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Abstract. This paper is concerned with the relation between local coho-

mology modules defined by a pair of ideals and the Serre subcategories of

the category of modules. We characterize the membership of local coho-

mology modules in a certain Serre subcategory from lower range or upper

range.
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1. Introduction

Throughout this paper, R is denoted a commutative Noetherian ring, I and

J are denoted two ideals of R, and M is an R-module. We refer the reader to

[2] and [4] for any unexplained terminology.

As a generalization of the ordinary local cohomology modules, Takahashi,

Yoshino and Yoshizawa [16] introduced the local cohomology modules with

respect to a pair of ideals (I, J). To be more precise, let W (I, J) = {p ∈
Spec(R) | In ⊆ p + J for some positive integer n}. Then for an R-module M ,

the (I, J)-torsion submodule ΓI,J(M) of M , which consists of all elements x

of M with SuppRx ⊆ W (I, J), is considered. It is known, ΓI,J is a left exact

additive functor from the category of all R-modules and R-homomorphism to

itself. For all integer i, the i-th local cohomology functor Hi
I,J with respect
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to (I, J) is defined to be the i-th right derived functor of ΓI,J . The i-th local

cohomology module of M with respect to (I, J) is denoted by Hi
I,J(M). When

J = 0, then Hi
I,J coincides with the usual local cohomology functor Hi

I with

the support in the closed subset V (I).

The study of this generalized local cohomology modules was continued by many

authors (see for example [5], [6], [9] and [10], [14]).

Recall that a class of R-modules is a Serre subcategory of the category of R-

modules when it is closed under taking submodules, quotients and extensions.

Always, S stands for a Serre subcategory of the category of R-modules.

Using the generalized local cohomology modules, we can define T s
I,J(M)

(resp. T I,J
s (M)) of the R-module M relative to a pair (I, J) of ideals of R by

T s
I,J(M) = inf{i ∈ N | Hi

I,J(M) is not in S},

(resp. T I,J
s (M) = Sup{i ∈ N | Hi

I,J(M) is not in S})
with the usual convention that the infimum (resp. Supremum) of the empty

set of integers interpreted as +∞ (resp. −∞).

Our objective in this paper is to investigate the notions T s
I,J(M) and T I,J

s (M).

we prove the following,

Theorem 1.1. Let S be a Melkersson subcategory with respect to (I, J). Sup-

pose M is Weakly Laskerian module. Then T s
I,J(M) = inf{T s

a (M) | a ∈
W̃ (I, J)}, where T s

a (M) is the least non-negative integer i such that Hi
a(M)

is not in S.

Theorem 1.2. Let S be a Serre subcategory and let M be a Weakly Laskerian

module. Then T I,J
s (M) = Sup{T I,J

s (R/p) | p ∈ Supp(M)}.

One can see that the subcategories of finitely generated R-modules, mini-

max R-modules, minimax and (I, J)-cofinite R-modules, weakly Laskerian R-

modules, and Matlis reflexive R-modules are examples of Serre subcategory.

So, this paper recovers some results regarding the local cohomology R-modules

that have appeared in different papers (see for instance [3], [5] and [13]).

2. The Results

This section is started with the following definition.

Definition 2.1. ( see [1, Definition 3.1]) A Serre subcategory of the category

of R-modules is said to be a Melkersson subcategory with respect to the ideal

a, if for any a-torsion R-module X, (0 :X a) is in S implies that X is in S.

Examples are given by the class of Artinian modules, minimax and a-cofinite

modules.

Also, we say that S is a Melkersson subcategory with respect to the pair of

ideals (I, J), if for an (I, J)-torsion R-module X, (0 :X I) is in S implies that

X is in S. Obviously, if S is a Melkersson subcategory with respect to (I, J),
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then S is a Melkersson subcategory with respect to all ideals of W̃ (I, J), where

W̃ (I, J) denote the set of ideals a of R such that In ⊆ a + J for some integer

n.

