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ABSTRACT. In this paper, we define duplication corona, duplication neigh-
borhood corona and duplication edge corona of two graphs. We compute
their adjacency spectrum, Laplacian spectrum and signless Laplacian
spectrum. As an application, our results enable us to construct infin-

itely many pairs of cospectral graphs and also integral graphs.

Keywords: Duplication corona, Duplication edge corona, Duplication neighbor-
hood corona, Cospectral graphs, Integral graphs.

2000 Mathematics subject classification: 05C50.

1. INTRODUCTION

Throughout the paper by a graph we mean an undirected graph with-
out loops and multiple edges. Let G be a graph with vertex set V(G) =
{v1,v9,...,v,} and edge set E(G). The adjacency matrix of G, denoted by
A(G), is the n x n matrix [a;;], where a;; = 1 if the vertices v; and v; are adja-
cent in G and 0 otherwise. The Laplacian matrix of the graph G, denoted by
L(G), is defined as D(G) — A(G), where D(QG) is the diagonal degree matrix of

G. The signless Laplacian matrix of the graph G, denoted by Q(G), is defined
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as D(G) + A(G). We denote the eigenvalues of A(G), L(G) and Q(G), respec-
tively, by A1(G) = X2(G) 2 ... = Aa(G), p1(G) = 0 < p2(G) < ... < pa(G)
and v1(G) > ¥2(G) > ... > 7,(G). The collection of eigenvalues of A(G) (re-
spectively, L(G), Q(G)) together with their multiplicities is called the adjacency
spectrum (respectively, Laplacian spectrum, signless Laplacian spectrum) of G.
Studies on these spectra of graphs can be found in [6, 7, 8, 19] and references
therein. Two graphs are said to be adjacency cospectral ( respectively, Lapla-
cian cospectral, signless Laplacian cospectral) if they have the same adjacency
spectrum ( respectively, Laplacian spectrum, signless Laplacian spectrum).

In literature, many graph operations such as disjoint union, NEPS, corona,
edge corona, neighborhood corona, common neighborhood graphs, etc., have
been introduced and their spectral properties have been studied, see [1, 2, 4,
8,9, 11, 12, 15, 17, 18, 22]. Recently, several variants of corona product of two
graphs have been introduced and their spectra are computed. In [16], Liu and
Lu introduced subdivision-vertex and subdivision-edge neighbourhood corona
of two graphs and provided a complete description of their spectra. In [15], Lan
and Zhou introduced R-vertex corona, R-edge corona, R-vertex neighborhood
corona and R-edge neighborhood corona, and studied their spectra.

Motivated by these works, in this paper, we introduce duplication corona,
duplication edge corona and duplication neighborhood corona of two graphs.
In Section 3, we give the adjacency spectrum, Laplacian spectrum and signless
Laplacian spectrum of duplication corona. In Sections 4 and 5, we give the
adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum of
duplication neighborhood corona and duplication edge corona of two graphs G
and H. In Section 6, using the results obtained in Sections 3, 4 and 5, we give
some methods to construct infinitely many pairs of cospectral graphs and also
integral graphs.

2. PRELIMINARIES

In this section, we give some definitions and lemmas which are useful to
prove our main results.

Let G be a graph with vertex set V(G) = {v1,vq,...,v,} and edge set
E(G) = {e1,e2,...,em}. The duplication graph Du(G) of G is a bipartite
graph with vertex partition sets U = {uy,ua,...,un} and V = {v1, v, ..., 0, },
where w;v; is an edge if and only if v;v; is an edge in G, see [13]. Now we define
three new graph operations based on duplication graph Du(G) as follows:
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Definition 2.1. The duplication corona G B H of two graphs G and H is the
graph obtained by taking one copy of Du(G) and |V| copies of H, and then
joining the vertex v; of Du(G) to every vertex in the ith copy of H.

Definition 2.2. The duplication neighborhood corona G X H of two graphs
G and H is the graph obtained by taking one copy of Du(G) and |V| copies of
H, and then joining the neighbors of the vertex v; of Du(G) to every vertex in
the ith copy of H.

Definition 2.3. The duplication edge corona G B H of two graphs G and H
is the graph obtained by taking one copy of Du(G) and |E(G)| copies of H,
and then joining a pair of vertices v; and v; of Du(G) to every vertex in the
kth copy of H whenever v;v; = ex € E(Q).

