’Ul,’UQ) |U1’U1 S E(Gl) Or U2Vy € E(Gg) }
The diam (G1 V G2) is at most 2 and

dega,va, ((u,v)) = nadega, (u) + nidega, (v) — dege, (u)dega, (v)

. For given graphs Giand Gs, their symmetric difference G; @ G2 is the
graph with vertex set V(G1) x V(G2) and edge set

E(Gl D GQ) = {(Ul,UQ)(U1,U2) |U1’Ul S E(G1) or UgVy € E(Gg) not both }

dege, e ((1,v)) = nadega, (u) + mdega, (v) — 2dega, (uw)dega, (v). The dis-
junction and symmetric difference are both symmetric operations that share
a number of common properties. The most remarkable is that their diameter
never exceeds 2. The corona of two graphs is denoted by G1 o G5 and is ob-
tained by taking one copy of G; and n; copies of G2, and joining all vertices of
the i-th copy of G2 to the i-th vertex of G for i =1,2,---ny. Let G; and G4
be two simple connected graphs. The number of vertices and edges of graph
G; is denoted by n; and e; respectively. Then |V (G1 o G3)| = nq1 + ning and
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|E(Gy o G3)| = e1 + nies + ning. Unlike join and disjunction and symmet-
ric difference, composition and corona are non-commutative operations. For a
graph G with at least 2 vertices, diam(G1 o G2) = 2 + diam(Gq).

Interesting classes of graphs can be also obtained by specializing the first
component in the corona product. For example, for a graph G, the graph Ky0G
is called its bottleneck graph.

2. MAIN RESULTS

It easy to see that complete, cycle, star, bipartite complete graphs are of
Szeged and PI, dimension 1. Examples of such graphs are all edge-transitive
graphs. It is proved that an edge-transitive graph is of Szeged and PI, dimen-
sion 1. We show that also if G is a graph of Szeged dimension (PI, dimension)
1 then the line graph of G, L(G) is 2-connected.

Theorem 2.1. Let G be an edge-transitive graph. Then
dimgz(G) = dimP]U (G) =1

Proof. Let l; = zy and Iy = uv be two edges of G. Since G is edge-transitive
there is an automorphism o € Aut(G) such that {a(z), a(y)} = {a(u), a(v)}.
Suppose a(z) = u and a(y) = v. Suppose I'y(w) be the set of vertices with
distance k from w. It is easy to see that for edge I; = xy,
e(x)
na(la) = 3 IPe(@) N e (v)]
k

£(y)
ny(l1) = S ITe(®) O T (@)1
k
Since « preserves distances, we have e(x) = e(u) and e(y) = e(v). Also

Te(z)] = [Tk(u)| and [Tx(y)| = [Tk(v)| and [Tk(z) 0 Trpa(y)] = [Tr(u) 0
Tit1(v)]. Then ny(lh) = nyu(l2) and ny(li) = n,(l2). Hence for any pair
of edges I; and Iy we have S(l1) = ny(l1)ny(li) = nu(l2)n,(la) = S(l2) and
similarly P(l1) = P(ls). O

Corollary 2.2. Let G be an edge transitive graph and e € E(G). Then
Sz(G) = |E(G)|S(e) and PI,(G) = |E(G)|P(e).

There are some graphs that are vertex transitive but with the dimensions of
more than 1. For example see the Fig. 1. The approach using Corollary 2.2
was applied in [5]. Note that all edges of an edge transitive graph G are in a
same orbit of Aut(L(G)). But P(e) = P(f) does not imply that e and f are in
the same orbit.

Figure 2 shows a non vertex transitive and non edge transitive graph of the
Szeged dimension and the PI, dimension 1.
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FIGURE 1. A vertex transitive graph of the dimg,,dimpy, > 1

[ ! ® ®

FIGURE 2. A non-vertex transitive and non-edge transitive
graph of the dimgs, = 1= dimp;y,

In the next sections, we construct more such graphs. A structural property
of graphs of the Szeged dimension 1 is that their line graphs are 2-connected.