Proposition 2.2. Let S be a Melkersson subcategory with respect to the ideal

I and t an integer. Let T be an R-module such that ExtiR(R/I, T ) is in S for

all i < t. Then Hi
I(T ) is in S for all i < t. Particularly, for an R-module M ,

the module Hi
I

(
Hj

I,J(M)
)

is in S for all i and j < T s
I,J(M).

Proof. We prove the theorem by induction on i. It is straightforward to see

that the result is true when i = 0. Suppose that 0 < i and that the result has

been proved for i− 1. It easily follows from the exact sequence

0 −→ ΓI(T ) −→ T −→ T/ΓI(T ) −→ 0,

that ExtiR(R/I, T ) is in S if and only if ExtiR(R/I, T/ΓI(T )) is in S. Also,

by [2, Corollary 2.1.7], Hi
I(M) ∼= Hi

I

(
M/ΓI(M)

)
for all i > 0. Therefore we

assume that ΓI(T ) = 0. Now, we apply Melkerson,s technic [12], so let E be

an injective envelope of T . Then ΓI(E) = Hom(R/I,E) = 0. Put L = E/T

and consider the exact sequence

0 −→ T −→ E −→ L −→ 0.

We obtain isomorphisms; Hi
I(T ) ∼= Hi−1

I (L) and ExtiR(R/I, T ) ∼= Exti−1I (R/I, L)

for all i > 0. Use the induction hypothesis applied to L, and conclude that

the Hi
I(T ) is in S for all i < t. It therefore follows, in view of the definition of

T s
I,J(M), that Hi

I(Hj
I,J(M)) is in S for all j < T s

I,J(M). �

Example 2.3. In Theorem 2.2, the assumption S is Melkersson subcategory

is necessary. To see this, let (R,m) be a local ring, and let M be a non-zero,

finitely generated R-module of dimension n > 0. Then Hn
m(M) is not finitely

generated (see [2, Corollary 7.3.3]).

The next theorem recovers the Theorem 2.5 of [3] and Theorem 2.2 of [17].

Theorem 2.4. Let M be in S and j ≤ T s
I,J(M) = t. Then

(i) ExtiR
(
R/I,Hj

I,J(M)
)

is in S for all i = 0, 1.

(ii) Hi
I

(
Hj

I,J(M)
)

is in S for all i = 0, 1, if S is a Melkersson subcategory

with respect to I.

Proof. (i) Consider the functors F (−) = HomR(R/I,− ) and G(−) = ΓI,J(− ).

Then one has FG(−) = Hom(R/I,− ). So, by [14, Theorem 11.38], there is a

Grothendieck,s spectral sequence

Ep,q
2 = ExtpR

(
R/I,Hq

I,J(M)
) p

=⇒ Extp+q
R (R/I,M).

By using an argument similar to the proof of [8, Theorem 2.2], we obtain that

ExtiR
(
R/I,Ht

I,J(M)
)

is in S for all i = 0, 1. This completes the proof.
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(ii) Using [15, Theorem 11.38] there exists a Grothendieck,s spectral sequence

Ep,q
2 = Hp

I

(
Hq

I,J(M)
) p

=⇒ Hp+q
I (M).

Also, there is a bound filtration 0 = ϕt+1Ht ⊆ ϕtHt ⊆ · · · ⊆ ϕ0Ht = Ht
I(M)

such that Ei,t−i
∞

∼= ϕiHt

ϕi+1Ht for all 0 ≤ i ≤ t. By the hypotheses with proposition

2.2 Hi
I(M) is in S for all i and hence Ep,q

∞ is in S for all p, q. Note that

Ep,q
∞ = Ep,q

r for large r and each p, q. It follows that there is an integer ` ≥ 2

such that Ep,q
r is in S for all r ≥ `. We now argue by descending induction on

`. Now, assume that 2 < ` < r and that the claim holds for `. Since Ep,q
r is

in a subquotient of Ep,q
2 for all p, q ∈ N0, the hypotheses give Ep+r,t−r+1

r is in

S for all r ≥ 2. In addition, Ep,t
` =

kerdp,t
`−1

imdp−`+1,t+`−2
and imdp−`+1,t+`−2

`−1 = 0 for

p = 0, 1, it follows that kerdp,t`−1 is in S for all ` > 2 and p = 0, 1. Let r ≥ 2 and

p = 0, 1, we consider the sequence

0 −→ kerdp,tr −→ Ep,t
r −→ Ep+r,t−r+1

r .

