Iranian Journal of Mathematical Sciences and Informatics

Vol. 13, No. 1 (2018), pp 67-73 DOI: 10.7508/ijmsi.2018.1.006

A Graphical Characterization for SPAP-Rings

Esmaeil Rostami

Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: e_rostami@uk.ac.ir

ABSTRACT. Let R be a commutative ring and I an ideal of R. The zero-divisor graph of R with respect to I, denoted by $\Gamma_I(R)$, is the simple graph whose vertex set is $\{x \in R \setminus I \mid xy \in I, \text{ for some } y \in R \setminus I\}$, with two distinct vertices x and y are adjacent if and only if $xy \in I$. In this paper, we state a relation between zero-divisor graph of R with respect to an ideal and almost prime ideals of R. We then use this result to give a graphical characterization for SPAP-rings.

Keywords: SPAP-ring, Almost prime ideal, Zero-divisor graph with respect to an ideal.

2000 Mathematics subject classification: 13A25, 05C17.

1. Introduction

Throughout this paper, all rings are assumed to be commutative with identity. A graph (simple graph) G is an ordered pair of disjoint sets (V, E) such that V = V(G) is the vertex set of G and E = E(G) is its edge set. A graph F is called a subgraph of a graph G if $V(F) \subseteq V(G)$ and $E(F) \subseteq E(G)$. A subgraph F of G is said to be an induced subgraph of G if each edge of G having its ends in V(F) is also an edge of F. A graph in which each pair of distinct vertices is joined by an edge is called complete.

There have been several studies concerning the assignment a graph to a ring, a group, a semigroup or a module, for more information see [1], [8] and [12]. The

Received 5 August 2015; Accepted 28 June 2016 ©2018 Academic Center for Education, Culture and Research TMU

68 E. Rostami

concept of the zero-divisor graph of a commutative ring R was first introduced by Beck [6]. The zero-divisor graph of a commutative ring R is defined to be the graph $\Gamma(R)$, whose vertices are the non-zero zero-divisors of R, and where x is adjacent to y if xy = 0. In [10] Redmond has generalized the notion of the zero-divisor graph. For a given ideal I of a commutative ring R, he defined the zero-divisor graph of R with respect to I, denoted by $\Gamma_I(R)$, is the simple graph whose vertex set is $\{x \in R \setminus I \mid xy \in I, \text{ for some } y \in R \setminus I\}$, with two distinct vertices x and y joined by an edge when $xy \in I$. Clearly $\Gamma_0(R) = \Gamma(R)$. Bhatwadekar and Sharma [7] defined a proper ideal I of an integral domain Rto be almost prime if for $a, b \in R$, $ab \in I \setminus I^2$, then either $a \in I$ or $b \in I$. Anderson and Bataineh [3], use this definition for an arbitrary commutative ring and stated a necessary and sufficient condition for a commutative Noetherin ring under which every proper ideal of R is a product of almost prime ideals. Then Rostami and Nekooei [11], considered SPAP-rings and characterized the structure of SPAP-rings, in special cases. Also, they showed that SPAP-rings are quasi – Frobenius (a Noetherian self-injective ring), and SPAP-rings are an applicative class of rings in Coding Theory, for more information see [11]. In the next section, we state a relation between zero-divisor graph with respect to an ideal of R and almost prime ideals of R. Then we state the concept of the intersection graph of ideals of R, and we give a graphical characterization for SPAP-rings.

2. Main Results

A proper ideal I in a ring R is called almost prime if for all $a, b \in R$, $ab \in I \setminus I^2$ either $a \in I$ or $b \in I$. Also, a proper ideal I of a ring R is called weakly prime if for all $a, b \in R$ with $0 \neq ab \in I$, either $a \in I$ or $b \in I$. Clearly, every weakly prime ideal is almost prime. The following lemma which plays an important role in this paper gives a graphical characterization for almost prime ideals.

Lemma 2.1. Let I be a proper ideal of R. Then I is an almost prime ideal of R if and only if $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$.