Let A = (a;;) be an n x m matrix and B = (b;;) be an p x ¢ matrix. Then
the Kronecker product [8] of A and B, denoted by A ® B, is the np by mg
matrix obtained by replacing each entry a;; of A by a;; B. It is well-known
that (A ® B)(C ® D) = AC ® BD whenever the products AC and BD exist.
The M-coronal [5, 18] of a square matrix M of order n, denoted by T',, (), is
defined as follows:

T, (z)=el(xl, — M) e,

where e is the column vector of size n whose all entries are 1. If M is a square

matrix of order n such that sum of entries in each row is a constant ‘r’, then it

is easy to see that I',, () = n/(x — r). Further for a complete bipartite graph

K, 4, we have

(p+aq)z+2pg
z? —pg

see [5]. The following lemma is useful to prove our main results.

LAk, () =

)

Lemma 2.4 ([8]). If M, N, P and Q are matrices with M being a non-singular
matriz, then
M N
= |M||Q — PM~'N]|.
o [~ |

3. SPECTRA OF DUPLICATION CORONA

Let M be a square matrix. We denote the characteristic polynomial of M
by
f(M,x) := det(zI — M).

In this section, we compute the adjacency spectrum, Laplacian spectrum and
signless Laplacian spectrum of duplication corona of two graphs G; and G5 in
some cases. We denote by e and I,,, the column vector of size m whose all
entries are 1 and the identity matrix of order n, respectively.
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Theorem 3.1. Let Gy and Gy be two graphs on n and m vertices, respectively.
Then

m n

f(A(GlElGQ)a ) HZ— G2 nH A(G) ) _/\?(Gl)'

i=1 i=1

Proof. With suitable labeling of the vertices of G; H Gs, its adjacency matrix
A(G1 B Gs2) can be formulated as follows:

I, ® A(G>) 0 I,®e

A(G,BGy) = 0 0 AG)

By Lemma 2.4, we have

I, ® (xI,, — A(G2)) 0 -I,®e
f(A(G1BGy),x) = det 0 xIy —A(Gh)
—I,®el —A(Gy) zl,
- ﬁ(x — Xi(G2))™ det S, (3.1)
i=1
where
zl,, —A(Gh)

S =
_A(Gl) (I - FA(G2)('1:))I'VL

Using Lemma 2.4, we obtain

det S = z"det((x — | Y, )(x))In — AY(4) /)
- H Lo ()2 = X (Gh). (3.2)

From (3.1) and (3.2), the result follows. O

AsTy(x) = , where M is the square matrix of order n with each of its

_ (p+ @)z +2pg
(@)= "3 ——
two corollaries follow immediately from the above theorem.

xr—rTr

row sum a constant ‘r’ and I'g,, , proofs of the following

Corollary 3.2. Let G be an arbitrary graph and Go be an r-regular graph
on n and m vertices, respectively. Then the adjacency spectrum of G1 H Gs
consists of
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a. N\i(Ga) with multiplicity n for i =2,3,...,m and
b. the three roots of the polynomial

23 —rz? — (A\H(Gy) + m)x + 13 (GY)
fori=1,2,...,n.
Corollary 3.3. Let Gy be an arbitrary graph on n vertices. Then the adjacency
spectrum of G1 B K, 4 consists of

(a) O with multiplicity n(p +q — 2) and
(b) the four roots of the polynomial

z* — (AH(G1) + pg+p +q) 2> — 2pgz + NI (G1)pg

fori=1,2,...,n.

Theorem 3.4. Let G1 be an ri-regular on n vertices and G be an arbitrary
graph on m wvertices. Then the Laplacian spectrum of G1 B G2 consists of
a. pi(Ga) + 1 with multiplicity n for i =2,3,...,m and
b. the three roots of the polynomial
w3—(m+2r; +1) 2%+ (—,ui(Gl)2 +21;(G1)r1 +mry + 2 7"1) a:+Mi(Gl)2—
2p;(Gr)ry fori=1,2,...,n.