Since both kerdp,t`−1 and Ep+r,t−r+1
`−1 are in S, it follows that Ep,t

`−1 is in S for

p = 0, 1. This completes the inductive step. �

Proposition 2.5. Let M be in S such that dim(M/JM) ≤ 1. Then ExtiR
(
R/I,Hj

I,J(M)
)

is in S

Proof. Consider the following spectral sequence

Ep,q
2 := ExtpR

(
R/I,Hq

I,J(M)
) p

=⇒ Extp+q
R (R/I,M) = Hp+q.

In view of [16, Theorem 4.3] Ep,q
2 = 0 unless q = 0, 1. It follows that the exact

sequence

Hp+1 −→ Ep+1,0
2 −→ Ep−1,1

2 −→ Hp −→ Ep,0
2 −→ Ep−2,1

2 −→ Hp−1

which in turn yields the exact sequence

Extp+1
R (R/I,M) −→ Extp+1

R (R/I,ΓI,J(M)) −→ Extp−1R (R/I,H1
I,J(M)) −→

ExtpR(R/I,M) −→ ExtpR(R/I,ΓI,J(M)) −→ Extp−22 (R/I,H1
I,J(M)).

Since, by our assumption, the R-modules ExtiR(R/I,ΓI,J(M)) and ExtiR(R/I,M)

are in S for all i and hence the result follows. �

Corollary 2.6. Let S be a Melkersson subcategory of the category of R-modules.

Let M be in S and dim(M/JM) ≤ 1. Then Hi
I

(
Hj

I,J(M)
)

is in S for all i and

j.

Proof. The result follows from the part (ii) of Theorem (2.4) and argument

similar to the proof of Proposition 2.5.

Recall that an R-module M is weakly Laskerian if any quotient of M has a

finitely many associated prime ideals. This holds, by employing a method of

proof which is similar to that used in [2, Lemma 2.1.1], M is a a-torsion-free if
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and only if a contains a non-zerodivisor on M . Clearly, any finitely generated

module and any minimax module are weakly Laskerian modules.

In addition, by using an argument similar to the proof of [11, Theorem 6.4],

there exists a chain 0 = M0 ⊂ M1 · · · ⊂ Mn = M of submodules of M such

that for each i we have Mi/Mi−1 = pi with pi ∈ Supp(M). �

Theorem 2.7. Let a ∈ W̃ (I, J) and M be a Weakly Laskerian module. Then

ExtiR(R/a,M) is in S for all 0 ≤ i < T s
I,J(M).

Proof. It follows by using induction on T s
I,J(M). �

Theorem 2.8. Let a ∈ W̃ (I, J) and S be a Melkersson subcategory with respect

to the ideal a. Suppose M is Weakly Laskerian module. Then Hi
a(M) ∈ S for

all i < T s
I,J(M).

Proof. By using the induction on t = T s
I,J(M), the theorem is proved. It is

straightforward to see that the result is true when t = 1. Suppose that t > 1,

and the result holds for the case t − 1. Since Hi
I,J(M) ∼= Hi

I,J

(
M/ΓI,J(M)

)
for all i > 0, we may replace M by M/ΓI,J(M) and hence assume that there is

an element x ∈ a, such that x is a non-zero divisor on M . The exact sequence

0 −→M
x−→M −→M/xM −→ 0 induces two exact sequences

−→ Hi−1
I,J (M/xM) −→ Hi

I,J(M)
x−→ Hi

I,J(M) −→ Hi
I,J(M/xM) and

−→ Hi−1
a (M/xM) −→ Hi

a(M)
x−→ Hi

a(M) −→ Hi
a(M/xM) (∗)

of local cohomology modules. The induction hypothesis and the above se-

quences yield that the R-modules Hi
a(M) and Hi

a(M/xM) are in S for all

i < t − 1. It suffices to show that Ht−1
a (M) is in S. Now, the exactness of

(∗), in conjunction with the fact
(
0 :Ht−1

a (M) a
)
⊆ (0 :Ht−1

a (M) x) and our

hypotheses, show that Ht−1
a (M) is in S, this proves our claim. �

Theorem 2.9. Let S be a Melkersson subcategory with respect to (I, J). Sup-

pose M is Weakly Laskerian module. Then T s
I,J(M) = inf{T s

a (M) | a ∈
W̃ (I, J)}, where T s

a (M) is the least non-negative integer i such that Hi
a(M)

is not in S.

