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ABSTRACT. The purpose of this paper is twofold. First, we derive theoret-
ically, using appropriate transformation on z,, the closed-form solution
of the nonlinear difference equation

1
+1 4z,

We mention that the solution form of this equation was already obtained

Tp41 = n € Np.

by Tollu et al. in 2013, but through induction principle, and one of
our purpose is to clearly explain how was the formula appeared in such
structure. After that, with the solution form of the above equation at
hand, we prove a case of Sroysang’s conjecture (2013); i.e., given a fixed
positive integer k, we verify the validity of the following claim:

Jn {55 =

where ¢ = (1 ++/5)/2 denotes the well-known golden ratio and the real
valued function f on R satisfies the functional equation f(z + 2k) =
f(z+ k) + f(x) for every x € R. We complete the proof of the conjecture

by giving out an entirely different approach for the other case.
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1. INTRODUCTION

The classical Fibonacci sequence (Fy)nen, = {0,1,1,2,3,5,8,... Fyqo =
Fni1 + F,,...} has been studied for many years and the subject continues
to attract attentions of researchers as more fascinating results involving these
numbers are obtained and discovered. In fact, with the growing interest on
the topic, various extensions and generalizations of the sequence have been
proposed and thoroughly investigated by many mathematicians in the last
decades. Perhaps, the most celebrated of these is the one put forward by
A. F. Horadam [9] in his 1965 seminal paper, from which, we believe, a large
amount of recent developments on the topic were based. In 1878, however,
E. Lucas [14] first made an extensive investigation of two mere instances of
Horadam sequence (wy)nen = (wn(wo, w1;p,q)) = {wo, w1, Wpio = pwny1 —
quw,, for n > 0}. Particularly, Lucas obtained many interesting properties of
the sequence (up)nen, = {uo = 0,u1 = 1,Upi2 = pupt1 — qu, for n > 0}
and (vp)nen, = {Vo = 2,01 = P, Unt2 = PUpt1 — qU, for n > 0}. The former
is known today as the fundamental Lucas sequence and the latter is known
as the primordial Lucas sequence. For a good survey of recent developments
on Horadam sequences, we refer the readers to [11] (see also [12] for a survey
update and further extension of these sequences).

Probably, one of the most interesting property of the Fibonacci sequence is
its relation to the widely known golden ratio (or golden number [7, 16]) ¢ :=
(14 +/5)/2 = 16180339887 ... (cf. Sequence No. A001622 in O.E.I.S.). It is
known (see, e.g., [13, p. 101] and [24, p. 28]) that the ratios of successive terms
of the Fibonacci sequence (Fy,11/Fy,) =: (p,) (or any Fibonacci-like sequence)
converges to the golden number. This number is commonly encountered in the
theory of numbers, for example, in the study of continued fractions [6, 21] and
Diophantine equations [4]. It also appears in other pure areas of mathematics
such as in the study of functional equations [8, 20, 23], differential equations
[19], graphs and matroids [1], etc. More interestingly, this intriguing value
appears vastly in nature, and is seen to operate as a universal law in the
arrangements of parts such as leaves and branches in plants, and branchings of
veins and nerves in animals [17, 18]. This ratio has also been used to analyze the
proportions of natural and man-made objects as applications in architecture,
designs, paintings, etc [18]. Further discussion of this fascinating ratio can be
found in [5] and also in [26]. In addition, there is a huge amount of studies
scattered in literature about Fibonacci sequence and journals which are entirely
devoted to the Fibonacci sequence and its extensions. For some applications
of Fibonacci sequence, we refer the readers to a book by T. Koshy [10].

Recently, numerous papers dealt with various problems relating Fibonacci
numbers to other fields of mathematics. For instance, in [25], Tollu et al.


http://ijmsi.com/article-1-775-en.html

[ Downloaded from ijmsi.com on 2025-11-15]

Closed-form solution and another proof 141

studied the following nonlinear difference equation:
1

ESE

The authors [25] obtained many interesting results regarding the solution of

the equation (1.1) and perhaps the most important of these was the closed-
form solution of the given equation. The solution form of (1.1), which we give

Tp1 n € No. (11)

in the theorem below, was established by Tollu et al. through mathematical
induction.

Theorem 1.1 ([25]). For any initial value zo € R\ ({aT, 71} U{Fom}3_1),

the closed-form solution of the nonlinear difference equation (1.1) is given by

_ Fen+ Fi-no
F:I:(n+1) + Finmo

In

R Vn € Np. (12)
Here o and 3 are the positive and negative root of the quadratic equation x> —
x — 1 =0, respectively (i.e., a =¢ and 5=1—¢).