Proof. Let I be an almost prime ideal of R and $x \in V(\Gamma_I(R))$, then $x \in R \setminus I$, and there exists $y \in R \setminus I$ such that $xy \in I$. Thus $x, y \notin I^2$. Now if $xy \notin I^2$, then we have $xy \in I \setminus I^2$, this gives $x \in I$ or $y \in I$, a contradiction. Thus $xy \in I^2$, and so $x \in V(\Gamma_{I^2}(R))$. Now let $x, y \in V(\Gamma_I(R))$ be adjacent in $\Gamma_I(R)$, so $xy \in I$, if $xy \notin I^2$, then we have $xy \in I \setminus I^2$, this gives $x \in I$ or $y \in I$, a contradiction. Therefore, x and y are adjacent in $\Gamma_{I^2}(R)$. Thus $E(\Gamma_I(R)) \subseteq E(\Gamma_{I^2}(R))$. Clearly, each edge of $\Gamma_{I^2}(R)$ having its ends in $\Gamma_I(R)$ is also an edge of $\Gamma_I(R)$. Therefore, $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$. Conversely, let $\Gamma_I(R)$ be an induced subgraph of $\Gamma_{I^2}(R)$ and $ab \in I \setminus I^2$, if

 $a, b \notin I$ then, a and b are adjacent in $\Gamma_I(R)$ and so a and b are adjacent in $\Gamma_{I^2}(R)$, thus $ab \in I^2$, a contradiction. Therefore, either $a \in I$ or $b \in I$.

The following lemma is a similar result for weakly prime ideals.

Lemma 2.2. Let I be a proper ideal of R. Then I is a weakly prime ideal of R if and only if $\Gamma_I(R)$ is an induced subgraph of $\Gamma(R)$.

Proof. Let I be a weakly prime ideal of R and $x \in V(\Gamma_I(R))$. Then $x \in R \setminus I$, and there exists $y \in R \setminus I$ such that $xy \in I$. If $xy \neq 0$, we have $0 \neq xy \in I$, this gives $x \in I$ or $y \in I$, a contradiction. Thus xy = 0, and so $x \in V(\Gamma(R))$. Now, let $x, y \in V(\Gamma_I(R))$ be adjacent in $\Gamma_I(R)$, thus $xy \in I$. Repeating the previous argument leads to xy = 0. Hence x, y are adjacent in $\Gamma(R)$. Clearly, each edge of $\Gamma(R)$ having its ends in $\Gamma_I(R)$ is also an edge of $\Gamma_I(R)$. Therefore $\Gamma_I(R)$ is an induced subgraph of $\Gamma(R)$. Conversely, let $\Gamma_I(R)$ be an induced subgraph of $\Gamma(R)$ and $0 \neq ab \in I$ for $a, b \in R$, if $a \notin I$ and $b \notin I$ then, a and b are adjacent in $\Gamma_I(R)$, thus a and b are adjacent in $\Gamma(R)$. This gives ab = 0, a contradiction. Thus either $a \in I$ or $b \in I$.

Lemma 2.3. Let I be a proper ideal of R. Then I is a prime ideal of R if and only if $\Gamma_I(R) = \emptyset$.

Proof. The proof is straightforward.

Now let I be a prime ideal of R. Thus $\Gamma_I(R) = \emptyset$ and so $\Gamma_I(R) = \emptyset$ is an induced subgraph of $\Gamma_{I^2}(R)$ and $\Gamma(R)$, this is a graphical verification for the fact that "prime ideals are almost prime and weakly prime".

Definition 2.4. A local ring (R, m) is called special product of almost prime ideals ring (SPAP-ring), if for each $x \in m \setminus m^2$, $< x^2 >= m^2$ and $m^3 = 0$.

SPAP-rings were first introduced in [3] by D. D. Anderson and M. Bataineh. In [3], D. D. Anderson and M. Bataineh used SPAP-rings to characteriz Noetherian rings whose proper ideals are a product of almost prime ideals. In general, an SPAP-ring is not Noetherian, see [3, Example 20]. For an SPAP-ring (R, m), m is the unique prime ideal of R, thus R is a Noetherian ring if and only if R is an Artinian ring if and only if R is a finitely generated ideal of R.

