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Abstract. In this paper, we define duplication corona, duplication neigh-

borhood corona and duplication edge corona of two graphs. We compute

their adjacency spectrum, Laplacian spectrum and signless Laplacian

spectrum. As an application, our results enable us to construct infin-

itely many pairs of cospectral graphs and also integral graphs.
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1. Introduction

Throughout the paper by a graph we mean an undirected graph with-

out loops and multiple edges. Let G be a graph with vertex set V (G) =

{v1, v2, . . . , vn} and edge set E(G). The adjacency matrix of G, denoted by

A(G), is the n×n matrix [aij ], where aij = 1 if the vertices vi and vj are adja-

cent in G and 0 otherwise. The Laplacian matrix of the graph G, denoted by

L(G), is defined as D(G)−A(G), where D(G) is the diagonal degree matrix of

G. The signless Laplacian matrix of the graph G, denoted by Q(G), is defined
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as D(G) +A(G). We denote the eigenvalues of A(G), L(G) and Q(G), respec-

tively, by λ1(G) ≥ λ2(G) ≥ . . . ≥ λn(G), µ1(G) = 0 ≤ µ2(G) ≤ . . . ≤ µn(G)

and γ1(G) ≥ γ2(G) ≥ . . . ≥ γn(G). The collection of eigenvalues of A(G) (re-

spectively, L(G), Q(G)) together with their multiplicities is called the adjacency

spectrum (respectively, Laplacian spectrum, signless Laplacian spectrum) of G.

Studies on these spectra of graphs can be found in [6, 7, 8, 19] and references

therein. Two graphs are said to be adjacency cospectral ( respectively, Lapla-

cian cospectral, signless Laplacian cospectral) if they have the same adjacency

spectrum ( respectively, Laplacian spectrum, signless Laplacian spectrum).

In literature, many graph operations such as disjoint union, NEPS, corona,

edge corona, neighborhood corona, common neighborhood graphs, etc., have

been introduced and their spectral properties have been studied, see [1, 2, 4,

8, 9, 11, 12, 15, 17, 18, 22]. Recently, several variants of corona product of two

graphs have been introduced and their spectra are computed. In [16], Liu and

Lu introduced subdivision-vertex and subdivision-edge neighbourhood corona

of two graphs and provided a complete description of their spectra. In [15], Lan

and Zhou introduced R-vertex corona, R-edge corona, R-vertex neighborhood

corona and R-edge neighborhood corona, and studied their spectra.

Motivated by these works, in this paper, we introduce duplication corona,

duplication edge corona and duplication neighborhood corona of two graphs.

In Section 3, we give the adjacency spectrum, Laplacian spectrum and signless

Laplacian spectrum of duplication corona. In Sections 4 and 5, we give the

adjacency spectrum, Laplacian spectrum and signless Laplacian spectrum of

duplication neighborhood corona and duplication edge corona of two graphs G

and H. In Section 6, using the results obtained in Sections 3, 4 and 5, we give

some methods to construct infinitely many pairs of cospectral graphs and also

integral graphs.

2. Preliminaries

In this section, we give some definitions and lemmas which are useful to

prove our main results.

Let G be a graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set

E(G) = {e1, e2, . . . , em}. The duplication graph Du(G) of G is a bipartite

graph with vertex partition sets U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn},
where uivj is an edge if and only if vivj is an edge in G, see [13]. Now we define

three new graph operations based on duplication graph Du(G) as follows:
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Definition 2.1. The duplication corona G�H of two graphs G and H is the

graph obtained by taking one copy of Du(G) and |V | copies of H, and then

joining the vertex vi of Du(G) to every vertex in the ith copy of H.

Definition 2.2. The duplication neighborhood corona G � H of two graphs

G and H is the graph obtained by taking one copy of Du(G) and |V | copies of

H, and then joining the neighbors of the vertex vi of Du(G) to every vertex in

the ith copy of H.

Definition 2.3. The duplication edge corona G�H of two graphs G and H

is the graph obtained by taking one copy of Du(G) and |E(G)| copies of H,

and then joining a pair of vertices vi and vj of Du(G) to every vertex in the

kth copy of H whenever vivj = ek ∈ E(G).