Theorem 2.3. Let G be a graph of Szeged dimension 1 with at least 3 edges.
Then L(QG) is 2-connected.

Proof. Suppose on the contrary that e is a cut vertex of L(G). Then e is a
bridge in G. Let G — e = G; U G3. Since e is a cut vertex of L(G), the
components G;,7 = 1,2 contains at least one edge e; that are adjacent to edge
e. Let |[V(G;)| = ny,i = 1,2. Without loss generality suppose that ny > no.
It is clear that S(e) = ning and S(e2) < (n1 + 1)(nz — 1) < S(e). Hence
S(ez) # S(e), a contradiction. O
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Since all trees are of PI, dimension 1, then the above theorem is not appli-
cable for PI, dimension. In the following, it is proved that the only class of
trees of Szeged dimension 1 are stars.

Theorem 2.4. Let T be a tree. Then dimg.(T) =1 if and only if T is a star
graph.

Proof. Let T has n vertices and e be an edge of T has a pendant vertex (vertex
of degree 1) then S(e) = n—1. We show that all edges of T has a pendant vertex.
In the contrary, let f = xy be an edge of T without pendent vertices. Then
S(f) = k(n—k) where k,n —k > 2. Since dimg,(T) =1 then k(n—k) =n—1
that implies £ = 1 or n = k —1 that is a contradiction. It is clear that the only
class of trees which all edges has pendant vertex are stars. O

A k-regular graph with n vertices is called strongly regular graph if there
exist positive integers A\ and p such that every adjacent pair of vertices has
A common neighbors, and every non-adjacent pair has ¢ common neighbors.
Such strongly graphs is denoted by srg(n,k, A, u). Let G be a srg(n,k, A, )
and uv € E(G). The vertices closer to u than v are k — A — 1 vertices of
neighbors of u. Then for edge e = uv we have P(e) = (k — \)? and 2(k — \)
and dimg.(G) = 1 = dimpy, (G). The Szeged and PI, index of G is obtained
as: Sz2(G) = %£(k — \)? and PI,(G) = nk(k — \).

3. THE SZEGED AND PI, DIMENSIONS OF COMPOSITE GRAPHS

In this section,The Szeged and PI, dimensions of five composite graphs:
sum, corona, composition, disjunction and symmetric difference with strongly
regular components is computed. Also explicit formulas of the Szeged and
the PI, indices for these composite graphs is obtained. In this section, the
notations n; and e; are the number of vertices and number of edges of G;
respectively and considered graphs are non empty graphs.

3.1. Sum. We start with the sum of graphs. In [16] the Szeged index of sum
graphs with regular and triangle-free components was computed. Here we
compute the Szeged index for the family of strongly regular graphs.

Theorem 3.1. Let G1 = srg(ny, ki, A1, u1) and Gy = srg(na, ke, A, pi2) be two
strongly regular graphs. Then dimg,(G1 + G2) < 3 and dimpy, (G1 + G2) < 3.
Also
Sz2(Gy + Go) = e1 (k1 — M)* + ea(ka — o) + nina(ng — ki) (ng — ka),
PI,(G1 + G2) = 2e1(k1 — A1) + 2ea(ka — A2) + nina(ny + na — ki — ka),
Proof. Let e = zy be an edge of G; + G2. To compute the S(e) or P(e), 3

cases must be considered.
case 1. e € E(Gy).
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Since the diam(G1 + G2) < 2 then n,(e) is the number of vertices that are
adjacent to = but non adjacent to y. Hence ny(e) = k1 — A1 and S(e) =
(]fl — )\1)2, P(e) = 2(/€1 — )\1)

case 2. e € E(G3)

Similarly we have, S(e) = (k2 — \2)?, P(e) = 2(ka — \2).

case 3. e=zy,z € V(G1) and y € V(Gs)

