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Abstract. The purpose of this paper is twofold. First, we derive theoret-

ically, using appropriate transformation on xn, the closed-form solution

of the nonlinear difference equation

xn+1 =
1

±1 + xn
, n ∈ N0.

We mention that the solution form of this equation was already obtained

by Tollu et al. in 2013, but through induction principle, and one of

our purpose is to clearly explain how was the formula appeared in such

structure. After that, with the solution form of the above equation at

hand, we prove a case of Sroysang’s conjecture (2013); i.e., given a fixed

positive integer k, we verify the validity of the following claim:

lim
x→∞

{
f(x+ k)

f(x)

}
= φ,

where φ = (1 +
√

5)/2 denotes the well-known golden ratio and the real

valued function f on R satisfies the functional equation f(x + 2k) =

f(x+ k) + f(x) for every x ∈ R. We complete the proof of the conjecture

by giving out an entirely different approach for the other case.

Keywords: Sroysang’s conjecture, Golden ratio, Fibonacci functional equa-
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140 J. F. T. Rabago

1. Introduction

The classical Fibonacci sequence (Fn)n∈N0 = {0, 1, 1, 2, 3, 5, 8, . . . Fn+2 =

Fn+1 + Fn, . . .} has been studied for many years and the subject continues

to attract attentions of researchers as more fascinating results involving these

numbers are obtained and discovered. In fact, with the growing interest on

the topic, various extensions and generalizations of the sequence have been

proposed and thoroughly investigated by many mathematicians in the last

decades. Perhaps, the most celebrated of these is the one put forward by

A. F. Horadam [9] in his 1965 seminal paper, from which, we believe, a large

amount of recent developments on the topic were based. In 1878, however,

E. Lucas [14] first made an extensive investigation of two mere instances of

Horadam sequence (wn)n∈N = (wn(w0, w1; p, q)) := {w0, w1, wn+2 = pwn+1 −
qwn for n ≥ 0}. Particularly, Lucas obtained many interesting properties of

the sequence (un)n∈N0
:= {u0 = 0, u1 = 1, un+2 = pun+1 − qun for n ≥ 0}

and (vn)n∈N0 := {v0 = 2, v1 = p, vn+2 = pvn+1 − qvn for n ≥ 0}. The former

is known today as the fundamental Lucas sequence and the latter is known

as the primordial Lucas sequence. For a good survey of recent developments

on Horadam sequences, we refer the readers to [11] (see also [12] for a survey

update and further extension of these sequences).

Probably, one of the most interesting property of the Fibonacci sequence is

its relation to the widely known golden ratio (or golden number [7, 16]) φ :=

(1 +
√

5)/2 = 1.6180339887 . . . (cf. Sequence No. A001622 in O.E.I.S.). It is

known (see, e.g., [13, p. 101] and [24, p. 28]) that the ratios of successive terms

of the Fibonacci sequence (Fn+1/Fn) =: (ϕn) (or any Fibonacci-like sequence)

converges to the golden number. This number is commonly encountered in the

theory of numbers, for example, in the study of continued fractions [6, 21] and

Diophantine equations [4]. It also appears in other pure areas of mathematics

such as in the study of functional equations [8, 20, 23], differential equations

[19], graphs and matroids [1], etc. More interestingly, this intriguing value

appears vastly in nature, and is seen to operate as a universal law in the

arrangements of parts such as leaves and branches in plants, and branchings of

veins and nerves in animals [17, 18]. This ratio has also been used to analyze the

proportions of natural and man-made objects as applications in architecture,

designs, paintings, etc [18]. Further discussion of this fascinating ratio can be

found in [5] and also in [26]. In addition, there is a huge amount of studies

scattered in literature about Fibonacci sequence and journals which are entirely

devoted to the Fibonacci sequence and its extensions. For some applications

of Fibonacci sequence, we refer the readers to a book by T. Koshy [10].

Recently, numerous papers dealt with various problems relating Fibonacci

numbers to other fields of mathematics. For instance, in [25], Tollu et al.
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Closed-form solution and another proof 141

studied the following nonlinear difference equation:

xn+1 =
1

±1 + xn
, n ∈ N0. (1.1)

The authors [25] obtained many interesting results regarding the solution of

the equation (1.1) and perhaps the most important of these was the closed-

form solution of the given equation. The solution form of (1.1), which we give

in the theorem below, was established by Tollu et al. through mathematical

induction.

