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ABSTRACT. The largest class of hyperstructures is the H,-structures,
introduced in 1990, which proved to have a lot of applications in mathe-
matics and several applied sciences, as well. Hyperstructures are used in
the Lie-Santilli theory focusing to the hypernumbers, called e-numbers.
We present the appropriate e-hyperstuctures which are defined using any

map, in the sense the derivative map, called 9-hyperstructures.
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1. BASIC DEFINITIONS

We deal with hyperstructures called H, —structures introduced in 1990 [16],[17]
which satisfy the weak axioms where the non-empty intersection replaces the
equality.

Some basic definitions are the following:

In a set H equipped with a hyperoperation (abbreviation hyperoperation=hope)
.t Hx H— P(H) — {0}, we abbreviate by

WASS the weak associativity: (xy)z Nz(yz) # O,Vz,y,z € H and by

COW the weak commutativity: xy Nyx % O,Va,y € H.

The hyperstructure (H, .) is called H,-semigroup if it is WASS and is called
H,-group if it is reproductive H,-semigroup, i.e. *H = Hx = H,Vx € H.
The hyperstructure (R, +,.) is called H,-ring if (+) and (.) are WASS, the
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reproduction axiom is valid for (4) and (.) is weak distributive with respect to
(+), ie.

r(y+2)N(zy +22) # 0, (xr +y)2N(zz + y2) # O,Vo,y,2z € R.

Motivation for H,-structures:

The motivation for H,—structures is the following: We know that the quotient
of a group with respect to an invariant subgroup is a group. F. Marty from
1934, states that, the quotient of a group with respect to any subgroup is a
hypergroup. Finally, the quotient of a group with respect to any partition (or
equivalently to any equivalence relation) is an H,—group. This is the motiva-
tion to introduce the H,-structures [16].

Specifying this motivation we remark: Let (G, .) be a group and R be an equiv-
alence relation (or a partition) in G, then (G/R,.) is an H,—group, therefore
we have the quotient (G/R,.)/B8* which is a group, the fundamental one. Re-
mark that the classes of the fundamental group (G/R,.)/3* are a union of some
of the R-classes. Otherwise, the (G/R,.)/3* has elements classes of G where
they form a partition which classes are larger than the classes of the original
partition R.

In an H,—semigroup the powers of an element h € H are defined as follows
Rt = {h},h* = h.h,...,h™ = h°h°...°h,

where (o) denotes the n-ary circle hope, i.e. take the union of hyperproducts, n
times, with all possible patterns of parentheses put on them. An H, —semigroup
(H,.) is called cyclic of period s, if there exists an element g, called generator,
and a natural number n, the minimum one, such that

H=hrUhlU..UR®

Analogously the cyclicity for the infinite period is defined [15]. If there is an
element h and a natural number s, the minimum one, such that H = h*, then
(H,.) is called single-power cyclic of period s.

For more definitions and applications on H,—structures, see the books [2],
3] [7), [8], [17] and papers as [1], [4], [6], [11], [12], [15], [18], [19], [20], [22],
23], [24).

The fundamental relations §*,v* and €* are defined, in H,-groups, H,-rings
and H,-vector spaces, respectively, as the smallest equivalences so that the
quotient would be group, ring and vector space, respectively [16], [17], [18],
[19]. The way to find the fundamental classes is given by analogous theorems
to the following one:
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Theorem 1.1. Let (H,.) be an H,-group and denote by U the set of all finite
products of elements of H. We define the relation 5 in H as follows: xSy
iff x,y C u where u € U. Then the fundamental relation B* is the transitive
closure of the relation (.

Analogous theorems for the relations v* in H,-rings, ¢* in H,-modules and
H,-vector spaces, are also proved. An element is called single if its fundamental
class is singleton [17].

Fundamental relations are used for general definitions. Thus, an H,-ring
(R,+,.) is called H,-field if R/~* is a field.

Let (H,.),(H,®) H,-semigroups defined on the same set H. (.) is called
smaller than (®), and (®) greater than (.), iff there exists automorphism

f € Aut(H,®) such that zy C f(z®y),Vx € H.