Let A = (aij) be an n×m matrix and B = (bij) be an p× q matrix. Then

the Kronecker product [8] of A and B, denoted by A ⊗ B, is the np by mq

matrix obtained by replacing each entry aij of A by aijB. It is well-known

that (A ⊗ B)(C ⊗D) = AC ⊗ BD whenever the products AC and BD exist.

The M -coronal [5, 18] of a square matrix M of order n, denoted by Γ
M

(x), is

defined as follows:

Γ
M

(x) = eT (xIn −M)−1e,

where e is the column vector of size n whose all entries are 1. If M is a square

matrix of order n such that sum of entries in each row is a constant ‘r’, then it

is easy to see that Γ
M

(x) = n/(x− r). Further for a complete bipartite graph

Kp,q, we have

ΓA(Kp,q)(x) =
(p+ q)x+ 2pq

x2 − pq
,

see [5]. The following lemma is useful to prove our main results.

Lemma 2.4 ([8]). If M, N, P and Q are matrices with M being a non-singular

matrix, then ∣∣∣∣ M N

P Q

∣∣∣∣ = |M ||Q− PM−1N |.

3. Spectra of Duplication Corona

Let M be a square matrix. We denote the characteristic polynomial of M

by

f(M,x) := det(xI −M).

In this section, we compute the adjacency spectrum, Laplacian spectrum and

signless Laplacian spectrum of duplication corona of two graphs G1 and G2 in

some cases. We denote by e and In, the column vector of size m whose all

entries are 1 and the identity matrix of order n, respectively.
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Theorem 3.1. Let G1 and G2 be two graphs on n and m vertices, respectively.

Then

f(A(G1 �G2), x) =

m∏
i=1

(x− λi(G2))n
n∏
i=1

(x− Γ
A(G2)

(x))x− λ2
i (G1).

Proof. With suitable labeling of the vertices of G1 �G2, its adjacency matrix

A(G1 �G2) can be formulated as follows:

A(G1 �G2) =


In ⊗A(G2) 0 In ⊗ e

0 0 A(G1)

In ⊗ eT A(G1) 0

 .

By Lemma 2.4, we have

f(A(G1 �G2), x) = det


In ⊗ (xIm −A(G2)) 0 −In ⊗ e

0 xIn −A(G1)

−In ⊗ eT −A(G1) xIn


=

m∏
i=1

(x− λi(G2))n det S, (3.1)

where

S =

 xIn −A(G1)

−A(G1) (x− Γ
A(G2)

(x))In

 .

Using Lemma 2.4, we obtain

det S = xndet((x− Γ
A(G2)

(x))In −A2(G1)/x)

=

n∏
i=1

(x− Γ
A(G2)

(x))x− λ2
i (G1). (3.2)

From (3.1) and (3.2), the result follows. �

As ΓM (x) =
n

x− r
, where M is the square matrix of order n with each of its

row sum a constant ‘r’ and ΓKp,q
(x) =

(p+ q)x+ 2pq

x2 − pq
, proofs of the following

two corollaries follow immediately from the above theorem.

Corollary 3.2. Let G1 be an arbitrary graph and G2 be an r-regular graph

on n and m vertices, respectively. Then the adjacency spectrum of G1 � G2

consists of
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a. λi(G2) with multiplicity n for i = 2, 3, . . . ,m and

b. the three roots of the polynomial

x3 − rx2 − (λ2
i (G1) +m)x+ rλ2

i (G1)

for i = 1, 2, . . . , n.

Corollary 3.3. Let G1 be an arbitrary graph on n vertices. Then the adjacency

spectrum of G1 �Kp,q consists of

(a) 0 with multiplicity n(p+ q − 2) and

(b) the four roots of the polynomial

x4 −
(
λ2
i (G1) + pq + p+ q

)
x2 − 2 pqx+ λ2

i (G1)pq

for i = 1, 2, . . . , n.