Theorem 1.1 ([25]). For any initial value x0 ∈ R\
({
α∓1, β∓1

}
∪ {∓ϕm}∞m=1

)
,

the closed-form solution of the nonlinear difference equation (1.1) is given by

xn =
F±n + F±(n−1)x0

F±(n+1) + F±nx0
, ∀n ∈ N0. (1.2)

Here α and β are the positive and negative root of the quadratic equation x2 −
x− 1 = 0, respectively (i.e., α = φ and β = 1− φ).

This result, however, was not supported by any mathematical theory nor was

explained by the authors how they were obtained. Perhaps, this was purposely

omitted for some reasons we do not know.

Remark 1.2. The exclusion of {−ϕm}m∈N and {α−1, β−1} from the set of ad-

missible values for x0, say A, for the difference equation xn+1 = 1/(1 +xn) can

be explain as follows: first, it is evident that 1 + x0 should not equate to 0,

or equivalently x0 6= −1, so as to have a well-define solution to the equation.

Now, if for some n0 ∈ N, xn0+1 = −1, then we must exclude the value of xn0

for which 1/(1 + xn0
) = −1 from A. In this case, xn0

is equal to −2 which is

again must be removed from A. Continuing the process, we get a sequence of

numbers which is in fact the set {−ϕm}m∈N. On the other hand, if x0 = α−1

(resp. x0 = β−1), then we get xn = α−1 (resp. xn = β−1) for every n ∈ N.

This simply means that α−1 (resp. β−1) is a fixed solution of (1.1). A similar

explanation holds for the difference equation xn+1 = 1/(−1 + xn) wherein we

must not take any x0 from the set {ϕm}m∈N to have a well-defined solution,

and for x0 = α (resp. x0 = β) we get a fixed solution xn = α (resp. xn = β)

for all n ∈ N (cf. [25, Theorem 3]).

In an earlier paper, Bacani and the author [3] studied a certain generalization

of the difference equation (1.1). More precisely, they considered the difference

equation

xn+1 =
q

±p+ xνn
, n ∈ N0, (1.3)

for some initial value x0 ∈ R \
({

Φ∓1+ ,Φ∓1−
}
∪ {∓Ψm}m∈N

)
, where p and q

are some positive real numbers and ν ∈ N. Moreover, in this case, Φ+ and Φ−
represent the positive and negative root of the quadratic equation x2−px−q =
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142 J. F. T. Rabago

0, respectively, and Ψn = wn+1(0, 1; p,−q)/wn(0, 1; p,−q). For the case ν = 1,

the solution form of (1.3) which is given by

xn = q

{
w±n(0, 1; p,−q) + w±(n−1)(0, 1; p,−q)x0
w±(n+1)(0, 1; p,−q) + w±n(0, 1; p,−q)x0

}
, ∀n ∈ N0, (1.4)

was proved by means of induction principle (cf. [3, Theorem 1]).

Meanwhile, J. S. Han, H. S. Kim and J. Neggers defined in [8] what they

called Fibonacci functions – real-valued functions f on R which satisfy the

functional equation f(x+2) = f(x+1)+f(x) for all x ∈ R. They developed this

notion of Fibonacci function using the concept of f -even and f -odd functions.

Following [8], B. Sroysang extended the idea of Fibonacci functions to Fibonacci

functions with period k – real-valued functions on R which satisfy the equation

f(x + 2k) = f(x + k) + f(x) for some fixed integer k ≥ 1, for every x ∈ R.

Sroysang also defined, in a similar fashion, what he called an odd Fibonacci

function with period k, as a real-valued function which satisfies the equation

f(x + 2k) = −f(x + k) + f(x), for some fixed integer k ≥ 1, for all x ∈
R. Further, Sroysang made the following conjecture about the asymptotic

exponential growth rate of Fibonacci function with period k:

Conjecture 1.3 ([23, Conjecture 25]). If f is a Fibonacci function with period

k ≥ 1, then limx→∞ {f(x+ k)/f(x)} = φ.