This result, however, was not supported by any mathematical theory nor was
explained by the authors how they were obtained. Perhaps, this was purposely
omitted for some reasons we do not know.

Remark 1.2. The exclusion of {—@;, }men and {a™1, 371} from the set of ad-
missible values for xg, say A, for the difference equation z,+1 = 1/(1+4z,) can
be explain as follows: first, it is evident that 1 4+ zy should not equate to 0,
or equivalently g # —1, so as to have a well-define solution to the equation.
Now, if for some ng € N, x,,41 = —1, then we must exclude the value of x,,
for which 1/(1 + z,,) = —1 from A. In this case, x,, is equal to —2 which is
again must be removed from A. Continuing the process, we get a sequence of
numbers which is in fact the set {—®, }men. On the other hand, if zg = o~ !
(resp. w9 = B71), then we get x,, = a1 (resp. z, = B71) for every n € N.
This simply means that a~! (resp. f71) is a fixed solution of (1.1). A similar
explanation holds for the difference equation x,+; = 1/(—1 + x,) wherein we
must not take any xo from the set {¢,, }men to have a well-defined solution,
and for zp = « (resp. xg = ) we get a fixed solution z,, = « (resp. x,, = f3)
for all n € N (cf. [25, Theorem 3)).

In an earlier paper, Bacani and the author [3] studied a certain generalization
of the difference equation (1.1). More precisely, they considered the difference
equation

Tpy1 = n € Ny, (13)

q
+p+ )’
for some initial value zo € R\ ({(I’Il,@fl} U{F ¥ }men), where p and ¢
are some positive real numbers and v € N. Moreover, in this case, ®; and ®_
represent the positive and negative root of the quadratic equation 22 —pr—¢q =
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0, respectively, and ¥,, = w,11(0,1;p, —q)/w, (0, 1; p, —q). For the case v =1,
the solution form of (1.3) which is given by
. — {w:tn(07 Lip, _Q) + w:l:(n—l)(ov Lip, —Q)SEO
" Wt (nt1)(0, 1;p, =q) + win (0, 15p, —q) 70
was proved by means of induction principle (cf. [3, Theorem 1]).

Meanwhile, J. S. Han, H. S. Kim and J. Neggers defined in [8] what they
called Fibonacci functions — real-valued functions f on R which satisfy the
functional equation f(z+2) = f(z+1)+f(x) for all z € R. They developed this
notion of Fibonacci function using the concept of f-even and f-odd functions.
Following [8], B. Sroysang extended the idea of Fibonacci functions to Fibonacci

}, Vn € Ny, (].4)

functions with period k — real-valued functions on R which satisfy the equation
flx+2k) = f(x + k) + f(x) for some fixed integer k > 1, for every = € R.
Sroysang also defined, in a similar fashion, what he called an odd Fibonacci
function with period k, as a real-valued function which satisfies the equation
flx +2k) = —f(x + k) + f(z), for some fixed integer k > 1, for all z €
R. Further, Sroysang made the following conjecture about the asymptotic
exponential growth rate of Fibonacci function with period k:

Conjecture 1.3 ([23, Conjecture 25]). If f is a Fibonacci function with period
k> 1, then limgoo {f(z+ k)/f(z)} = &.

These notions of Fibonacci functions were then generalized by the author [20]
to Horadam functions with period k (or second-order linear recurrent functions
with period k) using the following definition:

Definition 1.4 ([20]). Let k be a positive integer, and r, s be positive real
numbers. A function w : R — R is said to be a second-order linear recurrent
function (or simply Horadam function) with period k > 1 if it satisfies the
functional equation w(x 4 2k) = rw(x + k) + sw(zx), for every x € R. Similarly,
a function w : R — R is called an odd second-order linear recurrent function
with period k > 1 if it satisfies the functional equation w(xz + 2k) = —rw(z +
k) + sw(z), for every x € R.