Proof. With suitable labeling of the vertices of G; H G3, its Laplacian matrix
L(G1 B G2) can be formulated as follows:

I, @ (In, + L(G2)) 0 —I,®e
L(Gl EI GQ) = 0 7“1In —A(Gl)
-1, ® el —A(Gl) (T‘l + m)In
By Lemma 2.4, we have
I, ® ((x — 1) I, — L(G2)) 0 I, ®e
f(L(Gl E Gg), ZL‘) = det O (a: — T'l)ln A(G1)
I,®et A(G1) (x—=r1—m)I,
= [ - p(Ga) = 1)" det S, (3.3)
=1
where
(LL' — Tl)In A(Gl)

AGr)  (@-T, g (@—1)—r—m)l,
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Using Lemma 2.4, we obtain

det S = (x —r)"det((x =T, (= 1) —=r1 —m) L, — A%(Gh)/(x — 1))

H z—m/(x—1)—r —m)(x —7r) — (1 (G1) —r1)% (3.4)
From (3.3) and (3.4), the desired result follows. O

Let ¢(G) denote the number of spanning trees of G. It is well known [8] that
for a connected graph G on n vertices, t(G) is given by

(3.5)
Corollary 3.5. Let Gy be an ri-regular graph on n vertices and Ga be an ar-
bitrary graph on m vertices. Then the number of spanning trees of G1 B G5 is
given by

m

(Gl BG2 = rlt Gl H 2r; — /-h Gl H(/f"z(G2) + 1)n.

i=2
Proof. Proof follows directly from the above theorem and (3.5). g

Theorem 3.6. Let G be an ri-regular graph on n vertices and Gy be an ra-
regular graph on m vertices. Then the signless Laplacian spectrum of G1 H Ga
consists of

a. vi(G2) + 1 with multiplicity n for i =2,3,...,m and

b. the three roots of the polynomial
o3 — (2r; + 2ro + m + 1)2? + (drire + 2r1%:(G1) + rim + 2ram — 42(G1) +
2r1)z — 4r1r27;(Gh) — 2riram + 2roy2 (Gh) — 27:(Gh)r + v2(Gh)
fori=1,2,....n

Proof. With suitable labeling of the vertices of G; H G2, its signless Laplacian
matrix Q(G1 B G2) can be formulated as follows:

I, @ (Im +Q(G2)) 0 L,®e
Q(G1BG,y) = 0 ril, A(Gy)
I, @el A(Gy) (ri+m),
Rest of the proof is similar to the proof of Theorem 3.4. (]
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4. SPECTRA OF DUPLICATION NEIGHBORHOOD CORONA

We compute the adjacency spectrum, Laplacian spectrum and signless Lapla-
cian spectrum of duplication neighborhood corona of two graphs G; and G5 in
some cases.

Theorem 4.1. Let G and G2 be two graphs on n and m vertices, respectively.
Then

m n

FA(G1 R Gy),z) = IIx— (G))" [[ (= = T oy, (2)AF(G1))w = A (G).

=1 1=1

Proof. By a proper labeling of the vertices of G; X G5, its adjacency matrix
A(G1 W G2) can be written as follows:

A(G1 R Gs) = 0 0 A(Gy)

A(Gl) X el A(Gl) 0
By Lemma 2.4, we have

I, ® (x[m — A(Gg)) 0 —A(Gl) X e
fA(G1 ¥ Gy),2) = det 0 1, —A(Gy)

—A(Gy) @ el —A(Gh) xl,
= [ = Xi(G2))" det S, (4.1)
i=1
where
JJIn —A(Gl)
S =
_A<G1) zly — FA(Gz) (QI;)Az(G)

Using Lemma 2.4, we see that

det S = a"det(zl, — T, ., )(x)AZ(Gl) — A*(Gy)/x)
—H ~ Ty, (0 (G1))z — A} (G). (4.2)

From (4.1) and (4.2), the result follows. O

Proofs of the following two corollaries follow immediately by the above the-
orem.
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Corollary 4.2. Let G1 be an arbitrary graph and Gy be an r-regular graph
on n and m vertices, respectively. Then the adjacency spectrum of G1 X Go
consists of

a. N\i(Ga) with multiplicity n for i =2,3,...,m and

b. the three roots of the polynomial

3 —rz? — (AH(Gr)m + N2(G1))x + N2 (Gy)r
fori=1,2,...,n.
Corollary 4.3. Let G be an arbitrary graph on n vertices. Then the adjacency

spectrum of G1 X K, , consists of

(a) 0 with multiplicity n(p +q — 2) and
(b) the four roots of the polynomial

= (N (G1)p + A} (G1)q + A2 (G1) + pg)a® — 2X7(G1)pgz + A2 (G1)pg
fori=1,2,... n.