Then we write . < ® and we say that (H,®) contains the (H,.). If (H,.) is a
structure then it is called basic structure and (H,®) is called Hy-structure.

The Little Theorem. Greater hopes of hopes which are WASS or COW,
are also WASS and COW, respectively.

Definition 1.2. Let (H,.) be hypergroupoid. We say that we remove h € H,
if we consider the restriction of the hope (.) on the H — {h}. We say that an
h € H absorbs h € H if we replace h, whenever it appears, by h. We say that
h € H merges with h € H, if we take as the product of any h € H by h, the
union of the results of & with both h and A, and we consider A and h as one
class, with representative h.

Definition 1.3. [23]. Let A = (a;;) € Myx, be a matrix and s,¢t € N, with

1 <s<m,1<t<n. Then helixz-projection is a map st : M, xn — M X t:

A — Ast = (a;;), where Ast has entries

a;; = {Gitrsjtae]l <i<s,1<j<tand K,A€ N,i+ s <m,j+ Xt <n}

Let A= (a;j) € Mypxn, B = (bij) € My« be matrices and s = min(m,u),

t = min(n,v). We define a hyper-addition, called heliz-addition, by

D : ManXMuXv — P(Msxt) : (A7 B) — A@B = Ait+Bit = (Q”)'i‘(b”) g Msxt
where (a;;) + (b;;) = {(cij) = (ai; + bij)lai; € a;; and b; € by;}.

Let Let A = (a;5) € Myxn, B = (b;j) € Myx, be matrices and s = min(n, u),
define the heliz-multiplication, by

®: menXMuxv — P(mev) : (A,B) — A®B = A@Bﬂ = (QZJ)(QZJ) g mev

where (a;;).(b;;) = {(cij) = (O air-bij)|ai; € a;; and bij € by;}.
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The helix-addition is commutative, WASS but not associative. The helix-
multiplication is WASS, not associative and it is not distributive, not even
weak, to the helix-addition. For all matrices of the same type, the inclusion
distributivity, is valid.

Definition 1.4. [17], [22]. Let (F,+,.) be an H,-field, (V,+) be a COW
H,-group and there exists an external hope

S FxV —PV)-0:(a,z) — az
such that, for all a,b in F' and z,y in V we have
alr+y)N(ax+ay) £ 0, (a+bzxN (ax+bx) £, (ab)xNa(bx) # O,

then V is called an H,-vector space over F. In the case of an H,-ring instead
of an H,-field then the H,-modulo is defined. In these cases the fundamental
relation £* is the smallest equivalence relation such that the quotient V/e* is a
vector space over the fundamental field F'/~*.

The general definition of an H,-Lie algebra was given in [14], [21], [22] as
follows:

Definition 1.5. Let (L, +) be H,-vector space over the field (F,+,),¢: F —
F/~*, the canonical map and wp = {x € F : p(z) = 0}, where 0 is the zero of
the fundamental field F /+*. Similarly, let wy, be the core of the canonical map
¢ : L — L/e* and denote by the same symbol 0 the zero of L/e*. Consider
the bracket (commutator) hope:

[, ]:LxL— P(L): (z,y) — [z,y]

then L is an H,-Lie algebra over F if the following axioms are satisfied:

(L1) The bracket hope is bilinear, i.e.

[M1z1 + ez, y] N (A1]z1, y] + Aoz, y]) # O

[, A1y1+ Aoy ) (A [z, y1])+ A2 [x, y2]) # O, Vo, 21, %2,y,y1,y2 € L and A1, A2 €
F

(L2) [z,z] Nwr, #O, Yx e L

(L3) ([, [y, 2] + [y, [z, 2]] + [z, [, yl]) Nwr # @, Yo,y € L

The uniting elements method was introduced by Corsini-Vougiouklis [5] in

1989. With this method one puts in the same class, two or more elements. This
leads, through hyperstructures, to structures satisfying additional properties.