In this case, the non adjacent vertices of y (x) in Gy (G;) are closer to = (y)
than y (x). Hence S(e) = (ng — k2)(n1 — k1) and S(e) = (n1 +ng — k1 — ka).
Now by summing the weight of edges, the Szeged and the PI, of G; + G5 is
obtained. d

3.2. Corona.

Theorem 3.2. Let G1 and Gy are simple connected graphs and Gs be strongly
reqular graph with Go = srg(ng, ko, Ao, pu2). Then

dimsz(Gl 0Gh) < dimsz(Gl) + 2

and
dimpjv (Gl o Gg) S d?:mpjv (Gl) + 2

Also we have
SZ(Gl o Gg) = (TLQ + I)QSZ(Gl) + nleg(kg — )\2)2 + nlng(nl 4+ ning — ko — 1),
PIU(Gl o Gg) = 2(77,2 + 1)PIU(G1) + 271162(]{2 — )\2) +n1n2(n1 +ning — ko — 1).

Proof. Let denote the copy of Gy associated a vertex x € V(G1) by Ga,. We
partition the edges of G = G1 o G5 to 3 sets.

case 1. e = zy € E(Gh).

For each vertex of Gy that is closer to x than y, there is ny + 1 vertices in G
closer to x than y. Then Sg(e) = (n2+1)2Sg, (¢) and Pg(e) = 2(na+1)Pg, (e).
Note that there are e; such edges.

case 2. e =zy € E(Ga,,),z € V(Gy).

There are njep such edges. In this case S(e) = (k2 —\2)? and P(e) = 2(ka — \2)
case 3. e=zy, x € V(G1) and y € V(Ga).

All vertices of G except y with its neighbors are closer to x than y. Therefore
ng(e) = ny +ning — ka2 — 1 and ny(e) = 1. There are nyny such edges. The
Szeged and PI, indices of G; o G5 is computed by summing the weight of
edges. O

3.3. Composition.

Theorem 3.3. Let G1 = srg(ni, k1, A1, 1) and Gy = srg(na, ke, Ag, pi2) be two
strongly regular graphs. Then dimg,(G1[G2]) < 3 and dimpr, (G1[G2]) < 3.
Also

SZ(Gl [GQ]) = 61n2(n2k1 — Ang — k2)2 + elng(ng — 1)(n2k1 + ko — /\1712)2
+nies(ks — A2)?,


http://ijmsi.com/article-1-796-en.html

[ Downloaded from ijmsi.com on 2025-11-29 ]

52 Y. Alizadeh

PIU(Gl[Gz]) = 26177,2(712]{}1 — )\1712 — kg) -+ 26177,2(712 — 1)(77,2k1 —+ kQ — )\1712)
+2n1ez(kz — A2)

Proof. Let G = G1[G2]. Then G is a regular graph of degree k = noky + ko.
Since the diameter of G is at most 2 and G is a k- regular graph then the weight
of an edge is (k — c¢)? for the Szeged index and 2(k — ¢) for the PI, index where
¢ is the number of vertices adjacent to the ends of the edge. We partition the
edges of G1[G3] to 3 sets. The first set is 41 = {(z,u)(y,v)|zy € E(G1),u = v}.
Note that |A;| = e1ne. Now we find the common neighbors of the end vertices
of edge (x,u)(y,v) that is as:

IN(2,9) N N, 0)] = [{(z, w), (3 w)lw € N()} U{(z,w)]z € N(z) N\ N(y),w €
V(G2)}

= 2ko + A1na. Consider the next set as: As = {(z,u)(y,v)|zy € E(G1),u # v}.
For Ay, we have |As| = eyna(ng — 1) and |N(z,y) N N(u,v)| = |{(z,w)]z €
N(z) NN (y),w € V(Ga)}

= Aing. The last set A3 = {(z,u)(y,v)|x = yuv € E(G2)}. Similarly we get
|Ag] = nre2 and [N (z,5) 0 N(w,0)] = [{(z,w)|w € N() N N(o)} U{(y,w)ly €
N(z),w € V(G2)}|. The Sz(G) and PI,(G) is computed by summing weight
of the edge of these three sets. O

3.4. Disjunction and Symmetric difference. The operations disjunction
and symmetric difference are two commutative graph operations.

