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ABSTRACT. This paper is concerned with the relation between local coho-
mology modules defined by a pair of ideals and the Serre subcategories of
the category of modules. We characterize the membership of local coho-
mology modules in a certain Serre subcategory from lower range or upper

range.
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1. INTRODUCTION

Throughout this paper, R is denoted a commutative Noetherian ring, I and
J are denoted two ideals of R, and M is an R-module. We refer the reader to
[2] and [4] for any unexplained terminology.

As a generalization of the ordinary local cohomology modules, Takahashi,
Yoshino and Yoshizawa [16] introduced the local cohomology modules with
respect to a pair of ideals (I,J). To be more precise, let W(I,J) = {p €
Spec(R) | I C p+ J for some positive integer n}. Then for an R-module M,
the (I, J)-torsion submodule I'; y(M) of M, which consists of all elements x
of M with SuppRx C W(I,J), is considered. It is known, I'; ; is a left exact
additive functor from the category of all R-modules and R-homomorphism to
itself. For all integer i, the i-th local cohomology functor H}] with respect
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to (I, J) is defined to be the i-th right derived functor of I'; ;. The i-th local
cohomology module of M with respect to (I, J) is denoted by H} ;(M). When
J =0, then H} 7 coincides with the usual local cohomology functor H¢ with
the support in the closed subset V' (I).

The study of this generalized local cohomology modules was continued by many
authors (see for example [5], [6], [9] and [10], [14]).

Recall that a class of R-modules is a Serre subcategory of the category of R-
modules when it is closed under taking submodules, quotients and extensions.
Always, S stands for a Serre subcategory of the category of R-modules.

Using the generalized local cohomology modules, we can define T} ;(M)
(resp. TL7(M)) of the R-module M relative to a pair (I,.J) of ideals of R by

17 (M) = inf{i e N | H}’J(M) is not in S},
(resp. TH7(M) = Sup{i e N | H}J(M) is not in S})
with the usual convention that the infimum (resp. Supremum) of the empty
set of integers interpreted as +o0o (resp. —o0).

Our objective in this paper is to investigate the notions T} ;(M) and T/ (M).
we prove the following,

Theorem 1.1. Let S be a Melkersson subcategory with respect to (I,J). Sup-
pose M is Weakly Laskerian module. Then T} ;(M) = inf{T3(M) | a €
W(I, J)}, where TS(M) is the least non-negative integer i such that H:(M)
is not in S.

Theorem 1.2. Let S be a Serre subcategory and let M be a Weakly Laskerian
module. Then T17 (M) = Sup{TL7(R/p) | p € Supp(M)}.

One can see that the subcategories of finitely generated R-modules, mini-
max R-modules, minimax and (I, J)-cofinite R-modules, weakly Laskerian R-
modules, and Matlis reflexive R-modules are examples of Serre subcategory.
So, this paper recovers some results regarding the local cohomology R-modules
that have appeared in different papers (see for instance [3], [5] and [13]).

2. THE RESULTS
This section is started with the following definition.

Definition 2.1. ( see [1, Definition 3.1]) A Serre subcategory of the category
of R-modules is said to be a Melkersson subcategory with respect to the ideal
a, if for any a-torsion R-module X, (0 :x a) is in S implies that X is in S.
Examples are given by the class of Artinian modules, minimax and a-cofinite
modules.

Also, we say that S is a Melkersson subcategory with respect to the pair of
ideals (I, J), if for an (I, J)-torsion R-module X, (0 :x I) is in S implies that
X is in S. Obviously, if S is a Melkersson subcategory with respect to (I, .J),
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then S is a Melkersson subcategory with respect to all ideals of W(I ,J), where

W (I,J) denote the set of ideals a of R such that I"™ C a + J for some integer
n.

Proposition 2.2. Let S be a Melkersson subcategory with respect to the ideal
I and t an integer. Let T be an R-module such that Exto(R/I,T) is in S for
all i < t. Then HX(T) is in S for all i < t. Particularly, for an R-module M,
the module H}(H}J(M)) is in S for alli and j < Ty} ;(M).