2. SOME CLASSES OF H,-STRUCTURES

The P-hopes
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A general way to define hopes, which are not always of a constant length,
from given operations [15], [17] can be generalized as follows:

Definition 2.1. Let (G,.) be a groupoid, then for every set P C G, P # O,
we define the following hopes called P-hopes:

P :xPy = (zP)yUx(Py),

P, :aPy= (zy)PUz(yP), Py :aPy = (Pz)yU P(ay),Vo,y € G
The (G, P), (G, P,) and (G, P;) are called P-hyperstructures. The most usual
case is if (G, .) is semigroup, then
2Py = (xP)y Uz (Py) = Py
and (G, P) is a semihypergroup but we do not know for (G,P,), (G, P;). In
some cases, mainly depending on the choice of P, the (G,P,), (G, P;) can

be associative or WASS. If in G, more operations are defined then for each
operation several P-hopes can be defined.

Construction. Let (G,.) be abelian group and P C G, with more than one
elements. We define a hope (xp) as follows:

Xy — x.Py={xzhylhe P} x#e and y#e
PY= .y r=e or y=e

Definition 2.2. Let M = M, «x, be a module of m x n matrices over a ring R
and P ={P;:i €I} C M. We define, a kind of, a P- hope P on M as follows

P:MxM—sP(M) :(A,B) — APB={AP'B:icI} C M

where P! denotes the transpose of the matrix P. The hope P, which is a bilinear
map, is a generalization of Rees’ operation where, instead of one sandwich
matrix, a set of sandwich matrices is used. The hope P is strong associative
and the inclusion distributivity with respect to addition of matrices

AP(B+ C) C APB + APC for all A,B,C € M

is valid. Therefore, (M, +, P) defines a multiplicative hyperring on non-square
matrices. Multiplicative hyperring means that only the multiplication is a hope.

Definition 2.3. Let M = M,,«, be a module of m X n matrices over a ring
R and let take sets S = {sp : k€ K} CR,Q={Q;:j€J} CM,P={P;:
i € It C M. Define three hopes as follows

S:RxM—PM):(r,A) —rSA={(rsx)A: ke K} C M
Q. :MxM—P(M):(A,B) — AQ B={A+Q;+B:jeJ}CM
P:MxM—sP(M):(A,B) — APB={AP!B:ic I} C M
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Then (M, S, Q+ , P) is a hyperalgebra over R called general matrix P-hyperalgebra.
In a similar way a generalization of this hyperalgebra can be defined if one con-
siders an H,-ring or an H,-field instead of a ring and using H,-matrices.

We present now a large class of hopes defined in any groupoid with a map f
on it, which is denoted by ’theta’ 9, since the motivation is the property which
the derivative has on the product of functions, see [21],[22].

The theta 0-hopes

Definition 2.4. Let (G,.) be groupoid (respectively, hypergroupoid) and f :
G — G be a map. We define a hope 0, called theta-hope, on G as follows

w0y = {f(x).y,z.f(y)},Va,y € G.(resp. x0y = (f(x).y) U (z.f(y)),Vz,y € G)

If (.) is commutative then (9) is commutative. If (.) is COW, then (0) is
COow.

Let (G,.) be groupoid (resp. hypergroupoid) and f : G — P(G) — {0},
multivalued map. We define the theta-hope (9), on G as follows

20y = (f(z).y) U (z-f (), Yo,y € G

Let (G,.) be a groupoid and f; : G — G,i € I, be set of maps on G. We
consider the map f, : G — P(G) such that fu(z) = {fi(x)|i € I}, called the
union of the f;(x). We define the union theta-hrope (9), on G if we consider
the fu(x). A special case for given f, is to take the union with the identity:
We consider the map f = f U (id), so f(x) = {z, f(z)},V2 € G, which we call
b-theta-hope. Then we have

xdy = {xy, f(x).y,z.f(y)}, Yo,y € G.

Motivation for the definition of the theta-hope is the map derivative where
only the multiplication of functions can be used. Therefore, in these terms,
for any functions s(x),t(z), we have sot = {s't,st'} where (') denotes the
derivative.

Proposition 2.5. [21]. If (G,.) is a semigroup then:

(a) For every f, the (0) is WASS. If f is homomorphism then (0) remains
WASS.

