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ABSTRACT. In the present paper for two 2-module Banach algebras A and
B, we investigate relations between -2l-module approximate amenability
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1. INTRODUCTION

The notion of approximate amenable Banach algebras was introduced and
extensively studied by Ghahramani and Loy in [5]. They showed in [6] that if
A and B are approximately amenable Banach algebras and one of A or B has a
bounded approximate identity, then A & B is approximately amenable, but in
general the direct sum of two approximately amenable Banach algebras need
not be approximately amenable (see [7]).

The concept of module amenable Banach algebras was introduced by Amini
in [1], and the notion of module approximate amenable Banach algebras was
studied by Pourmahmood and Bodaghi in [15]. Recently, some authors have

Received 18 August 2015; Accepted 23 April 2016

(©2018 Academic Center for Education, Culture and Research TMU
75


http://ijmsi.com/article-1-773-en.html

[ Downloaded from ijmsi.com on 2025-11-15]

76 H. Sadeghi

studied ¢-derivations, and p-amenability of Banach algebra A, whenever ¢ is
a continuous homomorphism on A (see [8, 9, 10, 11, 12]).

The aim of the present paper is to investigate generalized approximate

amenability of A @ B.

The organization of this paper is as follows:

Section 2 is devoted to the notations and definitions which are needed through-
out the paper.

In section 3 for 2A-module Banach algebras A and B where each has a
bounded approximate identity we show that A is p-A#-module approximately
amenable and B is ¥-A#-module approximately amenable if and only if A @ B
is ¢ @ ¥-A#-module approximately amenable.

In section 4 we show that if 21 has a bounded approximately identity and
ﬁ and % are unital, then A is p-2-module approximately amenable and B
is ¥-2A-module approximately amenable if and only if A® B is ¢ ® ¥--module
approximately amenable.

2. PRELIMINARIES

Let 2l and A be Banach algebras such that A is a Banach 2[-bimodule with
compatible actions given by

a.(ab) = (a.a)b, (ab).a = a(b.cx) (a,be A, e ).

Let X be a Banach A-bimodule and a Banach 2(-bimodule with compatible left
actions defined by

a.(a.z) = (a.a).z, a.(a.z) = (a.a).z, (a.z).a=a.(z.a)

(aeAaeA zeX), (2.1)

and similar for the right or two-sided actions. Then we say that X is a Banach
A-2-module. A Banach A-2A-module X is called commutative A-2(-module,
if ax = 2.0 (@ € A,z € X). Note that in general, A dose not satisfy the
compatibility condition a.(a.b) = (a.«).b (a,b € A,a € ).

If X is a commutative Banach A-2(-module , then so is X*, where the actions
of A and 2 on X* are defined as follows

(a.f,z) = (f,z.a), (a.f,2) = (f,z.a) (a€ A,aceWA,xze X, feX"),

and similar for the right actions.

Let A and B be Banach 2(-bimodules. Then a 2-module morphism from A
to B is a norm continuous map h : A — B with h(a £ b) = h(a) £+ h(b) which
is multiplicative, that is

ha.a) = a.h(a), h(a.a) =h(a).a, h(ab) = h(a)h(b) (a € A,be B,a € ).
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We denote by Homg (A, B), the space of all such morphism and denote Homg (A, A)
by Homg (A). In the case that 2 = C, we denote Homc (A, B) by Hom(A, B) and
denote Homc (A4, A) by Hom(A).

Let X be a Banach A-bimodule and let ¢ € Homg(A). A bounded map
D: A — X is called a p-2-module derivation if

D(a+b) = D(a) + D(b), D(ab) = D(a).p(b) + ¢(a).D(b) (a,b € A), (2.2)
and
D(a.a) = a.D(a), D(a.a) = D(a).a (a € A, € ). (2.3)

Although D in general is not linear, but still its boundedness implies its
norm continuity.