Proof. We prove the theorem by induction on i. It is straightforward to see
that the result is true when ¢ = 0. Suppose that 0 < 7 and that the result has
been proved for i — 1. It easily follows from the exact sequence

0—T/(T)—T—T/T(T)—0,

that Exti(R/I,T) is in S if and only if Ext%(R/I,T/T';(T)) is in S. Also,
by [2, Corollary 2.1.7], Hi{(M) = H}(M/T(M)) for all i > 0. Therefore we
assume that I';(T) = 0. Now, we apply Melkerson’s technic [12], so let E be
an injective envelope of T. Then I';(E) = Hom(R/I,FE) = 0. Put L = E/T
and consider the exact sequence

0—T—F—L—0.

We obtain isomorphisms; H(T) = Hi~ (L) and Exth(R/I,T) = Ext, ' (R/I, L)
for all ¢ > 0. Use the induction hypothesis applied to L, and conclude that
the Hi(T) is in S for all i < ¢. It therefore follows, in view of the definition of
T3 ,(M), that Hi(HJ ;(M)) is in S for all j < T§ ,(M). 0

ExXaMPLE 2.3. In Theorem 2.2, the assumption .S is Melkersson subcategory
is necessary. To see this, let (R, m) be a local ring, and let M be a non-zero,
finitely generated R-module of dimension n > 0. Then H[ (M) is not finitely
generated (see [2, Corollary 7.3.3]).

The next theorem recovers the Theorem 2.5 of [3] and Theorem 2.2 of [17].

Theorem 2.4. Let M be in S and j <1} ;(M)=t. Then
(i) Exty(R/I,H] ;(M)) isin S for alli=0,1.
(ii) H} (H}J(M)) isin S for alli=0,1, if S is a Melkersson subcategory
with respect to 1.

Proof. (i) Consider the functors F(—) = Homg(R/I,— ) and G(—) =T; s(— ).
Then one has FG(—) = Hom(R/I,— ). So, by [14, Theorem 11.38], there is a
Grothendieck’s spectral sequence

EYT = Exth (R/I, H} ;(M)) == Ext}*(R/I, M).

By using an argument similar to the proof of [8, Theorem 2.2], we obtain that
Exty (R/I, H}J(M)) is in S for all ¢ = 0, 1. This completes the proof.
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(ii) Using [15, Theorem 11.38] there exists a Grothendieck’s spectral sequence
EY" = Hf (H] ;(M)) == H}™(M).

Also, there is a bound filtration 0 = OHIHY C p!H! C -+ C p"H! = HY(M)

such that EL!~% = % for all 0 < 4 < t. By the hypotheses with proposition

2.2 Hi{(M) is in S for all i and hence E%? is in S for all p,q. Note that

EP:9 = EP4 for large r and each p,q. It follows that there is an integer ¢ > 2

such that EP? is in S for all » > ¢. We now argue by descending induction on

{. Now, assume that 2 < £ < r and that the claim holds for ¢. Since E?'? is
in a subquotient of E5'? for all p,q € Ny, the hypotheses give EPF™¢=r+1 i in

. kerqr:t . 1 tl—2
S for all » > 2. In addition, Ef’t = m and 1md§7f+ A2 0 for

p = 0,1, it follows that kerdé”_t1 isin S forall ¢ > 2 and p =0,1. Let r > 2 and
p = 0,1, we consider the sequence

0 — kerd?t — EPt — prTiorHL

Since both kerdffl and Efjlr’t_TH are in S, it follows that Ef’_tl is in S for

p = 0, 1. This completes the inductive step. |

Proposition 2.5. Let M be in S such that diim(M/JM) < 1. Then Exty(R/I, H}J(M))

is in S
Proof. Consider the following spectral sequence
EY® = Exth (R/I, H} ;(M)) == Ext}™(R/I, M) = H"*1.
In view of [16, Theorem 4.3] E5'? = 0 unless ¢ = 0, 1. It follows that the exact
sequence

L A ;Y & L 7 S A & L
which in turn yields the exact sequence
Ext% ' (R/I, M) — Extb ™ (R/I,T; ;(M)) — Ext, '(R/I, Hf ;(M)) —
Ext?(R/I1, M) — Exthy(R/I,T; ;(M)) — Extt"*(R/I, H] ;(M)).

Since, by our assumption, the R-modules Ext's(R/I, T ;(M)) and Ext’(R/I, M)
are in S for all 7 and hence the result follows. O

Corollary 2.6. Let S be a Melkersson subcategory Qf the category of R-modules.
Let M be in S and dim(M/JM) < 1. Then H}(H}J(M)) is in S for all i and
B

Proof. The result follows from the part (ii) of Theorem (2.4) and argument
similar to the proof of Proposition 2.5.