(b) If f is homomorphism and projection, i.e. f* = f, then (0) is associative.
(c) If (G, .) is a semigroup then, for every f, the b-theta-operation (0) is WASS.
(d) Reproductivity. If (.) is reproductive then (0)is also reproductive, because

20G = U {f(®).9,2.f(9)} =G and Gox = U {f(g)x,g9.f(2)} =G

geG geG


http://ijmsi.com/article-1-744-en.html

[ Downloaded from ijmsi.com on 2025-11-15]

The e-theta hopes 45

(e) Commutativity. If (.) is commutative then (0) is commutative. If f is into
the center of G, then (0) is a commutative. If (.) is a COW then, (0) is a
COWw.

(f) Unit elements. u is a right unit element if x € xdu = {f(x).u,z.f(u)}. So
f(u) = e, where e be a unit in (G,.). The elements of the kernel of f, are the
units of (G, 0).

(g9) Inverse elements. Let (G,.) is a monoid with unit e and u be a unit in
(G,0), then f(u) = e. For given z, the element 2’ = (f(z))"'u and 2" =
u(f(x))~t, are the right and left inverses, respectively. We have two-sided

inverses iff f(x)u = uf(z).

Definition 2.6. Let (R,+,.) be aring and f : R— R,g: R — R be two
maps. We define two hopes (9;) and (9.), called both theta-hopes, on R as
follows

204y = {f(z) +y,z+ f(y)} and 20y = {g(z)y,z9(y)},Vz,y € G

The hyperstructure (R, 04, 0.), called theta, is an H,-near-ring, i.e. satisfy all
H,-ring axioms, except the weak distributivity.

Some results and examples:

Let (G,.) be group and f(x) = a, a constant map on G. Then (G, 9)/5* is
singleton. If f(x) = e, then xdy = {x, y} which is the smallest incidence hope.

Consider all polynomials of first degree g;(x) = a;x + b;, and as map the
derivative, we have

91092 = {a1a2x + a1bs, a1a2x + bras},

so it is a hope inside the set of first degree polynomials. Moreover all polyno-
mials x 4 ¢, where ¢ be a constant, are units.

Several results can be obtained using d-hopes [21]:

Theorem 2.7. (a) Consider the group of integers (Z,+) and n # 0 be a natural
number. Take the map f such that f(0) =n and f(z) = z,Ya € Z—{0}. Then

(2,0)/6" = (Zn, +).

(b) Take the ring of integers (Z,+,.) and fix n # 0 a natural number. Con-
sider f such that f(0) = n and f(x) = z,Yo € Z — {0}. Then (Z,04,0.),
where 0y and 0. are the 0-hopes refereed to the addition and the multiplication
respectively, is an H,-near-ring, with

(Z,04,0) /7" = (Zn).
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(c) Take the (Z,+,.) and n # 0 a natural. Take f such that f(n) = 0 and
flx) =a,Va € Z—{n}. Then (Z,0,,0.) is an H,-ring, moreover,

(Z,04,0) /7" = (Zn).

Special case of the above is for n = p, prime, then (Z,01,0.) is an H,-field.

Special case of the above is for n = p, prime, then (Z,04,0.) is an H,-field.

3. THE e-THETA HOPES

The Lie-Santilli theory on isotopies was born in 1970’s to solve Hadronic
Mechanics problems. Santilli proposed a ’lifting’ of the n-dimensional triv-
ial unit matrix of a normal theory into a nowhere singular, symmetric, real-
valued, positive-defined, n-dimensional new matrix. The original theory is re-
constructed such as to admit the new matrix as left and right unit. The isofields
needed in this theory correspond into the hyperstructures were introduced by
Santilli and Vougiouklis in 1996 [13] and they are called e-hyperfields. A hyper-
structure (H,.) which contain a unique scalar unit e, is called e-hyperstructure.
In an e-hyperstructure, we normally assume that for every element x, there ex-
ists an inverse element 7!, ie. e € z.o7! Na~l.z. The H,-fields can give
e-hyperfields which can be used in the isotopy theory in applications as in
physics [9], [13], [14]. In the following we present the O-hyperstructures that
they can be used in this theory. First we give the general definition of 0-hopes.