Let X be a commutative Banach A-2-module. For every x € X define ad?
by adf(a) = p(a).x —z.p(a) (a € A). It is easily seen that adf is a p-2-module
derivation. A p-2-module derivation D is called y-inner if there is € X such
that D(a) = ad?(a) (a € A) and is called approximately ¢-inner if there exists
anet (r4)a € X such that D(a) = lim, adf_(a) (a € A). A Banach algebra
A is called p-2A-module amenable if for any commutative Banach A-2-module
X, each p-2-module derivation D : A — X™* is p-inner, and A is called ¢-2(-
module approximately amenable if each p-2-module derivation D : A — X*
is approximately ¢-inner (see [1, 15]).

In the case that 2 = C, ¢-2-module derivations (resp. ¢-2-module amenable
Banach algebras, ¢-2-module approximately amenable Banach algebras) are
called ¢-derivation (resp. p-amenable, p-approximately amenable) (see [9, 10]).

3. ¢ ®Y-MODULE APPROXIMATE AMENABILITY OF THE DIRECT SUM OF
BANACH ALGEBRAS

We commence this section with the following remark from [1]:

Remark 3.1. Assume that A has a bounded approximate identity (e )q, and let
Mgy (A) denotes the algebra of A-multipliers of A, that is My(A) = {(T1,T?) :
T1,T5 € Ly(A) : T1(ab) = T1(a)b, Ta(ab) = aTs(b)(a,b € A)}, where Ly(A) is
the space of all 2-module morphisms on A. Then Mgy (A) is an A-2-module and
A embeds in My (A) via a — (Lg, R,), where L, (b) = ab, Ry(b) = ba (a,b €
A). For any element T = (11, T») of My(A) it is easy to see that || T1 ||=|| T2 |
and if we put || T' || equal to this common value, then Mg (A) becomes a Banach
A-20-module, and A is dense in Mgy(A) in the strict topology.

Before proving our next proposition we note that if ¢ € Homg (A), then by
continuity of ¢ in the strict topology, it can be extended to an 2-homomorphism
(,5 : MQ[(A) — MQ[(A) defined by @(La, Ra) = (Ltp(a)v ch(a))'
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Proposition 3.2. Let A be an 2A-module Banach algebra with a bounded ap-
prozimate identity (eq)qa, and let @ € Homg (A). Then A is p-A-module approx-
imately amenable if and only if My (A) is p-A-module approzimately amenable.

Proof. Let My (A) be @-2-module approximately amenable and let D : A —
X* be a p-2A-module derivation for some commutative Banach A-2-module X.
Then by the following actions

T.x =limTi(ey).x, 2.T =limz.Th(e,) (x € X, T = (T1,Tz) € My(A)),
(03 «

X is a commutative Banach Mg (A)-2-module and by continuity of D in the
strict topology, it can be extended to a bounded @-2-derivation D : My (A) —
X*, defined by D(Lg, Ry) = D(a). From the ¢-2-module approximate amenabil-
ity of Mgy(A), it follows that there exists a net (z%)s C X™ such that

D(T) = lién (@(T).xfy — x5.0(T)).

Hence for every a € A we have

D(a) = D(Lq, Ry) = hﬂm( @(La, Ra).xh — 25.3(La, Ra))
= lim ((Le(a), Ro()-Th = 75 (Lo, Rota))
= hén (th y(ea)-Th — 11m335 R0y (€a))

llén (¢(a).aly — x5.0(a)).

This means that D is approximately (p-inner and so A is p-2-module approxi-
mately amenable.

Conversely, Suppose that A is @-2-module approximately amenable. Let X
be a commutative Banach My (A)-A-module and let D : My(A) — X™* be a
@-A-module derivation. We consider the module actions of A on X by

a.x = (Lg,Ry).z, .0 =2.(Ly,R,) (a € A,z € X). (3.1)

Thus X is a commutative Banach A-2-module. Define D : A — X* by
D(a) = D(La, Ra) (a € A). Tt is easy to see that D is a ¢-2-module derivation
and from the p-2-module approximate amenability of A, it follows that there
exists a net (z)s C X* such that

D(a) = lién (pla).xy — zj5.0(a)) (a € A).
Then D(Lq, Ry) = limg (¢(La, Ro).awf —25.4(La, R.)). Now by the continuity
of D and ¢, and density of A in Mgy (A) in the strict topology, we conclude that
D(T) = 1ién (@(T).xfy — a5.@(T)) (T € My(A)).