Before proceeding, we mention the definition of the intersection graph of ideals of a ring which helps us to give a characterization for SPAP-rings.

Definition 2.5. Let R be a ring, the intersection graph of ideals of R, denoted by G(R), is the graph whose vertices are proper non-trivial ideals of R and two distinct vertices are adjacent if and only if the corresponding ideals of R have a non-trivial (non-zero)intersection.

70 E. Rostami

Lemma 2.6. [5, Theorem 2.11.] Let (R, m) be an Artinian local ring. Then the intersection graph of ideals of R is complete if and only if R has a unique minimal ideal.

For more information about intersection graph of ideals of R, see [2, 5]. In the remainder of this section, we characterize Artinian local rings which $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$ for all non-minimal ideals I of R, and the intersection graph of ideal of R is complete.

Lemma 2.7. Let (R,m) be an Artinian local ring and $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R. Then m^2 is a minimal ideal of R or $m^2 = 0$.

Proof. Let m^2 be a non-minimal ideal of R. Then by Lemma 2.1, m^2 is an almost prime ideal of R. We show that m^2 must be zero in this case. For this purpose, we show that $m^2 = m^3 = m^4$ and the Nakayama's Lemma gives $m^2 = 0$. If for all $x, y \in m$, $xy \in m^4$, we have $m^2 \subseteq m^4$, thus $m^2 = m^3 = m^4$. Now let there exist $x, y \in m$ such that $xy \notin m^4$, so $xy \in m^2 \setminus m^4 = m^2 \setminus (m^2)^2$, since m^2 is almost prime, only one of the following cases happens;

 $x \in m^2$ and $y \notin m^2$ or $x \notin m^2$ and $y \in m^2$. Suppose $x \in m^2$ and $y \notin m^2$. Since $y^2 \in m^2$, $y \notin m^2$ and m^2 is almost prime, we must have $y^2 \in m^4$. Repeating the previous argument and $y, x + y \notin m^2$ and $y(x + y) \in m^2$ leads to $y(x + y) \in m^4$. Thus $xy + y^2 = y(x + y), y^2 \in m^4$, so $xy \in m^4$, a contradiction. Thus m^2 is zero or a minimal ideal.

Now we mention the definition of a class of rings which are important in the rest of this paper.

Definition 2.8. A commutative ring R is called special principal ideal ring (SPIR), if it is a principal ideal ring with unique prime ideal and that prime ideal is nilpotent.

Mori [9] has shown that a ring has the property that every ideal is a product of prime ideals if and only if it is a finite direct product of Dedekind domains and special principal ideal rings (SPIRs) (For more information about special principal ideal ring see [9]). In the next lemma, we state a relation between SPAP-rings and SPIR rings.

Lemma 2.9. Let (R, m) be an SPIR ring such that $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I and m^2 is the unique minimal ideal of R. Then (R, m) is an SPAP-ring.

Proof. Since R is an SPIR ring, $m = \langle x \rangle$ for some $x \in m$. Now let $0 \neq J \neq m^2$ be an ideal of R. If $J = J^2$, Nakayama's Lemma gives J = 0, a contradiction. So $J \neq J^2$, thus we can select $y \in J \setminus J^2 \subseteq m$ such that $J = \langle y \rangle$. Thus $y = rx \in J \setminus J^2$, for some $r \in R$. Since $J \neq m^2$, Lemma

2.1 gives J is an almost prime ideal of R and since $y = rx \in J \setminus J^2$, we have $x \in J$ or $r \in J$. If $x \in J$, then J = m and if $r \in J \subseteq m$, then we have $J = \langle y \rangle = \langle rx \rangle \subseteq m^2$ and since m^2 is the unique minimal ideal of R, J = 0 or $J = m^2$, a contradiction. This means, the set of all ideals of R is $\{0, m^2, m, R\}$.

Now if $m=m^2$, we have m=0, a contradiction. Thus $m\neq m^2$. If $a\in m\setminus m^2$, since the set of all ideals of R is $\{0,m^2,m,R\}$, we have m=< a>, so $m^2=< a^2>$. Now if $m^3\neq 0$, we have $m^2=m^3$, and Nakayama's Lemma gives m=0, a contradiction. Thus $m^3=0$. This completes the proof.