Definition 3.1. Let H be a set equipped with n operations (or hopes) ®1, ®a, ...
and a map (or multivalued map) f: H — H (or f : H — P(H) — {0},
respectively), then n hopes 01,05, ...,0, on H can be defined, called theta-
operations (we rename here theta-hopes and we write 9-hope) by putting

20y ={f(z) ®;y,2®; f(y)}, Vx,y € H and i € {1,2,...,n}

X

or, in case where ®; is hope or f is multivalued map, we have
20y = (f(z) ®; y) U (z ®; f(y), Vr,y € H andi € {1,2,...,n}.
(i) If ®; is associative then 9; is WASS. Indeed for any map f we have

(0y)0z = {f(2)y, 2 (y)}0z = {f(f(2)y)z, f(2)yf(2), f(xf(y))z, 2 f(y) f(2)}

and

20(ydz) = x0{f(y)z,uf(2)} = {f(@)f W)z 2 f(f(y)2), f(@)yf(2), = f(yf(2)}

(x0y)0z N20(y0z) = {f(x)yf(2)} # O
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(ii) if moreover the map f is an homomorphism then on the above relations
we have

(@0y)0z = {f(z)y, xf(y)}0z = {f(f(2))f W)z, f(x)yf(2), F(@) f(f W)z 2 f(y) ()}

and

20(y0z) = x0{f(y)z,uf(2)} ={f(@)f W)z, 2 f(f(W)f(2), f(@)yf(2), 2 f(y) f(f(2)}

so again we have

(x0y)0z Nxd(y0z) = {f(z)yf(2)} # O

(iii) if moreover the map f is an homomorphism and a projection f? = f,
then we have

(20y)0z = {f(z)y, o f(y)}0z = {f(2)f(y)z, f(2)y f(2),xf(y) [ (2)}

and

20(y0z) = 208 f(y)z yf (2)} = {f (@) f (W)=, f(2)yf (2), 2f (v) f(2)}

so we have the associativity
(x0y)0z = x0(y0z) = {f (=) f (y)z, f(2)yf(2),xf(y) [ (2)}

Construction. Let (G,.) be a group and f any map on G. We define the
e-theta hopes (0) as follows:

_ [ @y, zf(y)} z#e and y#e
x@ey—{ f(zy) r=e¢ and y=e

The hyperstructure (G, 9.) is an H,-group if f is an onto map on G.

Proof. . Let x,y,z be non unit elements of (G,.). Then, supposing e #
f(e)y,e# xf(y),e # f(y)z,e # yf(2), we have

(20cy)0ez = {f(2)y, 2 (y)}0ez = {f (f(2)y)z, f(2)yf(2), f(xf(y))z 2 f(y) f(2)}
20 (y0ez) = w0 (y)z,yf (2)} = {f (@) ()2, 2 f(f(y)2), F(@)yf(2), 2 f(yf(2)}

S0
(20ey)dez N 20e(ydez) = {f(2)yf(2)} # O
If e = f(x)y, then we have

(@0ey)0ez = {e,xf(y)}0ez = {f(2), f(@f(y))z, xf (y) f(2)}
20c(y0ez) = 0 f(y)2,yf (2)} ={f (@) f(W)z, 2 f (f(y)2), (), f(yf(2))}

therefore we have

(xaey)aez N xae(yaez) = {f(z>} # 0,
so the hope 9, is WASS. O
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Suppose now that f is an homomorphism, then for e = f(z)y, we have
(20ey)0ez = {e,xf(y)}0ez = {f(2), f (@) f (f W)z, 2f (y) f(2)}
20c(y0ez) = 20 f(y)2,yf (2)} = {f (@) f(y)z, 2 f(F (W) f(2), £ (2), 2 f (y) f(f(2))}

so again J, is WASS:
(20ey)0ez N 20 (yOez) = {f(2)} # O

Suppose now that f is moreover a projection then generally we have the
above case (iii), but if e = f(x)y, then we have

