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ABSTRACT. The domination game is played on an arbitrary graph G by
two players, Dominator and Staller. It is known that verifying whether
the game domination number of a graph is bounded by a given integer k
is PSPACE-complete. On the other hand, it is showed in this paper that
the problem can be solved for a graph G in O(A(G) - |[V(G)|*) time. In
the special case when k = 3 and the graph G considered has maximum

diameter, the complexity is improved to O(|V(G)| - |E(G)| + A(G)3).
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1. INTRODUCTION

The domination game is played on an arbitrary graph G by Dominator
and Staller. They are taking turns choosing a vertex from G such that at
least one previously undominated vertex becomes dominated. The game ends
when no move is possible, the score of the game being the total number of
vertices played. Dominator wants to minimize the score, while Staller wants
to maximize it. The game is called D-game when Dominator starts it, and S-
game if Staller has the first move. Assuming that both players play optimally,
the game domination number v4(G) (the Staller-start game domination number
7y(G)) of a graph G, denotes the score of D-game (S-game, resp.).

The game was introduced in 2010 in [4] and received a considerable attention
afterwards. A strong motivation factor for the game is the 3/5-conjecture
posed and studied in [12], and further investigated in depth in [2, 5, 6, 9].
Additional results and aspects of the domination game were also investigated.
For instance, guarded subgraphs and their role in the game was studied in [3],
the behaviour of the game on the disjoint union in [8], realizability of game
domination numbers in [14], and extremal trees with respect to the game in [15].
We also mention that two closely related games were introduced very recently:
the total domination game [10, 11] and the disjoint domination game [7].

In this paper we are interested in the complexity point of view of the game,
especially motivated by the result from [1] asserting that verifying whether
the game domination number of a graph is bounded by a given integer k is
PSPACE-complete. To put the game into another perspective we observe in the
next section that the problem can be solved for a graph G in O(A(G)-|V(G)|¥)
time. This means that if k£ is not part of the input, the problem becomes
polynomial. Then, in Section 3, using a characterization from [13], we show
that the general complexity O(A(G) - [V(G)|?) can be improved to the time
O(|V(G)| - |[E(G)| + A(G)?) within the class of graphs of diameter 6.

In the rest of the section we introduce some additional concepts and notation
needed. A partially-dominated graph is a graph together with a declaration
that some vertices are already dominated. Such vertices thus need not be
dominated in the rest of the game. If S C V(G), then the partially dominated
graph in which vertices from S are already dominated will be denoted by G|S.
As usual, if x is a vertex of G, then its open and closed neighborhood will
be denoted by N(x) and NJz|, respectively. If G is a graph, then S,(z) =
{y € V(G) : dg(x,y) = r} is the sphere with center = and radius r, and
B.(z) = {y € V(G) : dg(z,y) < r} is the ball with center = and radius 7.
Finally, the maximum degree of G is denoted by A(G); we will simply write A
when G will be clear from the context.
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2. ON THE COMPLEXITY OF THE GAME

The D-game domination problem is the following.

D-GAME DOMINATION PROBLEM
Input: A graph G, and an integer k.
Question: Is v4(G) < k?

Similarly, The S-game domination problem is:

S-GAME DOMINATION PROBLEM
Input: A graph G, and an integer k.
Question: s vy (G) < k?

As already mentioned, it was proved in [1] that these problems are log-
complete in PSPACE. On the other hand, we show now that the following
holds.

Theorem 2.1. If G is a graph of order n and k is a fized integer, then the
D-game domination problem and the S-game domination problem can be solved
in O(A(G)n*) time.

Proof. We jointly define two recursive algorithms, A and A’, for D-game and
for S-game, as follows.