The above definition naturally gave rise to the concept of Pell and Jacobsthal
function (the case (r,s) = (2,1) and (1, 2), respectively), as well as odd Pell and
odd Jacobsthal functions, which are basically analogues of Fibonacci and odd
Fibonacci functions, respectively. Several properties of Horadam functions were
studied in [20] including the convergence of the ratio w(z + k)/w(x) as = tends
to infinity. This result in fact provides a more general result for the conjecture
in [23] and was proven by the author using continued fraction expansion for
the root of a non-square integer. In this note, however, we shall provide a
proof of Conjecture 1.3 entirely different to the one proposed in [20]. The proof
consists of two cases: the first in which we consider the possibility that (i)
flz +k)/f(z) <0, and the other which (ii) f(xz + k)/f(z) > 0. In the first
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case we utilize the solution form of (1.3) and in the second case, we use an
entirely different approach which parallels that seen in an elementary analysis
course. As usual, we first prove the existence of the limit of the sequence
(f(x+k)/f(z)) as = tends to infinity and then show that this limit is nothing
but the golden ratio ¢.

Now we turn on the organization of the rest of the paper. In the next sec-
tion (Section 2), we present a theoretical approach in deriving the closed-form
solution of the nonlinear difference equation (1.3), thus giving a theoretical
explanation to Tollu et al.’s result in [25]. In Section 3, we provide another
approach in proving Sroysang’s Conjecture 1.3. The approach we use considers
two separate cases. In the first case, we utilize the solution form of equa-
tion (1.1) given by (1.2), while the second case shall be treated in an entirely
different way.

2. A THEORETICAL APPROACH TO EQUATION (1.1)

Consider the nonlinear difference equation given by (1.3). Obviously, if v =1
and (p,q) = (1,1) in (1.3), then we’ll recover the difference equation (1.1). In
this section, we establish the solution form of the difference equation

Tntl1 = n e N07 (21)

P+’
where p > 0 and ¢ > 0, through an analytical approach and not with the usual
induction method. This, in turn, provides a theoretical explanation of the
result presented in [25, Theorem 1] concerning the closed-form solution of the
given difference equation. We mention that the same approach can be followed
inductively to obtain the solution form of the nonlinear difference equation

Yn+1 = ne NO7

P+ Yn’
so we omit it.

Now we derive the solution form (1.4) of equation (2.1) as follows. We make
the substitution x,, = t,,/t,4+1 (with n replaced by n—1) in (2.1) to obtain the
linear (homogenous) difference equation

tn qtn P 1
- = b 46 < Ipg1 = gtn + gtn,l.
Observe that the latter equation is in the form of a second-order linear re-
currence equation. It is well-known that this type of equation, given its first
two initial iterates, is solvable in closed-form and can be established through
different techniques (see, e.g., [2]). In the case when (tg,t1) = (0,1), we shall
have the solution ¢, = ¢~ (" Yy, where u,, denotes the n'* fundamental Lu-

cas number. Hence, for arbitrary initial values (to, 1) and after some simple
computations, we have

tn = tl [q_(n_l)un} + toq_l [q_(n_Q)UnA]
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This relation now gives us

o=t e D] +to[lg " Pup] {un+(to/t1)un_1}
" Upy1 + (to/t1)un |

tnrr  ti[g ™Mung1] + tog g Du,]
Noting that z¢ = to/t; by definition, we get
_ { Un + ToUn—1 }
Tp =Qq —————— 5.
Un+1 + ToUn
Now since u,, = w,(0, 1;p, —¢), we finally have

I {wn((h L;p, —q) + wn—1(0,1;p, —q)xo
" wn+1(071;p7 *q) +wn(031;p7 7Q)IO

} , Vn € Ny, (2.2)

which is desired.

Remark 2.1. Evidently, for the case when (p, ¢) = (1,1) in (1.3), we recover the
result in Theorem 1.1, i.e., the closed-form solution of the difference equation
ZTnt+1 = 1/(1 + x,) is given by

wn(O,l;l,—l)+wn,1(0,1;1,—1)x0 Fn+Fn,1$0

= = , Vn € Np.
O 1 (0,51, 1) T wn(0, 11, —1)zo  Fpar + Frao ne o

Now we are in the position to prove the validity of Conjecture 1.3 in the
next section.

3. PROOF OF SROYSANG’S CONJECTURE

Before we proceed formally with the proof, we first recall the following well-
known result in elementary analysis.

Lemma 3.1. Let f be a real-valued function continuous on a domain D C R.
Also, let (xn)nen, be a convergent sequence in D, with lim, oo, = a € D.

Then, lim, o f(z,) = f(a).