Theorem 3.4. Let G1 be an r1-regular on n vertices and G2 be an arbitrary

graph on m vertices. Then the Laplacian spectrum of G1 �G2 consists of

a. µi(G2) + 1 with multiplicity n for i = 2, 3, . . . ,m and

b. the three roots of the polynomial

x3−(m+ 2 r1 + 1)x2+
(
−µi(G1)

2
+ 2µi(G1)r1 +mr1 + 2 r1

)
x+µi(G1)

2−
2µi(G1)r1 for i = 1, 2, . . . , n.

Proof. With suitable labeling of the vertices of G1 �G2, its Laplacian matrix

L(G1 �G2) can be formulated as follows:

L(G1 �G2) =


In ⊗ (Im + L(G2)) 0 −In ⊗ e

0 r1In −A(G1)

−In ⊗ eT −A(G1) (r1 +m)In

 .

By Lemma 2.4, we have

f(L(G1 �G2), x) = det


In ⊗ ((x− 1)Im − L(G2)) 0 In ⊗ e

0 (x− r1)In A(G1)

In ⊗ eT A(G1) (x− r1 −m)In


=

m∏
i=1

(x− µi(G2) − 1)n det S, (3.3)

where

S =

 (x− r1)In A(G1)

A(G1) (x− Γ
L(G2)

(x− 1)− r1 −m)In

 .
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Using Lemma 2.4, we obtain

det S = (x− r1)ndet((x− Γ
L(G2)

(x− 1)− r1 −m)In −A2(G1)/(x− r1))

=

n∏
i=1

(x−m/(x− 1)− r1 −m)(x− r1)− (µi(G1)− r1)2. (3.4)

From (3.3) and (3.4), the desired result follows. �

Let t(G) denote the number of spanning trees of G. It is well known [8] that

for a connected graph G on n vertices, t(G) is given by

t(G) =
µ2(G) · · ·µn(G)

n
. (3.5)

Corollary 3.5. Let G1 be an r1-regular graph on n vertices and G2 be an ar-

bitrary graph on m vertices. Then the number of spanning trees of G1 �G2 is

given by

t(G1 �G2) = r1t(G1)

n∏
i=2

(2r1 − µi(G1))

m∏
i=2

(µi(G2) + 1)n.

Proof. Proof follows directly from the above theorem and (3.5). �

Theorem 3.6. Let G1 be an r1-regular graph on n vertices and G2 be an r2-

regular graph on m vertices. Then the signless Laplacian spectrum of G1 �G2

consists of

a. γi(G2) + 1 with multiplicity n for i = 2, 3, . . . ,m and

b. the three roots of the polynomial

x3 − (2r1 + 2r2 +m+ 1)x2 + (4r1r2 + 2r1γi(G1) + r1m+ 2r2m− γ2
i (G1) +

2r1)x− 4r1r2γi(G1)− 2r1r2m+ 2r2γ
2
i (G1)− 2γi(G1)r1 + γ2

i (G1)

for i = 1, 2, . . . , n.

Proof. With suitable labeling of the vertices of G1 �G2, its signless Laplacian

matrix Q(G1 �G2) can be formulated as follows:

Q(G1 �G2) =


In ⊗ (Im +Q(G2)) 0 In ⊗ e

0 r1In A(G1)

In ⊗ eT A(G1) (r1 +m)In

 .

Rest of the proof is similar to the proof of Theorem 3.4. �
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4. Spectra of Duplication Neighborhood Corona

We compute the adjacency spectrum, Laplacian spectrum and signless Lapla-

cian spectrum of duplication neighborhood corona of two graphs G1 and G2 in

some cases.

Theorem 4.1. Let G1 and G2 be two graphs on n and m vertices, respectively.

Then

f(A(G1 �G2), x) =

m∏
i=1

(x− λi(G2))n
n∏
i=1

(x− Γ
A(G2)

(x)λ2
i (G1))x− λ2

i (G1).

Proof. By a proper labeling of the vertices of G1 � G2, its adjacency matrix

A(G1 �G2) can be written as follows:

A(G1 �G2) =


In ⊗A(G2) 0 A(G1)⊗ e

0 0 A(G1)

A(G1)⊗ eT A(G1) 0

 .