These notions of Fibonacci functions were then generalized by the author [20]

to Horadam functions with period k (or second-order linear recurrent functions

with period k) using the following definition:

Definition 1.4 ([20]). Let k be a positive integer, and r, s be positive real

numbers. A function w : R → R is said to be a second-order linear recurrent

function (or simply Horadam function) with period k ≥ 1 if it satisfies the

functional equation w(x+ 2k) = rw(x+k) + sw(x), for every x ∈ R. Similarly,

a function $ : R → R is called an odd second-order linear recurrent function

with period k ≥ 1 if it satisfies the functional equation $(x+ 2k) = −r$(x+

k) + s$(x), for every x ∈ R.

The above definition naturally gave rise to the concept of Pell and Jacobsthal

function (the case (r, s) = (2, 1) and (1, 2), respectively), as well as odd Pell and

odd Jacobsthal functions, which are basically analogues of Fibonacci and odd

Fibonacci functions, respectively. Several properties of Horadam functions were

studied in [20] including the convergence of the ratio w(x+ k)/w(x) as x tends

to infinity. This result in fact provides a more general result for the conjecture

in [23] and was proven by the author using continued fraction expansion for

the root of a non-square integer. In this note, however, we shall provide a

proof of Conjecture 1.3 entirely different to the one proposed in [20]. The proof

consists of two cases: the first in which we consider the possibility that (i)

f(x + k)/f(x) < 0, and the other which (ii) f(x + k)/f(x) ≥ 0. In the first
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Closed-form solution and another proof 143

case we utilize the solution form of (1.3) and in the second case, we use an

entirely different approach which parallels that seen in an elementary analysis

course. As usual, we first prove the existence of the limit of the sequence

(f(x+ k)/f(x)) as x tends to infinity and then show that this limit is nothing

but the golden ratio φ.

Now we turn on the organization of the rest of the paper. In the next sec-

tion (Section 2), we present a theoretical approach in deriving the closed-form

solution of the nonlinear difference equation (1.3), thus giving a theoretical

explanation to Tollu et al.’s result in [25]. In Section 3, we provide another

approach in proving Sroysang’s Conjecture 1.3. The approach we use considers

two separate cases. In the first case, we utilize the solution form of equa-

tion (1.1) given by (1.2), while the second case shall be treated in an entirely

different way.

2. A Theoretical Approach to Equation (1.1)

Consider the nonlinear difference equation given by (1.3). Obviously, if ν = 1

and (p, q) = (1, 1) in (1.3), then we’ll recover the difference equation (1.1). In

this section, we establish the solution form of the difference equation

xn+1 =
q

p+ xn
, n ∈ N0, (2.1)

where p > 0 and q > 0, through an analytical approach and not with the usual

induction method. This, in turn, provides a theoretical explanation of the

result presented in [25, Theorem 1] concerning the closed-form solution of the

given difference equation. We mention that the same approach can be followed

inductively to obtain the solution form of the nonlinear difference equation

yn+1 =
q

−p+ yn
, n ∈ N0,

so we omit it.

Now we derive the solution form (1.4) of equation (2.1) as follows. We make

the substitution xn = tn/tn+1 (with n replaced by n− 1) in (2.1) to obtain the

linear (homogenous) difference equation

tn
tn+1

=
qtn

ptn + tn−1
⇐⇒ tn+1 =

p

q
tn +

1

q
tn−1.

Observe that the latter equation is in the form of a second-order linear re-

currence equation. It is well-known that this type of equation, given its first

two initial iterates, is solvable in closed-form and can be established through

different techniques (see, e.g., [2]). In the case when (t0, t1) = (0, 1), we shall

have the solution tn = q−(n−1)un, where un denotes the nth fundamental Lu-

cas number. Hence, for arbitrary initial values (t0, t1) and after some simple

computations, we have

tn = t1[q−(n−1)un] + t0q
−1[q−(n−2)un−1].
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144 J. F. T. Rabago

This relation now gives us

xn =
tn
tn+1

=
t1[q−(n−1)un] + t0[q−(n−2)un−1]

t1[q−nun+1] + t0q−1[q−(n−1)un]
= q

{
un + (t0/t1)un−1
un+1 + (t0/t1)un

}
.

Noting that x0 = t0/t1 by definition, we get

xn = q

{
un + x0un−1
un+1 + x0un

}
.

Now since un ≡ wn(0, 1; p,−q), we finally have

xn = q

{
wn(0, 1; p,−q) + wn−1(0, 1; p,−q)x0
wn+1(0, 1; p,−q) + wn(0, 1; p,−q)x0

}
, ∀n ∈ N0, (2.2)

which is desired.