So D is a approximately @-inner. Therefore Mg (A) is ¢-2-module approxi-
mately amenable. (I
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Let I be a closed ideal of a Banach algebra A with a bounded approximate
identity (eq)a, and let X be a commutative Banach I-2-module. Let ¢ €
Homgy (A) be such that ¢ |;C I, then X is a commutative Banach A-2(-module
with the following actions

a.x =limp(ey)a.x, z.a=limz.ple,)a (a€ A xe X). (3.2)

Proposition 3.3. Let I be a closed ideal of an A-module Banach algebra A
which has a bounded approximate identity {en}, and let I be A-invariant, i.e.
A.7 C 1. Let ¢ € Homy(A) be such that ¢ |1C 1. If A is p-A-module approxi-
mately amenable, then I is ¢ |1-A-module approzimately amenable.

Proof. Let X be a commutative Banach My (I)-A-module, and D : My (I) —
X* be a p-2A-module derivation. By the same actions as (3.1), we can consider
X as a commutative Banach I-2(-module. So, by (3.2), X is a commutative
Banach A-2-module. By definition of My (T), there is an 2-module morphism
h: A — My(I) and Doh is a module derivation on A, so it is approximately -
inner. Hence D is approximately ¢-inner. Since I has a bounded approximate
identity, by Proposition 3.2, I is ¢ |;-2-module approximately amenable. [

Let A and B be 2-module Banach algebras. It is well known that A & B,
the {!-direct sum of A and B, is a Banach algebra with respect to the canonical
multiplication defined by (a,b)(c,d) := (ac,bd), and is a Banach 2-bimodule
by the following actions

a.(a,b) := (a.a,a.b), (a,b).a:= (a.a,b.a) (a € A,a € A,b € B).

We note that if ¢ € Homg (A) and ¢ € Homg((B), then o®¢ : A OB — A®B
defined by ¢ @ 1 (a,b) = (p(a),1(b)) is an A-morphism on A & B.

Lemma 3.4. Let A be a unital A-module Banach algebra, ¢ € Homg(A), and
let D: A — X* be a p-2A-module derivation for some commutative Banach
A-A-module X. If the left (resp. right, two-sided) action of ¢(A) on X* is
zero, then D is p-inner.

Proof. Let es be the identity of A and let the left (resp. right, two-sided)
action of p(A) on X* is zero. We can easily show that D = ade(e) (resp.

D= ad%(e), D =0). So D is e-inner. O

The proof of the following proposition is adopted from that of Proposition
2.7 of [5].

Proposition 3.5. Let A and B be unital -module Banach algebras with iden-
tities e4 and ep, respectively, and let ¢ € Homy (A) and i) € Homg(B) such that
plea).a = a.plea), and Y(ep).a = ab(eg) (o € A). If A is p-A-module
approximately amenable and B is ¥-A-module approximately amenable, then
A® B is ¢ @ p--module approzimately amenable.
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Proof. Let X be a commutative Banach A @& B-2-module and let D : A ®
B — X* be a ¢ @ ¢-A-module derivation. Write Y1 = p(e4). X*.p(ea), Y2 =
Plep). X*Y(ep), Ys = plea) X*(ep), Ya = d(en). X" .plea), Y5 = (1~
Lp(eA)) (1 — w(eB)).X*.ap(eA), Y = (1 — gp(eA)) (1 — ’(/}(63)).)(*.’(/}(63) Y, =
plea) X*.(1—p(en)) (1-(en)), Ys = t(en)-X*. (1=p(ea)) (1—t(en)), Yo =
(1—(ea))(1—v(ep)).X*.(1 —¢(ea)) (1 —v(ep)) and let 7; : X* — Y; be
the associated projections. Thus X* = Y10 Yo Y38 Y, @YsBYsBY7 B Ys DY,
Consider the derivations D; = mj0 D, s0o D = Dy + Dy + D3 + Dy + D5 +
Dg + D7 + Dg + Dg. From the fact that p(es).a = a.p(es) (a € ), and
Y(ep).c = ap(ep) (o € A), one can easily check that ¥; for j =1,...,91is a
commutative Banach A @® B-2-module. Since the action of p(A4) ®(B) on (at
least) one side on Y; (resp. Y, Y7, Ys, Yy) is zero, by Lemma 3.4, we conclude
that D5 (resp. Dg, D7, Ds, Dy ) is approximately ¢ @ -inner.