By Lemma 2.4, we have

f(A(G1 �G2), x) = det


In ⊗ (xIm −A(G2)) 0 −A(G1)⊗ e

0 xIn −A(G1)

−A(G1)⊗ eT −A(G1) xIn


=

m∏
i=1

(x− λi(G2))n det S, (4.1)

where

S =

 xIn −A(G1)

−A(G1) xIn − Γ
A(G2)

(x)A2(G)

 .

Using Lemma 2.4, we see that

det S = xndet(xIn − Γ
A(G2)

(x)A2(G1)−A2(G1)/x)

=

n∏
i=1

(xIn − Γ
A(G2)

(x)λ2
i (G1))x− λ2

i (G1). (4.2)

From (4.1) and (4.2), the result follows. �

Proofs of the following two corollaries follow immediately by the above the-

orem.
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Corollary 4.2. Let G1 be an arbitrary graph and G2 be an r-regular graph

on n and m vertices, respectively. Then the adjacency spectrum of G1 � G2

consists of

a. λi(G2) with multiplicity n for i = 2, 3, . . . ,m and

b. the three roots of the polynomial

x3 − rx2 − (λ2
i (G1)m+ λ2

i (G1))x+ λ2
i (G1)r

for i = 1, 2, . . . , n.

Corollary 4.3. Let G1 be an arbitrary graph on n vertices. Then the adjacency

spectrum of G1 �Kp,q consists of

(a) 0 with multiplicity n(p+ q − 2) and

(b) the four roots of the polynomial

x4 − (λ2
i (G1)p+ λ2

i (G1)q + λ2
i (G1) + pq)x2 − 2λ2

i (G1)pqx+ λ2
i (G1)pq

for i = 1, 2, . . . , n.

Theorem 4.4. Let G1 be an r1-regular graph on n vertices and G2 be an

arbitrary graph on m vertices. Then the Laplacian spectrum of G1�G2 consists

of

a. µi(G2) + r1 with multiplicity n for i = 1, 2, . . . ,m and

b. the three roots of the polynomial

x2 − (mr1 + 2r1)x− µ2
i (G1)m+ 2µi(G1)mr1 − µ2

i (G1) + 2µi(G1)r1 for i =

1, 2, . . . , n.

Proof. With suitable labeling of the vertices of G1 �G2, its Laplacian matrix

L(G1 �G2) can be formulated as follows:

L(G1 �G2) =


In ⊗ (r1Im + L(G2)) 0 −A(G1)⊗ e

0 r1In −A(G1)

−A(G1)⊗ eT −A(G1) r1(m+ 1)In

 .

By Lemma 2.4, we have

f(L(G1 �G2), x) = det


In ⊗ ((x− r1)Im − L(G2)) 0 A(G1) ⊗ e

0 (x− r1)In A(G1)

A(G1) ⊗ eT A(G1) (x− r1 − r1m)In


=

m∏
i=1

(x− µi(G2) − r1)n det S, (4.3)
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where

S =

 (x− r1)In A(G1)

A(G1) (x− r1 −mr1)In − Γ
L(G2)

(x− r1)A2(G1)

 .

Using Lemma 2.4, we obtain

det S = (x− r1)ndet((x− r1 −mr1)In − Γ
L(G2)

(x− r1)A2(G1) −A2(G1)/(x− r1))

=

n∏
i=1

(x− r1 −mr1 −
m

x− r1
(µi(G1) − r1)2)(x− r1) − (µi(G1) − r1)2. (4.4)

From (4.3) and (4.4), the desired result follows. �

Corollary 4.5. Let G1 be an r1-regular graph on n vertices and G2 be an ar-

bitrary graph on m vertices. Then the number of spanning trees of G1 �G2 is

given by

t(G1 �G2) = r1t(G1)

n∏
i=2

(m+ 1)(2r1 − µi(G1))

m∏
i=1

(µi(G2) + r1)n.