Proof of the conjecture. Now, we proceed on proving the conjecture. Let k
be a fixed positive integer and suppose f is a Fibonacci function with period
k. Then, f(x + 2k) = f(z + k) + f(z) for every z in the real line. Note that,

for any x > k, we may write = in the form £ +nk, where n := |z/k|. Denoting

. _ f(&+nk)
In = Fermrmy s Ve get

JE+ k) €+ nk) B
fE+mrh) T TErmrh o I T g

CASE 1. Suppose first that go < 0. Note that, in this case, go = f(£)/f(£+ k)
must not equate to any of the element of the set {871} U {—¢m }men so as to
have a non-fixed and well-defined solution to the nonlinear difference equation
gn+1 = 1/(1+ g,). Hence, we assume that go € R™\ ({871} U {—¢m }men) so
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that the convergence of the sequence (g, ) may be studied. Now, using Theorem
1.1, the closed-form solution for g, is given by

o Fn+Fn—1gO

, Vn € Np.
Foyp1+ Fhgo 0

In

Hence, we can compute for the limit lim,,_,oo{gn} as follows:

, Fr
Fot Fuorgo } 1+ timoe { 5 f o
Fry1 + Fogo

lim {g,} = lim { =
e hmn%oo {F;;L*Il } + g0

n—00

_ 1+¢7g0 1

¢+ 90 ¢

Now, in reference to Lemma 3.1, we get

S AT = ) =

However, x — oo as n — co. So we have

s A2 = T g =

This proves the first case.

CASE 2. On the other hand, if we assume that f(z) > 0 and f(x + k) > 0 for
all z € R (if f(z) <0 and f(z+k) <0, then we may define f(z) = —f(z) >0
and f(z +k) = —f(z + k) > 0 and then proceed in a similar fashion), then
we can say that the sequence (gn)nen, is well-defined. We claim that g, > 0
for all n € N. To verify this claim, we note that go = f(£)/f(£ + k) > 0 and
g1 = FE+ER)/F(E+2k) = f(E+K)/[F(§+ k) + f(§)] = M > 0. Now suppose
gm > 0 for all m < n € N. Then, g,+1 = 1/(1 +g,) > 0. By principle of
induction, our claim is verified. Now consider the difference equation
In — Gn-1

n+1 — Gn = — (1 +gn)(1 +gn_1). (31)

Note that the strict inequality 1/(14+g) < 1 holds for all g € (0, c0). Meanwhile,
for any values of g; > 0, we get go = 1/(1 4+ ¢g1) < 1 which would then implies
that g, € (0,1), by using an elementary induction process. Hence, we may
assume without loss of generality that g; € (0,1) (if not, then we make an

adjustment by taking go as g1). Thus, 1 — g; > 0 and since g, > 0 for all
n € N, we get

1—g1+gn-1>0(n>2) 1+gn1>0n
14+ gn-1+9gn(1+gn-1)>1+gq

(1 +gn)(1 +gn—1) >1 +gl~

111
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Thus we may claim that, for all n € N, we have the strict inequality
(14 g)(1+gn-1) =1+ Ggn1+9gn + gn-19n > 1+ M,

for all n € N\ {1}. Taking the absolute value on both sides of equation (3.1)
now gives us the relation

|90 — gn-1] |9n — gn—1]

|gn+1 _gﬂ| = |(

for all n € N\ {1}. Now, since
f(€+2k) f(€+/€)‘_ fE+k) + (9 fE+ k)

92 — g1] = FE+3k)  fE+2k)] |2f(E+k)+ f(6) [fE+k) +f(©

PO+ FEOFE+E) - f2E+E)

CIEFR) + )T E+R) + )  ©

the first iteration gives us |g3 — ga| < |g2 — g1|(1 + M)~ =: ¢(1 + M)~ which
in turn leads us to |g4 —g3| < |93 —go|(1+ M)~ < ¢(1+ M)~2. Continuing the
process up to some integer n € N\ {1}, we obtain |g, 11 —gn| < c(1+ M)~ (=1,
which can be verified easily by induction. Indeed, given the assumption that
|gma1 — gm| < c(1 4+ M)~V for all m < n, we have |Tpio — Tnp1]| <
(1+ M) Yopyy —an] < c(1+ M) Thus, |gni1 — gn| < c(1+ M)~ for
all n € N\ {1}.

Next, we show the existence of the limit of the sequence (g, )nen,; that is,

we prove that (g, )nen, is Cauchy. To do this, we first approximate the value
|gm — gn| for arbitrary choice of index m and n (with m > n) and then show
that, for some sufficiently large N, |g,m — gn| < € for each m > n > N, for every
e > 0.