Theorem 4.4. Let Gy be an ri-reqular graph on n vertices and Go be an
arbitrary graph on m vertices. Then the Laplacian spectrum of G1 XG4y consists
of
a. pi(Ga) + r1 with multiplicity n for i =1,2,...,m and
b. the three roots of the polynomial
a? — (mry + 2r)x — p3 (Gr)ym + 2p(Gr)mry — pF (Gh) + 2pi(Ga)ry for i =
1,2,...,n.

Proof. With suitable labeling of the vertices of G; X (g, its Laplacian matrix
L(G1 ® G3) can be formulated as follows:

In X (Tllm + L(Gg)) 0 7A(G1) X e
L(Gl X GQ) = 0 Tlfn —A(Gl)
—A(G1) ® el —A(Gl) 1 (m + I)In

By Lemma 2.4, we have

In ® ((z — 71)Im — L(Ga)) 0 AGr) ®@e
F(L(GIRGy),z) = det 0 (= ri)ln A(Gh)
AGr) @ eT AGL)  (m—r1—mim)In
= ﬁ(:p — wi(G2) — r)™ det S, (4.3)

=1
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where
(x —r)I, A(Gh)
S pr—

A(Gl) (.Z‘—’I“l —mrl)In -T Tl)A2<G1)

Loy (@
Using Lemma 2.4, we obtain

det S = (x —r1)"det((x — 1 —mr1)I, — T (x —r1)A*(G1) — A%(Gh)/(z — 7))

L(G2)

(x =71 —mr —

=

Th (1:(Gr) = 1)) (@ — 1) — (ui(Gr) —m1)*. (4.4)

1
and (4.4), the desired result follows. O

o
= 1

From (4.

Corollary 4.5. Let G1 be an ri-regular graph on n vertices and G2 be an ar-
bitrary graph on m vertices. Then the number of spanning trees of G1 K G is
given by

(GlgGg —Tlt Gl Hm—|—1 2r1 — ,u, Gl H/,Ll G2 -‘r’l“l
=2 =1

Proof. Proof follows directly from the above theorem and (3.5). O

Theorem 4.6. Let Gy be an ri-regular on n vertices and Ga be an ro-reqular
graph on m vertices. Then the signless Laplacian spectrum of G1 K Gy consists
of
a. vi(G2) + r1 with multiplicity n for i =2,3,...,m and
b. the three roots of the polynomial
23 — (rim + 3r1 + 2r)2? + (=12(G1)m + 2%;(G1)rim + r2m + 2rirom —
V2(G1) + 279 (G1)r1 +2r3 + driry)x +92(Gr)rim — 27, (G1)rim — 2r2ram +
V2(G1)r1 + 292 (G1)ra — 27i(G1)1? — 47 (Gy)ryrg fori=1,2,...,n

Proof. With suitable labeling of the vertices of G; X G, its signless Laplacian
matrix Q(G; K G2) can be formulated as follows:

In 29 (rlIm + Q(GQ)) 0 A(Gl) ®e

Q(Gl X Gg) = O Tlfn A(Gl)
AG) @ el A(Gy) rm(m+1)I,
Rest of the proof is similar to the proof of Theorem 4.4. O

5. SPECTRA OF DUPLICATION EDGE CORONA

In this section, we compute the adjacency spectrum, Laplacian spectrum
and signless Laplacian spectrum of duplication edge corona of two graphs G,
and Gy in some cases. We denote by e, I,,,, and B, the column vector of size
ng whose all entries are 1, the identity matrix of order m; and the incidence
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matrix of G, respectively. In the following theorems and corollaries we assume
that r{ > 2.

Theorem 5.1. Let G be an ri-reqular graph with ni vertices, my edges and
G5 be a graph on no vertices. Then

na ni

FIA(GIEGy), z) = [[(@=Xi(G2))™ [ (2T 4 e, (@) (Ni(G1)+71))z— A (Gh).

i=1 i=1
Proof. With suitable labeling of the vertices of G; H G3, its adjacency matrix
A(G1 B G2) can be formulated as follows:

I, ® A(G2) 0 B®e

A(GL B Gy) = 0 0 A(Gy)

By Lemma 2.4, we have

I, ® (zl,, — A(G2)) 0 —-B®e
fA(G1 B Ga),z) = det 0 xly, —A(Gh)
BT el —A(Gy)  zl,,
= ﬁ(:c — Ai(G2))™ det S, (5.1)
where -
zly, —A(Gh)

S =
_A(Gl) xI”Ll - 1—‘A(GQ) (x)(A(Gl) + rl[n1)

Using Lemma 2.4, we see that

det S = x™det(xl,, — T (2)(A(G1) +r11,,) — A%(G1) /)

A(G2)
ni
= [I@ —Tue, (@) Ni(G1) + r1))a = AF(Gh). (5:2)
i=1
From (5.1) and (5.2), the result follows. O

Proofs of the following two corollaries follow immediately by the above the-
orem.