Proof. Proof follows directly from the above theorem and (3.5). �

Theorem 4.6. Let G1 be an r1-regular on n vertices and G2 be an r2-regular

graph on m vertices. Then the signless Laplacian spectrum of G1 �G2 consists

of

a. γi(G2) + r1 with multiplicity n for i = 2, 3, . . . ,m and

b. the three roots of the polynomial

x3 − (r1m + 3r1 + 2r2)x2 + (−γ2
i (G1)m + 2γi(G1)r1m + r2

1m + 2r1r2m −
γ2
i (G1) + 2γi(G1)r1 + 2r2

1 + 4r1r2)x+ γ2
i (G1)r1m− 2γi(G1)r2

1m− 2r2
1r2m+

γ2
i (G1)r1 + 2γ2

i (G1)r2 − 2γi(G1)r2
1 − 4γi(G1)r1r2 for i = 1, 2, . . . , n.

Proof. With suitable labeling of the vertices of G1 �G2, its signless Laplacian

matrix Q(G1 �G2) can be formulated as follows:

Q(G1 �G2) =


In ⊗ (r1Im +Q(G2)) 0 A(G1)⊗ e

0 r1In A(G1)

A(G1)⊗ eT A(G1) r1(m+ 1)In

 .

Rest of the proof is similar to the proof of Theorem 4.4. �

5. Spectra of Duplication Edge Corona

In this section, we compute the adjacency spectrum, Laplacian spectrum

and signless Laplacian spectrum of duplication edge corona of two graphs G1

and G2 in some cases. We denote by e, Im1
and B, the column vector of size

n2 whose all entries are 1, the identity matrix of order m1 and the incidence
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matrix of G1, respectively. In the following theorems and corollaries we assume

that r1 ≥ 2.

Theorem 5.1. Let G1 be an r1-regular graph with n1 vertices, m1 edges and

G2 be a graph on n2 vertices. Then

f(A(G1�G2), x) =

n2∏
i=1

(x−λi(G2))m1

n1∏
i=1

(x−Γ
A(G2)

(x)(λi(G1)+r1))x−λ2
i (G1).

Proof. With suitable labeling of the vertices of G1 �G2, its adjacency matrix

A(G1 �G2) can be formulated as follows:

A(G1 �G2) =


Im1 ⊗A(G2) 0 B ⊗ e

0 0 A(G1)

BT ⊗ eT A(G1) 0

 .

By Lemma 2.4, we have

f(A(G1 �G2), x) = det


Im1
⊗ (xIn2

−A(G2)) 0 −B ⊗ e

0 xIn1
−A(G1)

−BT ⊗ eT −A(G1) xIn1


=

n2∏
i=1

(x− λi(G2))m1 det S, (5.1)

where

S =

 xIn1 −A(G1)

−A(G1) xIn1
− Γ

A(G2)
(x)(A(G1) + r1In1

)

 .

Using Lemma 2.4, we see that

det S = xn1det(xIn1
− Γ

A(G2)
(x)(A(G1) + r1In1

)−A2(G1)/x)

=

n1∏
i=1

(x− Γ
A(G2)

(x)(λi(G1) + r1))x− λ2
i (G1). (5.2)

From (5.1) and (5.2), the result follows. �

Proofs of the following two corollaries follow immediately by the above the-

orem.

Corollary 5.2. Let G1 be an r1-regular graph with n1 vertices, m1 edges and

G2 be an r2-regular graph on n2 vertices. Then the adjacency spectrum of

G1 �G2 consists of
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a. λi(G2) with multiplicity m1 for i = 2, 3, . . . , n2,

b. r2 with multiplicity m1 − n1 and

c. the three roots of the polynomial

x3 − r2x
2 − (λ2

i (G1) + λi(G1)m+ r1m)x+ λ2
i (G1)r2

for i = 1, 2, . . . , n1.

Corollary 5.3. Let G1 be an r1-regular graph with n1 vertices and m1 edges.