We express gm — gn @S gm — gn = (9m — Gm-1) + (Gm-1 — gm—2) + ... +
(9n+2 = gnt1) + (gnt1 — gn). Hence, by triangle inequality, [gm — gn| < [gm —
Gm—1| +|gm-1—gm—2| + ..+ |gnr2 — gnt1| + |gns1 — gnl. Since |[gn11 —gn| <
c(1 + M)=(=1 then using the formula for the sum of a geometric series, we

now have
|Gm — gn] < c + c T ¢ i ¢
(1+M)ym=2 " 1+ M)m=3 (1+M)»2 " 1+ M1
(1+J\j)n—1 c
< = =: Q n).
- QI+ M)m2 ()

Now, given € > 0, we choose a sufficiently large N such that Q(n) < e. So, for
all m > n > N, |2, — 2, < Q(n) < Q(N) < . This proves that (g, )nen,
is Cauchy, thereby implying that L := lim,,_, . g, exists. Going back to the
relation gn+1 = 1/(1 4+ g, ), we have

1 1 1
A Agns1} nanéo{ugn} Ltlimnsoogn 141
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This yields the quadratic equation L?+ L —1 = 0 whose solution set is {—¢, ¢ —
1}. However, we have shown that g, is positive for every n € N, so L = ¢ — 1.
By virtue of Lemma 3.1, it follows that

But x — 00 as n — oco. Hence, the above equation is equivalent to

proving the second case. This completes the proof of the conjecture.

Now we state Conjecture 1.3 as a theorem.

Theorem 3.2. Let k be a positive integer. If f : R — R is a Fibonacci function
with period k > 1, then lim, oo {f(x + k)/f(x)} = ¢.

Remark 3.3. We mention that the above theorem can be proven using Theorem
1.1, irrespective of the sign of the initial value go = f(§ + k)/f(£). That is, as
long as we are sure that go € R\ ({87} U {¢m }men), then we know that g,
converges to ¢! (cf. [25, Theorem 4]).

Remark 3.4. Obviously, the same approach can be applied to prove a more
general result of Conjecture 1.3. More specifically, we can prove that the ratio
of Horadam functions w(z + k)/w(z) (a real-valued function satisfying the
functional equation w(z + 2k) = rw(x + k) + sw(x) for some positive real
numbers r,s and k > 1) will converge to the positive root of the quadratic
equation 22 —rz —s = 0 (cf. [20, Corollary 6.3]) using the closed-form solution
(1.4) of the case v = 1 of the nonlinear difference equation (1.3) (cf. [3, Theorem
1]). That is, the limit lim, oo {w(z + k)/w(x)} = (r + Vr2 + 45)/2 =: p (the
positive root of the equation 22 — rz — s = 0) can be verified as follows.

Denote h,, := w(€ + nk)/w(§ + (n 4+ 1)k) so that the functional equation
given by w(z + 2k) = rw(z + k) + sw(z) (which w satisfies) is transformed into
the nonlinear difference equation h,11 = 1/(r + s - hy,), for all n € Ny. Using
the substitution p = r/s and ¢ = 1/s, we then obtain the nonlinear difference
equation 1 = q¢/(p+hy). Assume that hg € R\ ({®~ YU {11 /tm men)
(where ®_ is the negative root of 2 — px — ¢ = 0 and u,, denotes the n'"
fundamental Lucas numbers). Then, in view of equation (2.2), we obtain the
closed-form solution

hn _ {un+un1h0

, Vn € Np.
Un+41 + unhO } 0
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Letting n — oo, we get

. Up—1
1+hmn_>oo{ w }ho {1+<I)+1h0} ¢
= q —_— =

D +hy [ Dy
limnaoo{uz—i_l}—’—ho + T *

n

g e} =4

where ® is the positive solution of the equation 22 — px — ¢ = 0. Using the
fact that x — oo as n — oo, together with Lemma 3.1, we get

i {0 i ) )

Note, however, that
i) 1 s r2 4
+: L+ VP g 2( +S>=p.

Here we recall that ®, is the positive root of the equation 2% — pz — ¢ = 0.
Thus, lim, . {w(z + k)/w(z)} = p.