(maey)aez = {emcf(y)}@ez = {f(Z), f(x)f(y)z,xf(y)f(z)}
20 (y0ez) = 20 f(y)z, yf(2)} = (@) f(y)z, 2 f (W) f(2), f(2), xf(y) f(2)
therefore
(20cy)Dez N20e(ydez) = {f(2), f(2)f(y)z,xf(y) [(2)} # O
if e=2xf(y), then we have
(20cy)0ez = {f(2)y, e}0ez = {f(z)f(y)2, f(x)yf(2), f(2)}
20c(y0ez) = x0c{ f(y)z, yf(2)} = {f(x) f()z, f(x)yf(2), f(2)}

so 0. is associative,
if we have both e = f(x)y and e = z f(y), then

(JC@ey)an =e0.2 = {f(z)}
20c(y0ez) = x0cA f(y)z, yf(2)} = {f(x) f()z, f(2)yf(2), f(2)}

SO

(20.y)0ez N 20 (yDez) = {f(2)} £ O
and J, again is WASS.
We have analogous cases for e = f(y)z,e = yf(2):
If e = f(y)z, then we have

(@0cy)0cz = {f @)y, xf(y)}0ez = {f(f(@)y)z, f(2)yf(2), f(@f(y))z xf(y) f(2)}
.’Eae(yan) = x@e{e,yf(z)} = {f(x)a f(x)yf(z)vxf(yf(z))}

therefore we have

(20ey)0ez N0 (yOez) = {f(x)yf(2)} # O

so the hope 0, is WASS.
Suppose now that f is an homomorphism, then for e = f(y)z, we have

(#0ey)0ez = {f(2)y, f(y)}0ez = {f(f(x)), f(2)yf(2), (@) (f ()2 2 f(y) f(2)}

20c(yOez) = x0e{e,yf(2)} = {f(x), f(2)yf(2),2f(y) f(f(2))}
so again 0, is WASS:

(20cy)0ez N 20 (yOez) = {f(x)yf(2)} # O
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Suppose now that f is moreover a projection then generally we have the above
case (iii), but if e = f(y)z, then we have

(20ey)0ez = {f(2)y, v f(y)}0ez = {f(z), f()y [ (2), f (@) f(y)z,xf (y) f(2)}
20 (y0ez) = w0,y f(2)} = {f (), f(@)yf(2), xf(y) f(2)}

therefore

(20ey)0ez N 20 (yOez) = {f(x), f(x)yf (2), o f(y) f(2)} # O
If e = yf(2), then we have

(0ey)0ez = {f(2)y, [ (y)}0ez = {f (f(x)y)z, f(2), f(@f(y))z,xf (y) f(2)}

20 (Y0ez) = w0{f (y)z, e} = {f (2)f(y)z, 2 f(f(y)2), f ()}
so 0, is WASS:
(20cy)Dez N w0 (yOez) = {f(x)} # O
If we have both e = f(y)z and e = yf(z), then

(€0cy)0ez = {f(2)y, 2 f(y)}0ez = {f(f(x)y)z, f(2), f(xf(y)z,xf(y)f(2)}
10, (y0ez) = x0.e = { f(x)}

(xaey)aez N .%'ae(yan) = {f({L‘)} 7& %)
0. again is WASS.
Now let x # e, then
70.G = {f(2)} U[0e(G — {eD)] = (@)} U {F(@)y/y

€ (G —{e)}u{zf(y)/y € (G —A{e})} = f(2)G

Because we remark that

{f(@)y/y € (G —{eh} = f(2)(G —{e})

in which the set f(z)(G —{e}) contains all the elements of G except the element
f(x) and this element is in 20.G, therefore we have 0.G = G. The same proof
for GO.x = G. Finally, the reproductivity for the unit e is obvious since f is
onto map. Thus (9.) is reproductive.

Remark that e is scalar unit in (G, 9.). Any element 2 of G has one or two
inverses: the element (f(z))~! and the element y if 2 f(y) = e.
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