Then the adjacency spectrum of G1 �Kp,q consists of

(a) 0 with multiplicity m1(p+ q − 2),

(b) ±√pq with multiplicity m1 − n1 and

(c) the four roots of the polynomial

x4 − (λ2
i (G1) + λi(G1)p + λi(G1)q + r1p + r1q + pq)x2 + (−2λi(G1)pq −

2r1pq)x+ λ2
i (G1)pq for i = 1, 2, . . . , n1.

Theorem 5.4. Let G1 be an r1-regular with n1 vertices and m1 edges and G2

be an arbitrary graph on n2 vertices. Then the Laplacian spectrum of G1 �G2

consists of

a. µi(G2)+2 with multiplicity m1 for i = 2, 3, . . . , n2, 2with multiplicity m1−n1

and”’

b. the three roots of the polynomial

x3− (n2r1 + 2r1 + 2)x2 + (n2r
2
1 − µ2

i (G1) + µi(G1)n2 + 2µi(G1)r1 + 4r1)x−
µi(G1)n2r1 + 2µ2

i (G1)− 4µi(G1)r1 for i = 1, 2, . . . , n1.

Proof. With suitable labeling of the vertices of G1 �G2, its Laplacian matrix

L(G1 �G2) can be formulated as follows:

L(G1 �G2) =


Im1
⊗ (2In2

+ L(G2)) 0 −B ⊗ e

0 r1In1
−A(G1)

−BT ⊗ eT −A(G1) r1(n2 + 1)In1

 .

By Lemma 2.4, we have

f(L(G1 �G2), x) = det


Im1

⊗ ((x− 2)In2
− L(G2)) 0 B ⊗ e

0 (x− r1)In1
A(G1)

BT ⊗ eT A(G1) (x− r1 − r1n2)In1



=

n2∏
i=1

(x− µi(G2) − 2)
m1 det S, (5.3)

where

S =

 (x− r1)In1 A(G1)

A(G1) (x− r1 − n2r1)In1
− Γ

L(G2)
(x− 2)(A(G1) + r1In1

)

 .
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Using Lemma 2.4, we obtain

det S = (x− r1)
n1det((x− r1 − n2r1)In1 − Γ

L(G2)
(x− 2)(A(G1) + r1In1 ) − A

2
(G1)/(x− r1))

=

n1∏
i=1

(x− r1 − n2r1 +
n2

x− 2
(µi(G1) − 2r1))(x− r1) − (µi(G1) − r1)

2
. (5.4)

From (5.3) and (5.4), the required result follows. �

Corollary 5.5. Let G1 be an r1-regular graph on n vertices and G2 be an ar-

bitrary graph on m vertices. Then the number of spanning trees of G1 �G2 is

given by

t(G1 �G2) = 21−nr1t(G1)

n∏
i=2

(mr1 − 2µi(G1) + 4r1)

m∏
i=1

(µi(G2) + 2)nr1/2.

Proof. Proof follows directly from the above theorem and (3.5). �

Theorem 5.6. Let G1 be an r1-regular with n1 vertices and m1 edges and G2

be an r2-regular graph on n2 vertices. Then the signless Laplacian spectrum of

G1 �G2 consists of

a. γi(G2) + 2 with multiplicity m1 for i = 2, 3, . . . , n2, 2r2 + 2 with multiplicity

m1 − n1 and”

b. the three roots of the polynomial

x3− (r1n2 + 2 r1 + 2 r2 + 2)x2 + (r1
2n2 + 2 r1r2n2− γi(G1)

2
+ 2 γi(G1)r1 +

γi(G1)n2 +4 r1r2 +2 r1n2 +4 r1)x−2 r1
2r2n2 +2 γi(G1)

2
r2−4 γi(G1)r1r2−

γi(G1)r1n2 − 2 r1
2n2 + 2 γi(G1)

2 − 4 γi(G1)r1 for i = 1, 2, . . . n1.

Proof. With suitable labeling of the vertices of G1 �G2, its signless Laplacian

matrix Q(G1 �G2) can be formulated as follows:

Q(G1 �G2) =


Im1
⊗ (2In2

+Q(G2)) 0 B ⊗ e

0 r1In1
A(G1)

BT ⊗ eT A(G1) r1(n2 + 1)In1

 .