Remark 2.1. Evidently, for the case when (p, q) = (1, 1) in (1.3), we recover the

result in Theorem 1.1, i.e., the closed-form solution of the difference equation

xn+1 = 1/(1 + xn) is given by

xn =
wn(0, 1; 1,−1) + wn−1(0, 1; 1,−1)x0
wn+1(0, 1; 1,−1) + wn(0, 1; 1,−1)x0

=
Fn + Fn−1x0
Fn+1 + Fnx0

, ∀n ∈ N0.

Now we are in the position to prove the validity of Conjecture 1.3 in the

next section.

3. Proof of Sroysang’s Conjecture

Before we proceed formally with the proof, we first recall the following well-

known result in elementary analysis.

Lemma 3.1. Let f be a real-valued function continuous on a domain D ⊂ R.

Also, let (xn)n∈N0
be a convergent sequence in D, with limn→∞ xn = α ∈ D.

Then, limn→∞ f(xn) = f(α).

Proof of the conjecture. Now, we proceed on proving the conjecture. Let k

be a fixed positive integer and suppose f is a Fibonacci function with period

k. Then, f(x + 2k) = f(x + k) + f(x) for every x in the real line. Note that,

for any x� k, we may write x in the form ξ+nk, where n := bx/kc. Denoting

gn := f(ξ+nk)
f(ξ+(n+1)k) , we get

f(ξ + (n+ 2)k)

f(ξ + (n+ 1)k)
= 1 +

f(ξ + nk)

f(ξ + (n+ 1)k)
⇐⇒ gn+1 =

1

1 + gn
.

CASE 1. Suppose first that g0 < 0. Note that, in this case, g0 = f(ξ)/f(ξ+ k)

must not equate to any of the element of the set {β−1} ∪ {−ϕm}m∈N so as to

have a non-fixed and well-defined solution to the nonlinear difference equation

gn+1 = 1/(1 + gn). Hence, we assume that g0 ∈ R− \ ({β−1} ∪ {−ϕm}m∈N) so
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that the convergence of the sequence (gn) may be studied. Now, using Theorem

1.1, the closed-form solution for gn is given by

gn =
Fn + Fn−1g0
Fn+1 + Fng0

, ∀n ∈ N0.

Hence, we can compute for the limit limn→∞{gn} as follows:

lim
n→∞

{gn} = lim
n→∞

{
Fn + Fn−1g0
Fn+1 + Fng0

}
=

1 + limn→∞

{
Fn−1

Fn

}
g0

limn→∞

{
Fn+1

Fn

}
+ g0

=
1 + φ−1g0
φ+ g0

=
1

φ
.

Now, in reference to Lemma 3.1, we get

lim
n→∞

{
f(ξ + (n+ 1)k)

f(ξ + nk)

}
= lim
n→∞

{
1

gn

}
= φ.

However, x→∞ as n→∞. So we have

lim
x→∞

{
f(x+ k)

f(x)

}
= lim
n→∞

{
f(ξ + (n+ 1)k)

f(ξ + nk)

}
= φ.

This proves the first case.

CASE 2. On the other hand, if we assume that f(x) ≥ 0 and f(x+ k) > 0 for

all x ∈ R (if f(x) ≤ 0 and f(x+ k) < 0, then we may define f̂(x) = −f(x) ≥ 0

and f̂(x + k) = −f(x + k) > 0 and then proceed in a similar fashion), then

we can say that the sequence (gn)n∈N0 is well-defined. We claim that gn > 0

for all n ∈ N. To verify this claim, we note that g0 = f(ξ)/f(ξ + k) ≥ 0 and

g1 = f(ξ + k)/f(ξ + 2k) = f(ξ + k)/[f(ξ + k) + f(ξ)] =: M > 0. Now suppose

gm > 0 for all m ≤ n ∈ N. Then, gn+1 = 1/(1 + gn) > 0. By principle of

induction, our claim is verified. Now consider the difference equation

gn+1 − gn = − gn − gn−1
(1 + gn)(1 + gn−1)

. (3.1)