D. D. Anderson and M. Bataineh in [3], by using SPAP-rings, characterized Noetherian rings whose proper ideals are a product of almost prime ideals. Actually, they stated the following theorem.

Theorem 2.10. [3, Theorem 22]. Let R be a Noetherian ring. Then every proper ideal of R is a product of almost prime ideals if and only if R is a finite direct product of Dedekind domains, SPIRs, and (Noetherian) SPAP-rings.

Proposition 2.11. Let (R, m) be an Artinian local ring such that $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R and the intersection graph of ideal of R is complete. If $m^2 \neq 0$ then R is an SPAP-ring.

Proof. Since the intersection graph of ideals of R is complete, by Lemma 2.6, R has a unique minimal ideal. Since $m^2 \neq 0$, Lemma 2.7 gives, m^2 is the unique minimal ideal of R. Now let I be an arbitrary proper ideal of R, if I is a non-minimal ideal of R, then $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, so I is an almost prime ideal of R, by Lemma 2.1, and if I is a minimal ideal of R, then $I = m^2$. Therefore, in all cases I is finite product of almost prime ideals (note that m is prime and so is almost prime), thus by Theorem 2.10, R is a finite direct product of Dedekind domains, SPIR rings, and SPAP-rings. Since R is a local ring, this direct product must have a single ring. Let R be a Dedekind domain. Since m^2 is a minimal ideal of R, we have $m^3 = 0$

An R-module M is said to be a multiplication R-module if for each submodule N of M there exists an ideal I of R such that N = IM. Clearly, every cyclic module is multiplication module, see [4] for more information. After stating the main result, we require the following three lemmas.

or $m^2 = m^3$, in both cases, we have $m^2 = 0$. Thus R is not a Dedekind domain

and Lemma 2.9, completes the proof.

Lemma 2.12. Let (R, m) be an SPAP-ring. If $m^2 \neq 0$, then m^2 is a minimal ideal of R.

Proof. If $m=m^2$, then $m^2=m^3=0$, a contradiction. Therefore $m\neq m^2$, thus there exists $y\in m\setminus m^2$. So $m^2=< y^2>$. Therefore, m^2 is a cyclic R-module and so it is a multiplication R-module. Now if J is a submodule (ideal of R) of m^2 , there exists an ideal K of R, such that $J=Km^2$. If K=R, then $J=m^2$ and if $K\neq R$ then $J=Km^2\subseteq m^3=0$, hence J=0. Therefore m^2 is a minimal ideal of R.

Lemma 2.13. Let (R, m) be an SPAP-ring. If $m^2 \neq 0$ and I is a proper ideal of R, then I = 0 or $I = m^2$ or $I^2 = m^2$.

Proof. Since $m^2 \neq 0$, by Lemma 2.12, m^2 is a minimal ideal of R. Now let I be a proper ideal of (R, m). If $I \subseteq m^2$, then I = 0 or $I = m^2$. If $I \nsubseteq m^2$, then there exists $y \in I \setminus m^2$. So $m^2 = \langle y^2 \rangle$, hence $m^2 = \langle y^2 \rangle \subseteq I^2 \subseteq m^2$. Thus $I^2 = m^2$.

By combining the above two lemmas, we have the following lemma.

Lemma 2.14. Let (R, m) be an SPAP-ring. If $m^2 \neq 0$, then m^2 is the unique minimal ideal of R.

Now we can state the main result of this paper.

Theorem 2.15. Let (R, m) be an Artinian local ring with $m^2 \neq 0$. Then $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R and the intersection graph of ideals of R is complete if and only if R is an SPAP-ring.

Proof. Let R be an SPAP-ring by Lemma 2.14, m^2 is the unique minimal ideal of R, so by Lemma 2.6, the intersection graph of ideals of R is complete. Now let I be a proper ideal of R, Lemma 2.13 gives I = 0 or $I = m^2$ or $I^2 = m^2$. If I is a non-zero non-minimal ideal of R and $ab \in I \setminus I^2$, for $a, b \in R$, then $ab \notin I^2 = m^2$, so a or b is not in m, thus a or b is unit. Thus a or b must be in I. This shows that I is an almost prime ideal of R. Hence, by Lemma 2.1, $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$. In general, the zero ideal is an almost prime of R. Thus every non-minimal ideal of R is almost prime and so $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R. The converse of theorem is valid by Proposition 2.11.