Corollary 5.2. Let G1 be an ri-regular graph with ny vertices, m1 edges and
Go be an ro-regular graph on neg vertices. Then the adjacency spectrum of

G1 8 Gy consists of
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a. X\i(Ga) with multiplicity my for i =2,3,...,na,
b. ro with multiplicity my — ny and
c. the three roots of the polynomial

2® —rax® — (A7 (G1) + Mi(Gr)m + rim)x + A2 (G1)rs
fori=1,2,....,nq.

Corollary 5.3. Let Gy be an ri-reqular graph with ny vertices and my edges.
Then the adjacency spectrum of G1 B K, ; consists of
(a) 0 with multiplicity m1(p + q — 2),
(b) £./pq with multiplicity mi —ny and
(c) the four roots of the polynomial
at — (AF(G1) + Mi(G)p + Ai(Gr)g + m1p + 71q + pg)x® + (—2X(G1)pg —
2r1pq)x + N2(G1)pq fori=1,2,...,n;.

Theorem 5.4. Let Gy be an ri-regular with ny vertices and my edges and G4
be an arbitrary graph on ny vertices. Then the Laplacian spectrum of G1 H G4
consists of
a. pi(G2)~+2 with multiplicity my fori = 2,3, ..., na, 2with multiplicity mi—n,
and”’
b. the three roots of the polynomial
23 — (ngry +2r1 + 2)2% + (nar? — p2(Gh) + 1i(G1)na + 21 (G1)ry + 4rq)x —
,ui(Gl)ngrl + 2/1,%(G1> — 4MZ'<G1)T1 fori=1,2,...,n1.

Proof. With suitable labeling of the vertices of G1 B Ga, its Laplacian matrix
L(G1 B G2) can be formulated as follows:

I, @ (2L, + L(Gs)) 0 “B®e

L(G1BG,) = 0 11, —A(Gy)

—BT (024 ET —A(Gl) 1 (712 + ]-)Inl
By Lemma 2.4, we have
I, ® ((z — 2)In, — L(G2)) 0 B®e
f(L(Gl BHGQ),w) = det 0 (:E _7"1)1711 A(Gl)
BT @ T A(Gy) (x —7r1 —rin2)ln,g
= Il ( — pi(G2) —2)™ det S, (5.3)
i=1
where
(:17 - Tl)’[nl A(Gl)
S =

AGy)  (w—ri—mnar) ]y, — T, (z = 2)(A(G1) + 111y,)

L(G2)
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Using Lemma 2.4, we obtain

det S = (x —r1)" " det((x — 71 —nar1)In, — FL(GQ) (z = 2)(A(G1) +r1ln,) — A3(G1)/(z — 1))
ny

=]l -7 —nari + %(#i(Gl) —2r)) (= — 1) — (1:(G1) — r1)%. (5.4)
=1

From (5.3) and (5.4), the required result follows. O

Corollary 5.5. Let G1 be an ri-regular graph on n vertices and G2 be an ar-
bitrary graph on m vertices. Then the number of spanning trees of G1 H G is
given by

n m

H(Gy B Ga) = 2""rt(Gh) H(mﬁ —24;(G1) +4r1) H(H,Z‘(Gg) +2)/2,

=2 i=1
Proof. Proof follows directly from the above theorem and (3.5). O

Theorem 5.6. Let G be an ri-regular with ny vertices and my edges and G4

be an ro-reqular graph on no vertices. Then the signless Laplacian spectrum of

G1 H Gy consists of

a. vi(G2) + 2 with multiplicity my fori=2,3,...,n2, 2ra + 2 with multiplicity
my —ny and”

b. the three roots of the polynomial
23— (ring + 271 + 270+ 2) 22 + (r1%ng + 2717900 — %(Gl)z +27(Gy)r +
’W(Gl)’NQ +47’17"2+2’I’1n2+4T1)$—2T12T2n2 +27¢(G1)27"2 —4’)/2'((;1)7"17‘2 -
vi(G1)ring — 2r1%ng + 2%(G1)2 —4~;(Gy)ry fori=1,2,...n;.