From the ¢-2-module approximate amenability of A, it follows that the
» ® YP-A-module derivation AP0 — p(ea).X*.p(ea) is approximately ¢ P -
inner and since the action of 0 ) (B) on p(ea). X *.¢(ea) is zero, we conclude
that D, is approximately ¢ @1-inner. Similarly, the ¢ ®-2A-module derivation
Dy : A® B — ¢(ep). X*.9(ep) is approximately ¢ & 1)-inner.

The right action of ¢(A) @0 on p(es).X*.4(ep) is zero. Hence, by Lemma
3.4, D3 |a@o is ¢ @ t-inner. So there exists & € p(ea).X*.1p(ep) such that

Ds |ago (a,0) = ¢(a).6 — £p(a) = (p(a), ¥ (b)) plea) £1)(ep),

for every @ € A and b € B. Similarly, there exists n € @(e4).X*.1)(eg) such
that

D loas (0,0) = 1(b).n — 0. (b) = —¢(ea).n-v(er)(¢(a), (b)),
for every a € A and b € B. Hence
Ds(a,b) = (¢(a), (b)) p(ea) £ (en) — plea)ni(es)(p(a), (D).
Since D3(ea,ep) = 0, it follows that

0= Ds(ea,ep) = p(ea) £4(e) — w(ea)n-y(en).
Then for every a € A and b € B, we have

Ds(a,b) = (#(a), (b)) p(ea) £ (en) — plea)£a(en) (pla), B(b)).

Thus D3 is ¢ @ t-inner. The same argument holds for the ¢ @ 1-2-module
derivation Dy : A ® B — t(ep).X*.¢(ea). Therefore D is approximately
@ @ 1-inner, and so A @ B is ¢ @ ¥-A-module approximately amenable. (]

Lemma 3.6. Let A and B be 2A-module Banach algebras, ¢ € Homg(A) and
1 € Homg((B). If there is a h in Homg (A, B) such that h o = 1 o h and the
range of h is a dense subset of B, then @-A-module approxrimate amenability
of A implies ¥-A-module approximate amenability of B.
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Proof. Let D : B — X* be a 1-2l-module derivation for some commutative
Banach B-2-module X. Then by the following actions

aex =h(a)x, rea=uxh(a) (a€e Az e X),

X is a commutative Banach A-Q-module. Let D = Doh : A — X*. One
can easily prove that D is a ¢-2-module derivation. From the ¢-2(-module
approximate amenability of A, it follows that there exists a net (z%), in X*
such that D(a) = lim, (¢(a) @z}, — x7, @ p(a)) (a € A). Now continuity and
density of h(A) in B, imply that D is approximately ¢-inner. Therefore B is
1-2A-module approximately amenable. O

Proposition 3.7. Let A and B be A-module Banach algebras, ¢ € Homg(A)
and 1 € Homy(B). If A is not p-2-module approrimately amenable or B is
not Y-2A-module approzimately amenable, then A ® B is not ¢ @& ¥-2A-module
approximately amenable.

Proof. Suppose that A is not ¢-20-module approximately amenable. The pro-
jection map 7 : A @ B — A determines an 2-module epimorphism of A & B
onto A such that o (¢ @) = pom. So, if A® B is ¢ @ ¢-A-module ap-
proximately amenable, then by Lemma 3.6, A is p-2-module approximately
amenable. This contradicts the fact that A is not p-2-module approximately
amenable. Therefore A @ B is not ¢ @ ¥-2A-module approximately amenable.