Recall that an R-module M is weakly Laskerian if any quotient of M has a
finitely many associated prime ideals. This holds, by employing a method of
proof which is similar to that used in [2, Lemma 2.1.1], M is a a-torsion-free if
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and only if a contains a non-zerodivisor on M. Clearly, any finitely generated
module and any minimax module are weakly Laskerian modules.

In addition, by using an argument similar to the proof of [11, Theorem 6.4],
there exists a chain 0 = My € My--- C M,, = M of submodules of M such
that for each ¢ we have M;/M;_; = p; with p; € Supp(M). O

Theorem 2.7. Leta € W(I, J) and M be a Weakly Laskerian module. Then
Extiy(R/a, M) is in S for all 0 < i < 17 ;(M).

Proof. It follows by using induction on 77 ;(M). O

Theorem 2.8. Leta € W(I7 J) and S be a Melkersson subcategory with respect
to the ideal a. Suppose M is Weakly Laskerian module. Then H.(M) € S for
all i <17 ;(M).

Proof. By using the induction on ¢ = T} ;(M), the theorem is proved. It is
straightforward to see that the result is true when ¢t = 1. Suppose that t > 1,
and the result holds for the case ¢ — 1. Since H}J(M) = Hj ;(M/T;(M))
for all 4 > 0, we may replace M by M/T'; ;(M) and hence assume that there is
an element x € a, such that z is a non-zero divisor on M. The exact sequence
0 — M s M — M/xM — 0 induces two exact sequences

— H; (M /zM) — Hj (M) — Hj ;(M) — Hj ;(M/xM)  and

— H7 Y (M/aM) — HL(M) - HL(M) — H(M/zM) (%)
of local cohomology modules. The induction hypothesis and the above se-
quences yield that the R-modules H:(M) and H(M/xM) are in S for all
i < t— 1. It suffices to show that H."1(M) is in S. Now, the exactness of
(*), in conjunction with the fact (0 () a) € (0 -1y @) and our
hypotheses, show that H:=1(M) is in S, this proves our claim. (I

Theorem 2.9. Let S be a Melkersson subcategory with respect to (I,J). Sup-
pose M is Weakly Laskerian module. Then T} ;(M) = inf{T3(M) | a €
W(I,J)}, where T:(M) is the least non-negative integer i such that H:(M)
is not in S.

Proof. Tt is enough, in view Definition 2.1 and Theorem 2.8, to show that,
17 ;(M) > iifi <T3(M) for all a € W (I,.J). To do this, let a be an arbitrary
ideal in W(I ,J). We prove this by induction on 4. It is straightforward to see
that the result is true when ¢ = 0. Suppose that 0 < 7 and that the result has
been proved for ¢ — 1. It follows from [16, Proposition 1.4] that H}J(M) =
H}’J(M/FI,J(M)) for all 4 > 1. Hence, by replacing M with M/T'; ;(M), we
may assume that there exists an element € I which is a non-zero divisor on M.
Now, we may consider the exact sequence 0 — M —— M — M/z2M — 0
to obtain the exact sequences

HI Y (M/xM) — HA(M) % H.{(M)—Hi(M/xM) and
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Now, one can use the above exact sequences in conjunction with the in-
ductive hypothesis to see that (0 ‘Hi (M) x) is in S. Since (0 ‘H (M) I) C
(0 Hi (M) a:), and hence the result follows.

This shows that the study of generalized local cohomology in a Melkersson
subcategory in the upper range depends on the ideals of W(I, J). (]

Theorem 2.10. Let M be Weakly Laskerian module and let r be a non-negative
integer such that Hy ;(R/p) € S for all p € Supp(M). Then Hy ;(M) € S.

Proof. Clearly, there exists a filtration of the submodules of M
0C My G M G- CMg=M

such that for each 1 < j < ¢, then M;/M;_1 = R/p;, where p; € SupppM.
We use induction on ¢. When ¢ = 1, Hy ;(R/p) = Hj ;(M) is in S, where we
put p = p;. Now Suppose that £ > 1 and the result has been proved for £ — 1.
The exact sequence

0—Myp_1—My—>My/My_1—0
induces the long exact sequence
HY j(My—y) — Hf ;(M¢) — H ;j(M/M;_y).
It follows that H7 ;(M,) is in S. This completes the proof. O

Definition 2.11. ( see [17, Definition 2.1]) An R-module T is called (I, J)-
cofinite if SuppT C W(I,J) and Ext%(R/I,T) is a finite R-modules, for every
i > 0. Whence according to [9, Lemma 2], the class of (I, J)-cofinite minimax
(Artinian) modules is closed under taking submodules, quotients and exten-
sions, it is a Serre subcategory of the category of R-modules.