Proof. It is enough, in view Definition 2.1 and Theorem 2.8, to show that,

T s
I,J(M) > i if i < T s

a (M) for all a ∈ W̃ (I, J). To do this, let a be an arbitrary

ideal in W̃ (I, J). We prove this by induction on i. It is straightforward to see

that the result is true when i = 0. Suppose that 0 < i and that the result has

been proved for i − 1. It follows from [16, Proposition 1.4] that Hi
I,J(M) ∼=

Hi
I,J

(
M/ΓI,J(M)

)
for all i ≥ 1. Hence, by replacing M with M/ΓI,J(M), we

may assume that there exists an element x ∈ I which is a non-zero divisor on M .

Now, we may consider the exact sequence 0 −→ M
x−→ M −→ M/xM −→ 0

to obtain the exact sequences

Hi−1
a (M/xM) −→ Hi

a(M)
x−→ Hi

a(M)−→Hi
a(M/xM) and
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Hi−1
I,J (M/xM) −→ Hi

I,J(M)
x−→ Hi

I,J(M)−→Hi
I,J(M/xM).

Now, one can use the above exact sequences in conjunction with the in-

ductive hypothesis to see that
(
0 :Hi

I,J (M) x
)

is in S. Since
(
0 :Hi

I,J (M) I
)
⊆(

0 :Hi
I,J (M) x

)
, and hence the result follows.

This shows that the study of generalized local cohomology in a Melkersson

subcategory in the upper range depends on the ideals of W̃ (I, J). �

Theorem 2.10. Let M be Weakly Laskerian module and let r be a non-negative

integer such that Hr
I,J(R/p) ∈ S for all p ∈ Supp(M). Then Hr

I,J(M) ∈ S.

Proof. Clearly, there exists a filtration of the submodules of M

0 ⊆M0 ( M1 ( · · · ( M` = M

such that for each 1 ≤ j ≤ `, then Mj/Mj−1 ∼= R/pj , where pj ∈ SuppRM .

We use induction on `. When ` = 1, Hr
I,J(R/p) = Hr

I,J(M) is in S, where we

put p = pj . Now Suppose that ` > 1 and the result has been proved for `− 1.

The exact sequence

0−→M`−1−→M`−→M`/M`−1−→0

induces the long exact sequence

Hr
I,J(M`−1) −→ Hr

I,J(M`) −→ Hr
I,J(M`/M`−1).

It follows that Hr
I,J(M`) is in S. This completes the proof. �

Definition 2.11. ( see [17, Definition 2.1]) An R-module T is called (I, J)-

cofinite if SuppT ⊆W (I, J) and ExtiR(R/I, T ) is a finite R-modules, for every

i ≥ 0. Whence according to [9, Lemma 2], the class of (I, J)-cofinite minimax

(Artinian) modules is closed under taking submodules, quotients and exten-

sions, it is a Serre subcategory of the category of R-modules.

The following result is an application of the Theorem 2.10.

Corollary 2.12. Let M be a finitely generated R-module with dimM = d.

Then Hd
I,J(M) is Artinian and (I, J)-cofinite.