Remark 3.5. We also emphasize that the method used previously to prove
that lim, . {w(z + k)/w(z)} = p can definitely be applied to show that the
ratio w(z + k)/w(x) of odd Horadam functions with period k& > 1 (satisfying
the functional equation w(z + 2k) = —w(z + k) + w(z)) will converge to
—p (cf. [20, Corollary 6.7]). In this case, the closed-form solution of the
nonlinear difference equation y,+1 = ¢/(—p + y,) (with initial value yo €
R\ ({®4+} U{um+1/um}men)) given by
o {U)_n(o, l;pv *Q) + w—(n—l)(oa l;pa *Q)y()
o —(n+1)(0, 139, =) + w—p (0, L;p, —q)y0

can be utilized. This in turn will prove, as a special case (the instance (r,s) =
(1,1)), Sroysang’s second conjecture: if f is an odd Fibonacci function with
period k > 1, then lim, oo {f(x + k)/f(2)} = —¢ (cf. [23, Conjecture 26]).

}, Vn € Ny,

Remark 3.6. As for our final remark, we mention that the following statement

is also true:
i [PEFRL_ o [EEER]
T——00 w(x) T——00 w(m)

where w and w are Horadam and odd Horadam functions with period k, re-
spectively (cf. [20]). Particularly, if f is a Fibonacci function (resp. an odd Fi-
bonacci function) with period & > 1, then the sequence of ratios { f(z + k)/f(z)}
converges to —¢ (resp. @) as = decreases without bound. These results can
be verified easily with the same approach as above and using the fact that the
Horadam numbers, in general, can naturally be extended to negative numbers
using the relation w_, (wo,w1;p,q) = (—1)""tw, (wo,w1;p,q) together with
the solution form of the nonlinear difference equation h,11 = q/(—p + hy).
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Author’s Note It was pointed out by one of the referee of this paper that
the difference equation

1
=—— foreveryneN
In+1 1+gn y 0

is related to continued fractions. Indeed, for sufficiently large N > 0, we may
iterate the right hand side of the above equation to obtain

_ 1
M !
1
1+ i
1+1 i
+ -
1+1
Recall that (see, e.g., [21]) ¢ —1 =10;1,1,1,...] where
1
0;1,1,1,...] = -
1+1+ 1
1
1
+ 1+---

Thus, for every ¢ > 0, we can find an integer N > 0, sufficiently large, such
that |g, — (¢ — 1)| < e. Equivalently, we have limy_ o0 gv = ¢ — 1. Another
important thing to note regarding the sequence (g, )nen (Wwith g1 in the unit
interval (0,1)) is that, the n-th term g, is either contained in the interval
[Frn/Fnt1, Fni1/Fni2) or in [Fhy1/Fnie, Fr/Fny1] (depending on the parity
of n) (cf. [6, Lemma 2.1] and [21, Lemma 5]). Noting that F,,11/F, — ¢
as n — oo, one can immediately see (possibly through Cantor’s Intersection
Theorem [22]) that g, — 1/¢ = ¢—1. It is worth mentioning that this approach
was in fact used explicitly by the author [20] to prove a more general case of
Sroysang’s conjecture (cf. Remark 3.4 above).

4. SUMMARY

We have verified affirmatively, in an alternative fashion, Sroysang’s conjec-
ture regarding the asymptotic growth rate of the so-called Fibonacci functions
(and odd Fibonacci functions) with period & > 1. The technique we have
used in proving the conjecture, which is one of the main objective of our work,
utilizes some well-known results and direct computations, using elementary
properties of classical analysis. In the proof, we have started with the trans-
formation f(z)/f(x + k) = f(§+nk)/f(§+ (n+ 1)k) =: g, with f satisfying
the functional equation f(z + 2k) = f(x + k) + f(x) for all z € R, then uti-
lized the closed-form solution of the difference equation g,11 = 1/(1+ g,). In
this approach, we first showed that the sequence (g,) converges to ¢ — 1 and
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then used this fact to arrive at the conclusion that the asymptotic exponen-
tial growth rate of Fibonacci function with period k indeed converges to the
well-known golden ratio ¢. As a remark, we have also asserted that the same
approach can be followed inductively to prove a more general case of the state-
ment. Further, it was noted that the idea behind the method used to establish
the main result can be employed to verify a similar result for odd Horadam
functions with period k& > 1. The desired result for this case, as we have re-
marked, can be achieved using a property of Horadam numbers with negative
indices combined with the solution form of the nonlinear difference equation
hnt1 = q/(=p + hy). The resulting property, in turn, validates (as a special
case) Sroysang’s second conjecture.
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