Similarly, we can prove the result for B. O

Let 2 be a non-unital Banach algebra. Then 2A# = @& C, the unitization
of 2 is a unital Banach algebra which contains 2 as a closed ideal. Let A
be a Banach 2-bimodule. Then A is a Banach 2A#-module with the following
module actions:

(a, N).a =a.a+ Aa, a.(,\) =a.a+da (A€ C,acAac A).
Let A* = (A @© 2%, o), where the multiplication e is defined through
(a,u) o (b,v) = (ab+ a.v +u.b,uv) (a,b € A,u,v € A*).
Then with the actions defined by
u.(a,v) = (v.a,w), (a,v).u = (a.u,vu) (a € A,u,v € AF),

At is a unital 2#-module Banach algebra with the identity 14: = (0, g% ) (see
).

Before we turn to our next result we note that if for every ¢ € Homgx (4),
one defines ¥ : A* — A* by ¢*(a,u) = (¢(a),u) ((a,u) € A¥), then ¢ €
Homg# (A).

The following proposition generalizes Proposition 2.7 of [5].

Theorem 3.8. Let A and B be 2A-module Banach algebras and each has a
bounded approximate identity. Let p € Homgs (A) and 1 € Homg# (B). Then A


http://ijmsi.com/article-1-773-en.html

[ Downloaded from ijmsi.com on 2025-11-15]

82 H. Sadeghi

is - A# -module approzimately amenable and B is 1-A% -module approzimately
amenable if and only if A® B is o © ¥-A7 -module approximately amenable.

Proof. Suppose that A is ¢-2A#-module approximately amenable and B is -
2#-module approximately amenable. By Proposition 12 of [13], A% is -
2A#-module approximately amenable and B¥ is ¥*-2#-module approximately
amenable, so by Proposition 3.5, A% @ B! is ¢ @ ¢f-A#-module approximately
amenable. Since A @ B is a closed A#-invariant ideal in A* @ B*, the result
follows from Proposition 3.3.

For the converse, suppose that A @ B is ¢ & ¢-A#-module approximately
amenable. Then by Proposition 3.7, A is ¢-2A#-module approximately amenable
and B is ¢-2%-module approximately amenable. (I

4. ¢ @ 1Y-MODULE APPROXIMATE AMENABILITY AND ¢ @ 9-AMENABILITY
OF DIRECT SUM OF BANACH ALGEBRAS

We start this section with the following definition:

Definition 4.1. We say the Banach algebra 2l acts trivially on A from the left
(right) if for every a € 2 and a € A, a.a = f(a)a (resp. a.a = f(a)a), where
f is a multiplicative linear functional on 2.

We assume that J4 o is the closed linear span of
{(a.@)b—a(a.b) |a €U ,a,be A},

in A. It follows immediately that J4 o is both A-submodule and 2A-submodule
of A. So ﬁ is both Banach A-module and 2l-module (see page 346 of [14]).
To prove our next result we need to quote the following lemma from [2].

Lemma 4.2. Let A be a Banach algebra and Banach 2A-module with compatible
actions, and Jy be a closed ideal of A such that Ja o C Jo. If J% has a left or

right identity e + Jy, then for each a € A and a € A we have a.a — a.a € Jy,
i.e, % is commutative Banach 2A-module.

Before we turn to our next result we note that if for every ¢ € Homg(A), one

defines @ : ﬁ — A by B(a+ Jan) = p(a) + Jaa, then B € Homy (+2-).

Ja, Jaa

Theorem 4.3. Let A and B be A-module Banach algebras and let ¢ € Homg (A)
and ¥ € Homg (B). Then the following statements are valid:
(i) A®B is p@yY-A-module amenable (resp. pDw-A-module approximately

amenable) if and only if J:lm &) % is @ p-A-module amenable (resp.