Rest of the proof is similar to the proof of Theorem 5.4. �

6. Applications

Let G be a graph. If all the eigenvalues of A(G) are integers then the graph

G is said to be an integral graph [10]. For example, the graphs Kn, Km,n

(mn a perfect square), C6, the cocktail parity graph CP (n) = nK2, are all

integral graphs. The notion of integral graphs was first introduced by Harary

and Schwenk in 1974 [10]. In general, the problem of characterizing integral

graphs seems to be very difficult. More details about integral graphs can be

found in [3, 10, 14, 20, 21] and references therein. In this section, using the
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results obtained in the previous sections, we give some methods to construct

infinite family of integral graphs starting with an integral graph. At the end

of the section, we also give some methods to construct infinitely many pairs of

cospectral graphs.

From Corollaries 3.2, 4.2 and 5.2, it follows that

a. If G is an integral graph of order n, then G�mK1 is integral if and only if

λ2
i (G) +m is a perfect square for i = 1, 2, . . . , n.

b. If G�mK1 is an integral graph, then (K2⊗G)�mK1 is integral, where ⊗
denotes the direct product of two graphs.

c. If G is an integral graph of order n, then G � (m2 − 1)K1 is an integral

graph.

d. If G is an integral r-regular graph of order n, then G �mK1 is integral if

and only if λ2
i (G) +m(λi(G) + r) is a perfect square for i = 1, 2, · · · , n.

In particular, we have the following:

i. Kn � (m2 − 1)K1 is integral if and only if and n2 − 2n + m2 is a perfect

square.

ii. Kp,q � (m2)K1 is integral if and only if pq +m2 is a perfect square.

iii. Kp,q � (m2 − 1)K1 is integral if and only if pq is a perfect square.

iv. Kn�mK1 is integral if and only if and (n−1)(n+2m−1) and m(n−2)+1

are perfect squares.

v. Kn,n�mK1 is integral if and only if mn and n2 +2mn are perfect squares.

The above observations enable us to construct some new classes of integral

graphs.

Example 6.1. a. The graph K2n2 � (4n2− 1)K1 is integral for all n = 1, 2, . . .

b. The graph Km2,(n2−1) �m2K1 is integral for m = 1, 2, . . . , n = 2, 3, . . .

c. The graph Kn � (m2 − 1)K1 is integral for all n and m.

d. The graph nK2 � (m2 − 1)K1 is integral for all n and m.

e. The graph Kp2,q2 � (m2 − 1)K1 is integral for all m, p and q.

f. The graph Kn+1 � (4n)K1 is integral for all n = 1, 2, . . .

g. The graph Kn,n � 4nK1 is integral for all n = 1, 2, . . .

Now we give some methods to construct infinite family of cospectral graphs.

From Theorems 3.1 and 4.1, one can easily notice the following.

a. If G1 and G2 are adjacency cospectral graphs and H is an arbitrary graph,

then

i. G1 �H and G2 �H are adjacency cospectral.

ii. G1 �H and G2 �H are adjacency cospectral.

b. If G is an arbitrary graph and H1, H2 are adjacency cospectral graphs with

ΓA(H1)(x) = ΓA(H2)(x), then

i. G�H1 and G�H2 are adjacency cospectral.
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ii. G�H1 and G�H2 are adjacency cospectral.

Similarly, using Theorems 3.4, 3.6, 4.4 and 4.6, one can construct Laplacian

cospectral and signless Laplacian cospectral graphs. Also from Theorem 5.1,

we have the following results:

a. If G1 and G2 are adjacency regular cospectral graphs and H is an arbitrary

graph, then G1 �H and G2 �H are adjacency cospectral.

b. If G is an arbitrary regular graph and H1, H2 are adjacency cospectral

graphs with ΓA(H1)(x) = ΓA(H2)(x), then G�H1 and G�H2 are adjacency

cospectral.

Similarly, using Theorems 5.4 and 5.6, one can construct Laplacian cospec-

tral and signless Laplacian cospectral graphs.
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