Algorithm A(G, S, k)
Input: A graph G, set of dominated vertices S C V(G), an integer k
Output: TRUE if v,(G|S) < k, FALSE otherwise
if $=V(G) then
return TRUE and STOP
else if £ =0 then
return FALSE and STOP
else
for v € V(G) do
if v is a legal move then
if A/(G,SUN]Jv],k—1) then
return TRUE and STOP
return FALSE and STOP

We first prove the correctness of the algorithms by induction on k. For
k =0, it is clear, because v,4(G|S) = 0 or 7, (G|S) = 0 if and only if S = V(G).
Assume now that the two algorithms are correct for some k& > 0. The algorithm
A(G, S, k+1) returns TRUE in two cases. In the first case when S = V(G), we
clearly get 74(G|S) = 0 < k+1. In the second case there exists a legal move v €
V(G), such that A'(G,S U N[v], k) returns TRUE. By induction hypothesis it
follows that v, (G|(SUN[v])) < k. Since 7,4(G|S) < v, (G[(SUN[v]))+1 holds by


http://dx.doi.org/10.7508/ijmsi.2015.02.011
http://ijmsi.com/article-1-794-en.html

[ Downloaded from ijmsi.com on 2025-11-16 ]

[ DOI: 10.7508/ijmsi.2015.02.011 ]

118 S. Klavzar, G. Kosmrlj, S. Schmidt

Algorithm A'(G,S,k)
Input: A graph G, set of dominated vertices S C V(G), an integer k
Output: TRUE if v, (G|S) < k, FALSE otherwise
if S =V(G) then
return TRUE and STOP
else if £ =0 then
return FALSE and STOP
else
for v € V(G) do
if v is a legal move then
if not A(G,SUNJv],k—1) then
return FALSE and STOP
return TRUE and STOP

definition, we derive that v4(G|S) < k+1. Conversely, if A(G, S, k+1) returns
FALSE, then for any legal move v € V(G), the algorithm A'(G,S U Nv], k)
returns FALSE. By induction hypothesis v, (G[(S U N[v])) > k holds for all
legal moves v € V(G). That proves that v4,(G|S) > k+ 1. Hence the algorithm
A(-, -, k+1) is correct. In a similar way, we prove the correctness of A’(-, -, k+1).

Now we prove that the algorithms run in the announced time complexity.
The data structure we use for a partially dominated graph G|S is the adjacency
list for vertex-weighted graphs, where a vertex of G has weight 1 if it still needs
to be dominated, and weight 0 otherwise. That is, vertices from S receive
weight 0.

We show by induction on k that for a given graph G of order n, Algorithms
A(-,-,k) and A’(-,-, k) both run in O(An*) time. If k = 1, then for A we have
to check at most n times if a move v is legal and if N[v]U S = V(G). To this
end we first compute S and store |\S| which is done in time O(n). After that
when going in the loop for vertex v, we compute |[N[v] \ S|. It takes time at
most O(A). Since v is a legal move if and only if [N[v] \ S| > 0, computing
if this move is legal and if N[v] U S = V(G) can be done in constant time.
In conclusion, we need time at most O(nA). The same conclusion holds for
Algorithm A’.

If & > 0 then, for Algorithm A, we have to check at most n times whether the
move v € V(G) is legal. We have already seen that this can be implemented in
O(nA) time. Also, the algorithm A’(G, SUNv], k — 1) must be run at most n
times. We need O(n) time to build G|(S U N[v]) and by induction hypothesis,
O(Ank~1) time to run A’(G, S U N[v],k — 1). In conclusion, the time needed
is O(nA +n - (n+ O(Ank=1))) = O(AnF).

By a similar argument we obtain the same complexity for Algorithm A’. O
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In a practical implementation it would be more efficient to use in Algorithm
A the recursive call A’(G—v,SUN(v), k—1). However, this modification does
not improve the theoretical complexity of the algorithm.

3. FASTER ALGORITHM FOR GRAPHS WITH 7, = 3 AND diam = 6

In this section we show that in particular cases the complexity of Algorithms
A and A’ can be improved. To be more specific, consider the class of graphs
ES defined as follows:

ES = {G: v,(G) = 3,diam(G) = 6} .