Note that the strict inequality 1/(1+g̃) < 1 holds for all g̃ ∈ (0,∞). Meanwhile,

for any values of g1 > 0, we get g2 = 1/(1 + g1) < 1 which would then implies

that gn ∈ (0, 1), by using an elementary induction process. Hence, we may

assume without loss of generality that g1 ∈ (0, 1) (if not, then we make an

adjustment by taking g2 as g1). Thus, 1 − g1 > 0 and since gn > 0 for all

n ∈ N, we get

1− g1 + gn−1 > 0 (n ≥ 2) ⇐⇒ 1 + gn−1 > g1

⇐⇒ 1 + gn−1 + gn(1 + gn−1) > 1 + g1

⇐⇒ (1 + gn)(1 + gn−1) > 1 + g1.
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Thus we may claim that, for all n ∈ N, we have the strict inequality

(1 + gn)(1 + gn−1) = 1 + gn−1 + gn + gn−1gn > 1 +M,

for all n ∈ N \ {1}. Taking the absolute value on both sides of equation (3.1)

now gives us the relation

|gn+1 − gn| =
|gn − gn−1|

|(1 + gn)(1 + gn−1)|
<
|gn − gn−1|

1 +M

for all n ∈ N \ {1}. Now, since

|g2 − g1| =
∣∣∣∣f(ξ + 2k)

f(ξ + 3k)
− f(ξ + k)

f(ξ + 2k)

∣∣∣∣ =

∣∣∣∣ f(ξ + k) + f(ξ)

2f(ξ + k) + f(ξ)
− f(ξ + k)

f(ξ + k) + f(ξ)

∣∣∣∣
=
|f2(ξ) + f(ξ)f(ξ + k)− f2(ξ + k)|

(2f(ξ + k) + f(ξ))(f(ξ + k) + f(ξ))
=: c,

the first iteration gives us |g3 − g2| < |g2 − g1|(1 +M)−1 =: c(1 +M)−1 which

in turn leads us to |g4−g3| < |g3−g2|(1+M)−1 < c(1+M)−2. Continuing the

process up to some integer n ∈ N\{1}, we obtain |gn+1−gn| < c(1+M)−(n−1),

which can be verified easily by induction. Indeed, given the assumption that

|gm+1 − gm| < c(1 + M)−(m−1), for all m ≤ n, we have |xn+2 − xn+1| <
(1 +M)−1|xn+1 − xn| < c(1 +M)−n. Thus, |gn+1 − gn| < c(1 +M)−(n−1) for

all n ∈ N \ {1}.
Next, we show the existence of the limit of the sequence (gn)n∈N0 ; that is,

we prove that (gn)n∈N0
is Cauchy. To do this, we first approximate the value

|gm − gn| for arbitrary choice of index m and n (with m > n) and then show

that, for some sufficiently large N , |gm−gn| < ε for each m > n ≥ N , for every

ε > 0.

We express gm − gn as gm − gn = (gm − gm−1) + (gm−1 − gm−2) + . . . +

(gn+2 − gn+1) + (gn+1 − gn). Hence, by triangle inequality, |gm − gn| ≤ |gm −
gm−1|+ |gm−1− gm−2|+ . . .+ |gn+2− gn+1|+ |gn+1− gn|. Since |gn+1− gn| <
c(1 + M)−(n−1), then using the formula for the sum of a geometric series, we

now have

|gm − gn| ≤
c

(1 +M)m−2
+

c

(1 +M)m−3
+ . . .+

c

(1 +M)n−2
+

c

(1 +M)n−1

<

c
(1+M)n−1

1− 1
1+M

=
c

(1 +M)n−2
=: Ω(n).

Now, given ε > 0, we choose a sufficiently large N such that Ω(n) < ε. So, for

all m > n ≥ N , |xm − xn| < Ω(n) ≤ Ω(N) < ε. This proves that (gn)n∈N0

is Cauchy, thereby implying that L := limn→∞ gn exists. Going back to the

relation gn+1 = 1/(1 + gn), we have

L = lim
n→∞

{gn+1} = lim
n→∞

{
1

1 + gn

}
=

1

1 + limn→∞ gn
=

1

1 + L
.
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This yields the quadratic equation L2+L−1 = 0 whose solution set is {−φ, φ−
1}. However, we have shown that gn is positive for every n ∈ N, so L = φ− 1.

By virtue of Lemma 3.1, it follows that

lim
n→∞

{
f(ξ + (n+ 1)k)

f(ξ + nk)

}
= lim
n→∞

{
1

gn

}
=

1

L
=

1

φ− 1
= φ.