Proof. With suitable labeling of the vertices of G HH G, its signless Laplacian
matrix Q(G1 B G2) can be formulated as follows:

Iy, @ (2L, + Q(G2)) 0 B®e
Q(GL B Gs) = 0 il A(Gh)
BT X eT A(Gl) T1 (n2 + 1)1711
Rest of the proof is similar to the proof of Theorem 5.4. (]

6. APPLICATIONS

Let G be a graph. If all the eigenvalues of A(G) are integers then the graph
G is said to be an integral graph [10]. For example, the graphs K,, K n
(mn a perfect square), Cg, the cocktail parity graph CP(n) = nKs, are all
integral graphs. The notion of integral graphs was first introduced by Harary
and Schwenk in 1974 [10]. In general, the problem of characterizing integral
graphs seems to be very difficult. More details about integral graphs can be
found in [3, 10, 14, 20, 21] and references therein. In this section, using the


http://ijmsi.com/article-1-755-en.html

[ Downloaded from ijmsi.com on 2025-11-15]

Spectra of some new graph operations and some - - - 63

results obtained in the previous sections, we give some methods to construct
infinite family of integral graphs starting with an integral graph. At the end
of the section, we also give some methods to construct infinitely many pairs of
cospectral graphs.

il.
1.
iv.

V.

From Corollaries 3.2, 4.2 and 5.2, it follows that

If G is an integral graph of order n, then GHmK]; is integral if and only if
A2(G) + m is a perfect square for i = 1,2,...,n.

If GEHmK, is an integral graph, then (K2 ® G) BmK; is integral, where ®
denotes the direct product of two graphs.

If G is an integral graph of order n, then G X (m? — 1)K, is an integral
graph.

If G is an integral r-regular graph of order n, then G HH mKj; is integral if
and only if A2(G) + m(\;(G) + r) is a perfect square for i = 1,2,--- ,n.

In particular, we have the following:

K, 8 (m? — 1)K, is integral if and only if and n? — 2n + m? is a perfect
square.

K, ,B (m?)K; is integral if and only if pg + m? is a perfect square.

K, ,® (m? — 1)K, is integral if and only if pq is a perfect square.

K, BmKj is integral if and only if and (n—1)(n+2m—1) and m(n—2)+1
are perfect squares.

K, »BmK]; is integral if and only if mn and n®+2mn are perfect squares.

The above observations enable us to construct some new classes of integral

graphs.

EXAMPLE 6.1. a. The graph Ks,» 8 (4n? — 1)K is integral for alln = 1,2, ...

® -0 20 T

The graph K,z (n2_1) B m2K, is integral form=1,2,...,n=2,3,...
The graph K,, ¥ (m? — 1)K is integral for all n and m.

The graph nk, X (m? — 1)K, is integral for all n and m.

The graph K2 ;2 ® (m? — 1)K is integral for all m, p and g.

The graph K, 1 B (4n)K; is integral for all n = 1,2,. ..

The graph K, , H4nK; is integral for alln =1,2,...

Now we give some methods to construct infinite family of cospectral graphs.

From Theorems 3.1 and 4.1, one can easily notice the following.

a.

b.

If G1 and G2 are adjacency cospectral graphs and H is an arbitrary graph,
then

i. G1 B H and G, H H are adjacency cospectral.

ii. Gy X H and Gy X H are adjacency cospectral.
If G is an arbitrary graph and H;, H, are adjacency cospectral graphs with
FA(HI)(m) = FA(HQ) (I), then

i. GB H; and G B Hs are adjacency cospectral.
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ii. GX H; and G X Hy are adjacency cospectral.

Similarly, using Theorems 3.4, 3.6, 4.4 and 4.6, one can construct Laplacian

cospectral and signless Laplacian cospectral graphs. Also from Theorem 5.1,

we have the following results:

a.

If G; and G5 are adjacency regular cospectral graphs and H is an arbitrary
graph, then G; H H and G2 B H are adjacency cospectral.

If G is an arbitrary regular graph and H;, Hs are adjacency cospectral
graphs with I' 4z, (%) = ' 4(p1,) (), then GEB H; and GH H, are adjacency
cospectral.

Similarly, using Theorems 5.4 and 5.6, one can construct Laplacian cospec-

tral and signless Laplacian cospectral graphs.
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