Here the diameter is not selected randomly, the reason to select diam(G) = 6
is that it is the largest possible diameter a graph G with v4(G) = 3 can have.
In the recent paper [13], graphs from E$ have been characterized and we are
going to use this characterization for a faster algorithm than the canonical one.
For this sake, we need to recall the following concept(s).
If G is a connected graph, then a vertex u of G is called nice if the following
five conditions are fulfilled.
(1) There exists v; € Sy(u) such that N[vi] = Ba(u).
(2) There is a join between N(S3(u)) N Sa(u) and Ss5(u), a join between
S3(u) and Sy(u), and a join between Ss(u) and Sg(u).
(3) The spheres S3(u) and Sg(u) induce cliques.
(4) There exists vs € Ss(u) such that Sy(u) U Ss(u) C Nvs].
(5) For any vertex x € Sy(u) (resp. Ss(u)), there exists a vertex z’ €
Ss(u) U Sg(u) (resp. Sz(u) U Sy(u)) such that Sy(u) U Ss(u) € Nz]U
N[z'].
Using the concept of a nice vertex, the above mentioned characterization
from [13] reads as follows.

Theorem 3.1. If G is a connected graph, then the following statements are
equivalent.
(i) The graph G belongs to ES.
(ii) Any diametrical pair of vertices contains at least one nice vertet.
(iii) There exists a nice diametrical vertex.

As already mentioned, applying the canonical algorithm from Section 2,
graphs G from E§ can be recognized in time O(A - |V(G)]?). Using the above
theorem, we can substantially improve this complexity as the next result as-
serts.

Theorem 3.2. Deciding whether a given graph G belongs to ES can be imple-
mented in time O(|V(G)| - |[E(G)| + A3).

Proof. We will prove that the following algorithm recognizes graphs in ES
within the claimed time complexity.
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Algorithm Rec-E$(G)
Input: A (connected) graph G
Output: TRUE if G € ES, FALSE otherwise
for v € V(G) do
determine So(v), ..., Secc(v)(v) and s;(v) = |S;(v)], 0 < i < ecc(v)
if not diam(G) = 6 then
return FALSE
else

select a vertex u with ecc(u) = 6 and a vertex u' from Sg(u)
if w is nice or «’ is nice then

return TRUE
else

return FALSE

We first claim that Algorithm Rec-E$(G) is correct. If it returns TRUE,
then G has diameter 6 and contains a nice vertex, hence by Theorem 3.1(iii)
G belongs to ES. On the other hand, when Rec-E$(G) returns FALSE, there
are two possibilities. First, diam(G) # 6, which obviously implies that G is not
in ES. Second, there exists one pair of diametrical vertices such that both of
them are not nice and by Theorem 3.1(ii) we then infer that G' does not belong
to ES. This proves the correctness of the algorithm.

We next consider the complexity of Algorithm Rec-ES(G). To simplify the
notation set n = |V (G)| and m = |E(G)|. Using the standard BFS, the spheres
around each vertex can be determined in time O(m). Hence, the first loop of
the algorithm can be performed in O(nm) time. If diam(G) = 6, then the
algorithm checks if one of the vertices from a selected diametrical pair u,u’ is
nice. The corresponding conditions can be verified sequentially. To simplify
the notation, we will write S; to refer to either S;(u) or to S;(u’). The five
conditions can be then verified as follows.

Condition 1: For any vertex v € S;, N[v] = So U S; U Sy if and only if
deg(v) = sp + s1 + s2. Hence, Condition 1 can be verified in time O(s1A).

Condition 2: There is a join between N(S3) NSy and Ss if and only if, for
any vertex v € N(S3)NSs, |N(v)NS;| = s3. Hence, we can check that there is
such a join in time O(s2A). In the same way, we can verify the two other join
conditions. After all, checking Condition 2 can be done in O((s2 + s3 + sg)A).

Condition 3: This condition needs time O((s3 + s)A).

Condition 4: This condition needs time O(s5A).
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Condition 5: For each vertex in Sy (resp. S5), we have to find one vertex in
S5 U Sg (resp. S3USy) which fulfils the given condition. We conclude that the
required time is O(s4(s5 + s6)A + s5(s3 + 54)A).

By the above it follows that the first four conditions can be verified in time
O(nm). For the last condition we have to be a bit more careful. Indeed, if
we would bound s3, s4, s5, and sg above by n, we would get the complexity
O(n%A). However, note that Condition 5 is tested only if Condition 2 has been
successfully tested before. This ensures that sz, s4, S5, and sg are bounded
above by A. Therefore, the complexity of testing Condition 5 is O(A?). We
conclude that the complexity of Algorithm Rec-ES(G) is O(nm + A3). O
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