EXAMPLE 2.16. Let k be an ordered field. Then for a non-empty set $\{x_{\alpha}\}_{\alpha\in\Delta}$ of indeterminates. Define $R=k[[\{x_{\alpha}\}_{\alpha\in\Lambda}]],\ m=<\{x_{\alpha}\}_{\alpha\in\Delta}>,\ \text{and}\ J=<\{x_{\alpha}x_{\beta},x_{\alpha}^2-x_{\beta}^2\}_{\alpha\neq\beta},\{x_{\alpha}^3\}_{\alpha}>.$ Let $\overline{R}=\frac{R}{J}.$ Then \overline{R} is an SPAP-ring with $\overline{m}^2\neq 0$ and \overline{m} is not principal for $|\Delta|>1$, see [3, Example 20]. If Δ is a finite set, then \overline{R} is a Noethrian SPAP-ring with $\overline{m}^2\neq 0$, and thus $\Gamma_{\overline{I}}(\overline{R})$ is an induced subgraph of $\Gamma_{\overline{I}^2}(\overline{R})$, for every non-minimal ideal \overline{I} of \overline{R} and the intersection graph of ideals of \overline{R} is complete.

Theorem 2.17. Let (R,m) be an Artinian local ring with $m^2 \neq 0$, such that $\Gamma_I(R)$ is an induced subgraph of $\Gamma_{I^2}(R)$, for every non-minimal ideal I of R and the intersection graph of ideals of R is complete. If $\operatorname{char}(R) \neq p^2$, for any prime number p and $\operatorname{char}(\frac{R}{m}) \neq 2$, then there exists a regular local ring (S,n), a positive integer number p, and subset $\{x_a\}_{a=1,\ldots,h}$ of p such that p is p in which p is minimally generated by the elements $\{x_ix_j\}_{1\leq i< j\leq h}$, $\{x_j^2\}_{2\leq j\leq \tau}$ and $\{x_i^2u_ix_1^2\}_{\tau+1\leq i\leq h}$, where the p is are unit in p and p is the Cohen-Macaulay type of p.

Proof. By Theorem 2.15 and [11, Proposition 6.3.].

ACKNOWLEDGMENTS

The author would like to expresses its sincere thanks to the referees for their valuable suggestions and comments.

References

- A. Abbasi, H. Roshan-Shekalgourabi, D. Hassanzadeh-Lelekaami, Associated Graphs of Modules Over Commutative Rings, Iran. J. Math. Sci. Inform., 10(1), (2015), 45-58.
- S. Akbari, R. Nikandish, M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12(4), (2013), 125–200. [13 pages] DOI: 10.1142/S0219498812502003.
- D. D. Anderson, M. Bataineh, Generalization of Prime Ideals, Comm. Algebra, 36, (2008), 686-696.
- 4. A. Barnard, Multiplication modules, J. Algebra, 71, (1981), 174-178.
- I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309, (2009), 5381-5392.
- 6. I. Beck, Coloring of commutative rings, J. Algebra, 116, (1988), 208-226.
- S. M. Bhatwadekar, P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33, (2005), 43-49.
- H. R. Maimani, Median and center of zero-divisor graph of commutative semogroups, Iran. J. Math. Sci. Inform., 3(2), (2008), 69-76.
- 9. S. Mori, Allgemeine Z.P.I.-Ringe, J. Sci. Hirosima Univ. Ser. A., 10, (1940), 117-136.
- 10. S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, $Comm.\ Algebra$, 31, (2003), 4425-4443.
- E. Rostami, R. Nekooei, On SPAP-rings, Bull. Iranian Math. Soc., 41(4), (2015), 907-921.
- 12. A. Tehranian, H. R. Maimani, A study of the Total graph, *Iran. J. Math. Sci. Inform.*, **6**(2), (2011), 75-80.