But x→∞ as n→∞. Hence, the above equation is equivalent to

lim
x→∞

{
f(x+ k)

f(x)

}
= lim
n→∞

{
f(ξ + (n+ 1)k)

f(ξ + nk)

}
= φ,

proving the second case. This completes the proof of the conjecture.

Now we state Conjecture 1.3 as a theorem.

Theorem 3.2. Let k be a positive integer. If f : R→ R is a Fibonacci function

with period k ≥ 1, then limx→∞{f(x+ k)/f(x)} = φ.

Remark 3.3. We mention that the above theorem can be proven using Theorem

1.1, irrespective of the sign of the initial value g0 = f(ξ + k)/f(ξ). That is, as

long as we are sure that g0 ∈ R \ ({β−1} ∪ {ϕm}m∈N), then we know that gn
converges to φ−1 (cf. [25, Theorem 4]).

Remark 3.4. Obviously, the same approach can be applied to prove a more

general result of Conjecture 1.3. More specifically, we can prove that the ratio

of Horadam functions w(x + k)/w(x) (a real-valued function satisfying the

functional equation w(x + 2k) = rw(x + k) + sw(x) for some positive real

numbers r, s and k ≥ 1) will converge to the positive root of the quadratic

equation x2− rx− s = 0 (cf. [20, Corollary 6.3]) using the closed-form solution

(1.4) of the case ν = 1 of the nonlinear difference equation (1.3) (cf. [3, Theorem

1]). That is, the limit limx→∞{w(x + k)/w(x)} = (r +
√
r2 + 4s)/2 =: ρ (the

positive root of the equation x2 − rx− s = 0) can be verified as follows.

Denote hn := w(ξ + nk)/w(ξ + (n + 1)k) so that the functional equation

given by w(x+ 2k) = rw(x+k) + sw(x) (which w satisfies) is transformed into

the nonlinear difference equation hn+1 = 1/(r + s · hn), for all n ∈ N0. Using

the substitution p = r/s and q = 1/s, we then obtain the nonlinear difference

equation hn+1 = q/(p+hn). Assume that h0 ∈ R\({Φ−1− }∪{−um+1/um}m∈N)

(where Φ− is the negative root of x2 − px − q = 0 and un denotes the nth

fundamental Lucas numbers). Then, in view of equation (2.2), we obtain the

closed-form solution

hn = q

{
un + un−1h0
un+1 + unh0

}
, ∀n ∈ N0.
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Letting n→∞, we get

lim
n→∞

{hn} = q


1 + limn→∞

{
un−1
un

}
h0

limn→∞

{
un+1

un

}
+ h0

 = q

{
1 + Φ−1+ h0

Φ+ + h0

}
=

q

Φ+
,

where Φ+ is the positive solution of the equation x2 − px − q = 0. Using the

fact that x→∞ as n→∞, together with Lemma 3.1, we get

lim
x→∞

{
w(x+ k)

w(x)

}
= lim
n→∞

{
w(ξ + (n+ 1)k)

w(ξ + nk)

}
= lim
n→∞

{
1

hn

}
=

Φ+

q
.

Note, however, that

Φ+

q
=

1

2q
(p+

√
p2 + 4q) =

s

2

(
r

s
+

√
r2

s2
+

4

s

)
= ρ.

Here we recall that Φ+ is the positive root of the equation x2 − px − q = 0.

Thus, limx→∞{w(x+ k)/w(x)} = ρ.

Remark 3.5. We also emphasize that the method used previously to prove

that limx→∞{w(x + k)/w(x)} = ρ can definitely be applied to show that the

ratio $(x + k)/$(x) of odd Horadam functions with period k ≥ 1 (satisfying

the functional equation $(x + 2k) = −$(x + k) + $(x)) will converge to

−ρ (cf. [20, Corollary 6.7]). In this case, the closed-form solution of the

nonlinear difference equation yn+1 = q/(−p + yn) (with initial value y0 ∈
R \ ({Φ+} ∪ {um+1/um}m∈N)) given by

yn = q

{
w−n(0, 1; p,−q) + w−(n−1)(0, 1; p,−q)y0
w−(n+1)(0, 1; p,−q) + w−n(0, 1; p,−q)y0

}
, ∀n ∈ N0,

can be utilized. This in turn will prove, as a special case (the instance (r, s) =

(1, 1)), Sroysang’s second conjecture: if f is an odd Fibonacci function with

period k ≥ 1, then limx→∞{f(x+ k)/f(x)} = −φ (cf. [23, Conjecture 26]).