Theorem 3.4. Let G1 = srg(n1, k1, A1, u1) and Gy = srg(na, ke, Ag, pi2) be two
strongly regular graphs. Then dimg.(G1V G2) < 4 and dimpr, (G1][G2]) < 4.
The Szeged and the Ply indices of G = G V G is obtained as:

S2(G) = erng ((n1 — k1)ka 4+ na(ky — A1) — 2ka)” + eany ((n2 — ko )k
+e1nz(ng — 1)(niks + noky — kika — Ang — Aong + A1As)?
eany(ny — 1)(naky + niks — kiks — Aang — Aing + A Ao)?
Hn1 (ko — Ag) — 2k1)?

PI, = 2e1na((ng — k1)ka +na(kr — A1) — 2ka) + 2ean1((ng — ko)ky
+2e1n2(ng — 1)(n1ke + noky — kika — Aing — Aang + A1 Ae)
2ean1(ny — 1) (noky + niks — k1ka — Aang — Aing + A1 A9)
+nq (ke — A2) — 2k;)
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Proof. We partition the edges of G1 V G2 to 4 sets Ay...Ay as:

A = Al@u)(y,v)|ey € E(Gh),u = v}
Ay = A{(z,u)(y,v)zy € E(Gr),u# v}
43 = A(@u)(y,v)|z =y, w € E(G2)}
Ay = Az u)(y,v)lz # y,uo € E(G2)}

The diameter of G = G; V Gs is at most 2 and G is a regular graph of degree
noky +n1ks —k1ks. Then to compute the edges it is enough to find the number
of common neighbors of the end vertices of the edge. The size of Ay is ejng
and |[N((z,y) N N(u,v)] = Aing + 2ko. Then for e € A; we have S(e) =
(n2k1 +n1k2—k1k2—)\1n2—2k2)2 and P(e) = 2(712]61 +n1k52—k1k‘2—)\1n2—2k2).
Similarly for the other set we obtain the following results:

‘A2| = elng(ng — 1), for e € Ay

S(e) = (n2ky +niky — kiky — Aina — Aang + )\1)\2)2

P(e) = 2(nok1 + nike — kika — Aing — Aang + A1 A2)

‘A3| = eaNny, for e € A3

S(e) = (niks + noky — kiks — Aanq — 2k1)?

P(e) = 2(n1ka + noky1 — kika — Aany — 2k1)
|A4| = eani(ng — 1), for e € Ay

S(e) = (nlkZ + anl - kle — )\in — A1n2 — 2K2)2

P(e) = 2(77,1]62 + n2k1 - k‘lkg - )\277,1 - )\1%2 — 2K2)

O

Analogously the Szeged and the PI, indices for symmetric difference of two
strongly regular graph Gy = srg(ni, k1, A\, 1) and Go = srg(na, ke, A, o)
is computed as follow. Note that G; @& G2 is also a regular graph of degree
niks + noky — 2k1ko.

Theorem 3.5. Let G1 = srg(n1, ki, A1, p1) and Go = srg(na, ke, Ag, pi2) be two
strongly regular graphs. Then dims,(G1 ® G2) < 4 and dimp;, (G1 ® G2) < 4.
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The Szeged and the Ply indices of G = Gy & G4 is obtained as:

S2(G) = eina(ka(ng + M) +na(ky — A1) — 2k1k2)? + eany (k1 (ng + A2)
++e1(na(ng — 1) — €3)(nika + noky — 2k1ka — A1 (2ka — A2))?
tea(n1(ng — 1) — €2)(noky + niky — 2k1ka — Ao (2k1 — Ap))?
ny (ko — X)) — 2k kg)?