Proof. Let S be the class of (I, J)-cofinite Artinian modules. It is enough,

in view Theorem 2.10, to show that R-module Hd
I,J(R/p) is Artinian and

(I, J)-cofinite for all p ∈ SuppM . If J ⊆ p, then R/p is J-torsion and then

Hd
I,J(R/p) ∼= Hd

I (R/p). Since dimR/p ≤ d, then, in view of [12, Proposition

5.1], Hd
I (R/p) is Artinian and I-cofinite. If J * p, then dim(R/p)

/
J(R/p) <

dim(R/p) ≤ d and so Hd
I,J(R/p) = 0 by [16, Theorem 4.3]. The proof is

completed. �

Theorem 2.13. Let M be a Weakly Laskerian module. Then Hi
I,J(R/p) is in

S for all i > T I,J
s (M) and p ∈ Supp(M).
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Proof. We use descending induction on i. Now, assume that i > T I,J
s (M)

and that the claim holds for i + 1. We want to show that Hi
I,J(R/p) is

in S for all p ∈ Supp(M). Suppose the contrary. We set: A = {p | p ∈
SuppM,Hi

I,J(R/p) is not in S}. Clearly A 6= ∅; it follows that the set A has a

maximal element, let p be one such. Since p ∈ Supp(M), there is a non-zero

map f : M → R/p. The exact sequence 0 −→ Kerf −→ M −→ Imf −→ 0,

yields the exact sequence

Hi
I,J(M) −→ Hi

I,J(Imf) −→ Hi+1
I,J (Kerf).

Since Supp(Kerf) ⊂ Supp(M), it follows from the inductive hypothesis that

the R-module Hi+1
I,J (R/p) is in S for all p ∈ Supp(ker f), so, that, in view of

the Theorem 2.10, and the above exact sequence, the R-module Hi
I,J(Imf) is

in S. There is a filtration

0 = Nt ⊂ Nt−1 ⊂ Nt−2 ⊂ · · · ⊂ N0 = Cokerf

of submodules of Cokerf , such that for each 0 ≤ i ≤ t, Ni−1/Ni
∼= R/qi

where qi ∈ Supp(Cokerf). Then by maximality of p, Hi
I,J(R/qi) is in S. Next

the exact sequence 0 −→ Imf −→ R/p −→ Cokerf −→ 0, yields the exact

sequence

Hi
I,J(Imf) −→ Hi

I,J(R/p) −→ Hi
I,J(Cokerf).

It follows that Hi
I,J(R/p) is in S, which is a contradiction. �

Lemma 2.14. If N and M are Weakly Laskerian modules such that Supp(N) ⊆
Supp(M), then T I,J

s (N) ≤ T I,J
s (M). In particular, if Supp(N) = Supp(M)

then T I,J
s (N) = T I,J

s (M).

Proof. It is enough to show that Hi
I,J(N) is in S for all finite R-module N with

SuppN ⊆ SuppM and for all i > T I,J
s (M). In view of the previous theorem,

Hi
I,J(R/p) is in S for all p ∈ Supp(M). Now. since Supp(N) ⊆ Supp(M), the

result follows by Theorem 2.10. �

As an immediate result of Theorems (2.13) and (2.10), we have the following

Corollary. This shows that the study of generalized local cohomology of Weakly

Laskerian module M in a Serre subcategory in the lower range depends just on

the support of module M .

Corollary 2.15. Let M be a Weakly Laskerian module. Then

T I,J
s (M) = Sup{T I,J

s (R/p) | p ∈ Supp(M)}.

Theorem 2.16. Let T s
I,J(M) > 0 and a ∈ W̃ (I, J). If M has finite krull

dimension, then Hi
I,J(M)/aHi

I,J(M) is in S for all i ≥ T I,J
s (M) = t.

Proof. When i > T I,J
s (M), the result is clearly, it is enough to show that

Ht
I,J(M)/aHt

I,J(M) is in S. We proceed by induction on dimM = n. If

n = 0, then M is m-torsion and there is nothing to prove. So let n > 0 and
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96 F. Dehghani-Zadeh

suppose that the result has been proved for any finitely generated module N

with dim(N) = n− 1. Since Hi
I,J(M) ∼= Hi

I,J

(
M/ΓI,J(M)

)
for i > 0, we can

assume that M is (I, J)-torsion. Thus, there is an element x ∈ a, such that

x is a non-zero divisor on M . Now, one can complete the proof by using an

argument similar to the proof of [7, Theorem 3.3]. �
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