P @ Y-A-module approzimately amenable).
(ii) Let A acts on A and B trivially from the left by f € Homc(21). Suppose
that ﬁ and % are unital, and AP B is ¢ & Y-A-module amenable

(resp. @ @ Y-A-module approrimately amenable), then ﬁ @ _]fm 18

P @® -amenable (resp. P ® Y-approzimately amenable).
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is PB Y-
amenable (resp. @ p-approzimately amenable). Then AD B is o $1-
A-module amenable (resp. o @ ¥-A-module approzimately amenable).

(iii) Let A have a bounded approzimately identity and me &)

B
JB,

Proof. (i) Let A® B be ¢ @®1p-2-module amenable, and let D : @ JB - —
X* be % @ 1)-A-module derivation for some commutative Banach Tia® JB .

2A-module X. Then X becomes a A® B-bimodule through the followmg actions

(a,0).2 :=(a+ Jaa, b+ Jpa)zx (a€ Abe B,z e X), (4.1)
and
z.(a,b) :=z.(a+ Jag,b+Jpa) (a € Abe B,z € X). (4.2)
Hence X is a commutative Banach A @ B-2-module. Define D : A® B — X*
by
D(a,b) = D(a+ Jas,b+ Jpa) (a € A,b € B).

It is easy to check that, Disa @ @ Y-A-module derivation. From the ¢ & -
2A-module amenability of A @ B, it follows that there exists x* € X* such
that

D(a,b) = o ®(a,b).z* —z*.0 ®(a,b) (a € A,b€E B).

Thus
D(a+ Jas,b+Jp2) =2@v(a+ Jaa, b+ Jpa)a*
—z*p@va+ Jaa, b+ Jpa).
Ba is P @ ¥-A-module
amenable.
Conversely, s is B @ 1-A-module amenable. Let

D:A®B — X*beay EB 1/1 2-module derivation for some commutative
Banach A @ B-2l-module X. We consider the following module actions of
on X,

(a+ Jau, b+ Jpa)x:=(a,b).z, z.(a+ Jan,b+ Jpa):=2x.(a,b),

for all a € A,b € B and z € X. Using (2.1) and the commutativity of X,
we have JAQ[X—JBQ(X XJAQ[—XJBQI—O Thus (JAQ{EBJBQOX—
X(Jaa® JB g[) = O So X is a commutative Banach - A —2[ module.

Define D :

— X* by

D(a+JA791,b+JB,Q[)=D(a,,b) (a€e A,be B).

Also using (2.2) and (2.3) we see that D vanishes on Ja o @ Jpo. Hence D
is well defined. One can easily check that D is a % ® v-A-module derivation.
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Now from the @ @ ¢--module amenability of me @ %, it follows that there
exists * € X* such that '

D(a+ Jag,b+Jpa) =F@d(a+ Jas,b+ Jpa)a”
— x*.@@@(a +Jas, b+ JB,Ql) (a e Abe B)

It follows that
D(a,b) = o ®Y(a,b).z" —z".0o DY(a,b) (a € A, b€ B).

Thus D is ¢ @ y-inner. So A ® B is ¢ @ 1p-2A-module amenable.

Similarly, we can show that A® B is p®1-A-module approximately amenable

A B
53]

Ja

(ii) Let A® B be ¢ @ 1-A-module amenable and let D : A B __, X+

Ja JB 2

be a derivation for some Banach ﬁ ® J]fm -bimodule X. Then X becomes a

A® B-bimodule through the actions as (4.1) and (4.2). Also X is an 2-bimodule
with f-trivial actions, that is

is @ @ 1-A-module approximately amenable.

if and only if

JB,2

ar=za=fla)r (@A v X).

Then X is a commutative Banach A @& B-2-module. Define

o AeB A B
T Jaa I

R (a,b)+]r—> (a+JA7Q[,b+JB’Q[)7

where I = Jq o @ Jp . It is routinely checked that I' defines an 2-bimodule
morphism. Let II: AB — AE'%B be the quotient map, and let D := Dol'oll :
A® B — X*. For every (a,b),(a’,b') € A® B, we may easily prove that

l~)((a, b)(a’,b')) = D(a,b).o ®¢(d', V) + ¢ & ¢(a,b).D(d’,b'),

and for every (a,b) € A® B, and a € 2 , we have

D(a.(a,b)) - D((a.a,a.b)) - D(( f(a)a, f(a)b))
= D((f(@)a+ Jaz, F(@)b+ Jp.a)
= (f(a)(a +Jag b+ JB,QL))
= f(@)D((a+ Taab+ Tn.)