PI, = 2eins(ka(ny + A1) +no(ky — A1) — 2k1k2) + 2ean1 (k1 (ng + A2)
+2e1(n2(n2 — 1) — e3)(niks + nokr — 2k1ks — A\ (2ka — A2))
+2es(n1(ng — 1) — 6%)(n2]€1 + niky — 2k1ka — A2 (2k1 — A1)
+n1(ky — Xo) — 2k1 ko)

The proof follows much along the same lines as for the disjunction,so we

omit the details. The theorem of this section can be used also for graphs that
two adjacent vertices have the same number of neighbors.

4. EXAMPLES

In this section,we apply some of the derived results to give explicit formulas
for Szeged and PI, indices of some classes of graphs such as suspension, wheel,
closed fence and bottleneck graphs of graph G. We start with suspension.

Corollary 4.1. Let G be strongly regular graph srg(n,k,\, ). Then
nk
2
PI,(Ki1+G)=2(k— ) +n(n—k)

S2(K1+G) = —(k—XN?4+n(n—k)
Now we give the formulas of Sz and PI, for wheel graphs.
Corollary 4.2.
Sz(Ky 4+ Cp) =n? +2n = PI(K; + Cy,).
Next example is closed fence graph.
Corollary 4.3. Let n > 4. Then
Sz(Cr|K2]) = 69n
PI,(Cy[Ks]) = 34n
For bottleneck graph K5 o G we have:
Corollary 4.4.
S2(Ky0G) = (n+1)2+nk(k— N2 +2n2n+1—k)
PI,(Ky0G)=4(n+ 1)+ 2nk(k— X)) +2n(2n+1—k)
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CONCLUDING REMARKS

The Szeged dimension and the PI, dimensions of G are the simplest measure

to determine how complex is the computation of these indices on G. Also by
Szeged dimension some structural properties of graphs are determined. For

instance a graph of Szeged dimension 1 has a 2-connected line graph. For a
tree T is proved that dimg,(T) = 1 if and only if T is a star graph. It would be
an interesting problem study of graphs (trees) of Szeged dimension k, k > 2.
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APPENDIX

The following GAP program is presented to compute the Szeged dimension
of an arbitrary graph. Input of the program is the set of adjacent vertices of
each vertex that is denoted by N. For example,the set N for the graph P, is as
N = [[2]’ [L 3]7 [2’4]7 [3]]

SzegedDimension:=function(N)
local n, D, i, j, S, s, t, x, Eg, e, nl, C, SzegedDimension;
n:=Size(N);

D:=[1;

for i in [1..n] do

S:=[1;

for j in [1..n] do S[j]l:=0; od;

D[i]:=[];
D[i] [1]:=NT[il;
for j in N[i] do

S[31:=1;
od;
S[i]:=1;
s:=1;
t:=1;

while s<>0 do
D[i] [t+1]:=[];
for j in D[i][t] do
for x in N[j] do
if S[x]=0 then
Add (D[i] [t+1],x);
fi;
S[x]:=1;
od;
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od;
if D[i][t+1]=[] then
s:=0;
fi;
ti=t+1;
od;
od;
Eg:=[1;

for i in [1..n] do
for j in N[i] do
if j>i then Add(Eg,[i,jl); fi;

od;
od;
SzegedDimension:=[];
nl:=[];
c:=[1;
for e in [1..Size(Eg)] do
i:=Eglel [1];
j:=Eglel [2];
nilf[e] :=1;
Cle] :=0;

Cle]:= Clel+ Size(Intersection(N[i],N[j1));
for t in [2..Size(D[i])-1] do

nife]:= ni[e]+ Size(Intersection(D[i][t] , D[j][t-11));
Clel:= Clel+ Size(Intersection(D[i][t], D[j][t]1));

od;

AddSet ( SzegedDimension, (nl[el)*(n - nife]l - Clel) );

od;
return Size(SzegedDimension) ;
end;
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