The following result is an application of the Theorem 2.10.

Corollary 2.12. Let M be a finitely generated R-module with dimM = d.
Then H?’J(M) is Artinian and (I, J)-cofinite.

Proof. Let S be the class of (I,.J)-cofinite Artinian modules. It is enough,
in view Theorem 2.10, to show that R-module HId, ;(R/p) is Artinian and
(I, J)-cofinite for all p € SuppM. If J C p, then R/p is J-torsion and then
H}{J(R/p) =~ HY(R/p). Since dimR/p < d, then, in view of [12, Proposition
5.1, H}(R/p) is Artinian and I-cofinite. If J ¢ p, then dim(R/p)/J(R/p) <
dim(R/p) < d and so H}iJ(R/p) = 0 by [16, Theorem 4.3]. The proof is
completed. O

Theorem 2.13. Let M be a Weakly Laskerian module. Then Hj ;(R/p) is in
S for alli > TEH7 (M) and p € Supp(M).
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Proof. We use descending induction on i. Now, assume that i > TL7 (M)
and that the claim holds for i + 1. We want to show that Hj ;(R/p) is
in S for all p € Supp(M). Suppose the contrary. We set: A = {p | p €
SuppM, H}",(R/p) is not in S}. Clearly A # 0; it follows that the set A has a
maximal element, let p be one such. Since p € Supp(M), there is a non-zero
map f : M — R/p. The exact sequence 0 — Kerf — M — Imf — 0,
yields the exact sequence

H}J(M) — H},J(Imf) — Hﬁ}l(Kerf).

Since Supp(Kerf) C Supp(M), it follows from the inductive hypothesis that
the R-module H}ijl (R/p) is in S for all p € Supp(ker f), so, that, in view of
the Theorem 2.10, and the above exact sequence, the R-module H}'J(Imf) is
in S. There is a filtration

0=N; CN;_1 CNt_oC---C Ny :Cokerf
of submodules of Cokerf, such that for each 0 < i < ¢, N;_1/N; = R/q;
where q; € Supp(Coker f). Then by maximality of p, H}‘J(R/qi) is in S. Next
the exact sequence 0 — Imf — R/p — Cokerf — 0, yields the exact
sequence

Hp ;(Imf) — Hp ;(R/p) — H} ;(Cokerf).
It follows that Hj ;(R/p) is in S, which is a contradiction.

N Od

Lemma 2.14. If N and M are Weakly Laskerian modules such that Supp(N)
Supp(M), then TLI(N) < THI(M). In particular, if Supp(N) = Supp(M)
then THY(N) = THI(M).

Proof. It is enough to show that H}7 ;(IN) isin S for all finite R-module N with
SuppN C SuppM and for all i > TX7(M). In view of the previous theorem,
H} ;(R/p) is in S for all p € Supp(M). Now. since Supp(N) C Supp(M), the
result follows by Theorem 2.10. |

As an immediate result of Theorems (2.13) and (2.10), we have the following
Corollary. This shows that the study of generalized local cohomology of Weakly
Laskerian module M in a Serre subcategory in the lower range depends just on
the support of module M.

Corollary 2.15. Let M be a Weakly Laskerian module. Then

T3 (M) = Sup{T (R/p) | p € Supp(M)}.
Theorem 2.16. Let T} ;(M) > 0 and a € W(I, J). If M has finite krull
dimension, then H}J(M)/aH}J(M) is in S for alli > TH7 (M) =+t.

Proof. When i > T17(M), the result is clearly, it is enough to show that
Hj ;(M)/aH; ;(M) is in S. We proceed by induction on dimM = n. If
n = 0, then M is m-torsion and there is nothing to prove. So let n > 0 and
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suppose that the result has been proved for any finitely generated module N
with dim(N) = n — 1. Since H} (M) = ;'J(M/FLJ(M)) for i > 0, we can
assume that M is (I, J)-torsion. Thus, there is an element z € a, such that
x is a non-zero divisor on M. Now, one can complete the proof by using an
argument similar to the proof of [7, Theorem 3.3]. O
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