Remark 3.6. As for our final remark, we mention that the following statement

is also true:

lim
x→−∞

{
w(x+ k)

w(x)

}
= − lim

x→−∞

{
$(x+ k)

$(x)

}
= −ρ,

where w and $ are Horadam and odd Horadam functions with period k, re-

spectively (cf. [20]). Particularly, if f is a Fibonacci function (resp. an odd Fi-

bonacci function) with period k ≥ 1, then the sequence of ratios {f(x+ k)/f(x)}
converges to −φ (resp. φ) as x decreases without bound. These results can

be verified easily with the same approach as above and using the fact that the

Horadam numbers, in general, can naturally be extended to negative numbers

using the relation w−n(w0, w1; p, q) = (−1)n+1wn(w0, w1; p, q) together with

the solution form of the nonlinear difference equation hn+1 = q/(−p+ hn).

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
si

.c
om

 o
n 

20
25

-1
1-

15
 ]

 

                            10 / 13

http://ijmsi.com/article-1-775-en.html


Closed-form solution and another proof 149

Author’s Note It was pointed out by one of the referee of this paper that

the difference equation

gn+1 =
1

1 + gn
for every n ∈ N0

is related to continued fractions. Indeed, for sufficiently large N > 0, we may

iterate the right hand side of the above equation to obtain

gN =
1

1 +
1

1 +
1

1 +
1

1 +
1

· · ·+ 1

1 + 1
g0

.

Recall that (see, e.g., [21]) φ− 1 = [0; 1, 1, 1, . . .] where

[0; 1, 1, 1, . . .] =
1

1 +
1

1 +
1

1 +
1

1 + · · ·

.

Thus, for every ε > 0, we can find an integer N > 0, sufficiently large, such

that |gn − (φ − 1)| < ε. Equivalently, we have limN→∞ gN = φ − 1. Another

important thing to note regarding the sequence (gn)n∈N (with g1 in the unit

interval (0, 1)) is that, the n-th term gn is either contained in the interval

[Fn/Fn+1, Fn+1/Fn+2] or in [Fn+1/Fn+2, Fn/Fn+1] (depending on the parity

of n) (cf. [6, Lemma 2.1] and [21, Lemma 5]). Noting that Fn+1/Fn → φ

as n → ∞, one can immediately see (possibly through Cantor’s Intersection

Theorem [22]) that gn → 1/φ = φ−1. It is worth mentioning that this approach

was in fact used explicitly by the author [20] to prove a more general case of

Sroysang’s conjecture (cf. Remark 3.4 above).

4. Summary

We have verified affirmatively, in an alternative fashion, Sroysang’s conjec-

ture regarding the asymptotic growth rate of the so-called Fibonacci functions

(and odd Fibonacci functions) with period k ≥ 1. The technique we have

used in proving the conjecture, which is one of the main objective of our work,

utilizes some well-known results and direct computations, using elementary

properties of classical analysis. In the proof, we have started with the trans-

formation f(x)/f(x + k) = f(ξ + nk)/f(ξ + (n + 1)k) =: gn with f satisfying

the functional equation f(x + 2k) = f(x + k) + f(x) for all x ∈ R, then uti-

lized the closed-form solution of the difference equation gn+1 = 1/(1 + gn). In

this approach, we first showed that the sequence (gn) converges to φ − 1 and
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then used this fact to arrive at the conclusion that the asymptotic exponen-

tial growth rate of Fibonacci function with period k indeed converges to the

well-known golden ratio φ. As a remark, we have also asserted that the same

approach can be followed inductively to prove a more general case of the state-

ment. Further, it was noted that the idea behind the method used to establish

the main result can be employed to verify a similar result for odd Horadam

functions with period k ≥ 1. The desired result for this case, as we have re-

marked, can be achieved using a property of Horadam numbers with negative

indices combined with the solution form of the nonlinear difference equation

hn+1 = q/(−p + hn). The resulting property, in turn, validates (as a special

case) Sroysang’s second conjecture.
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