= a.D((a —+ JA7Q[7 b+ JB,Ql))
= a.D(a,b),
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and using Lemma 4.2, we have
D((a, b).a) - D((a.a, b.a)) - D((a.a + Jaa, bt JB,QL))
= D((0at Jag.ab+ Jpa))
= D(f(@)(a+ Jazb+ Jza))
- f(a)D((a 4 Jaa b+ JB,m))
= D((a + Jasa, b+ JB,m)).a
= D(a,b).c.

Thus D is a ¢ ®-2A-module derivation and from the p@&1-A-module amenabil-
ity of A @ B, it follows that there exists * € X* such that

D(a,b) = o ® (a,b).z* —z*.0 ®1(a,b) (a € A,b€E B).
It follows that
D(a+ Jag,b+Jpa) =p@&P(a+ Jaa,b+ Jpa)a*
—2*peY(a+Jax,b+ Jpa)
So D is @ @ 1/-inner. Therefore - ®

is @ @ 1-amenable.

JB 2

(iii) Suppose that J = @ is B @ 1-amenable. Since 2 has a bounded

JBA

approximate identity, by Proposition 2.1 of [1], we conclude that ﬁ S2l
is % @ 1-2-module amenable. So by (i), A ® B is ¢ @ ¥-A-module amenable.
Similar relations can be obtained between the ¢ @ 1-2- module approximate

amenability of A @ B and % @ vy-approximate amenability of <) O

JA 2 JB o’

Proposition 4.4. Let A be an A-module Banach algebra, where 2 acts on A
trivially from the left by f € Homc(2A). Let ¢ € Homg(A) and ﬁ be uni-
tal. If A is o-A-module approximately amenable, then ﬁ s p-approrimately
amenable.

Proof. Let X be a Banach ——brmodule and D : ﬁ — X* be a -

derivation. Then X becomes a A bimodule through the following actions
ar=(a+Jan)r, v.o=z(a+Jaa) (a€dzeX),

and X is an 2-bimodule with f-trivial actions, that is c.z = z.a = f(a)x (a €
20,z € X). By Lemma 4.2, f(a)a —a.c € Jag (0 € A,a € A). So, f(a)a +
Jag = aa+ Jag (a € Aa € A), and the actions of A and A on X are
compatible. Thus X is a commutative Banach A-2-module. Let D:A—s X*
be defined by D(a) = D(a + Jas) (a € A). A similar argument as in the
proof of Theorem 3.2 of [2], shows that D is approximately o-inner. So, D is

approximately p-inner. Therefore ﬁ is p-approximately amenable. O
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Theorem 4.5. Let 2 have a bounded approrimate identity, and let A and
B be A-module Banach algebras, where 2 acts on A and B trivially from the
left. Let ¢ € Homg(A), ¢ € Homy(B), and let % and % be unital. Then
A is o-A-module approrimately amenable and B is ¥-A-module approzimately
amenable if and only if A® B is ¢ ® Y-2A-module approximately amenable.

Proof. Suppose that A is p-2-module approximately amenable and B is -

2A-module approximately amenable. By Proposition 4.4, %

and Ji are
2 B,

P-approximately amenable and v-approximately amenable, respectively. Now
by using Proposition 3.5 for 2l = C, we conclude that % @ % is @ ® Y-
approximately amenable. So, Theorem 4.3, implies that A ® B is ¢ & ¢-2-
module approximately amenable.

Conversely, suppose that A® B is ¢ @ 1-A-module approximately amenable.
Then by Proposition 3.7, A is ¢-2-module approximately amenable and B is
1-2A-module approximately amenable. O
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