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ABSTRACT. In a recent paper, Khojasteh et al. [F. Khojasteh, S. Shukla,
S. Radenovié, A new approach to the study of fixed point theorems via
simulation functions, Filomat, 29 (2015), 1189-1194] presented a new
class of simulation functions, say Z-contractions, with unifying power
over known contractive conditions in the literature. Following this line of
research, we extend and generalize their results on a b-metric context, by
giving a new notion of b-simulation function. Then, we prove and discuss

some fixed point results in relation with existing ones.
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1. INTRODUCTION

The source of metric fixed point theory is the contraction mapping principle,

presented in Banach’s Ph.D. dissertation, and later published in 1922 [5]. This
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fundamental principle was largely applied in dealing with various theoretical
and practical problems, arising in a number of branches of mathematics. This
potentiality attracted many researchers and hence the literature is reach in
fixed point results, see for example [7, 13, 33, 35, 36, 39, 40].

In this exciting context, Bakhtin [6] and Czerwik [14, 15] developed the
notion of b-metric space and proved some fixed point theorems for single-valued
and multi-valued mappings in b-metric spaces. Successively, this notion has
been reintroduced by Khamsi [22] and Khamsi and Hussain [23], with the
name of metric-type space. In the literature, there are a lot of consequences of
this study, see for example [10, 13, 20, 21, 22, 23].

On the other hand, a pioneering paper for the success of fixed point theory in
applied science is the paper of Ran and Reurings [32], where they established a
fixed point result by dealing with partially ordered sets. Further, several results
appeared in this direction, we refer to [1, 11, 12, 18, 19, 25, 26, 30, 31, 42] and
the references therein.

Finally, Khojasteh et al. [24] introduced the notion of Z-contraction which
is a new type of nonlinear contractions defined by using a specific simulation
function. Then, they proved existence and uniqueness of fixed points for Z-
contraction mappings. In fact, the advantage of this technique is the possibility
to treat several fixed point problems from a unique common point of view.
In this direction, we recall that Rolddn et al. [38] used simulation functions
to studying the existence and uniqueness of coincidence points of a pair of
contractive nonlinear operators. Also, Argoubi et al. [4] studied the existence
of coincidence and common fixed point results of a pair of nonlinear operators
satisfying a certain contractive condition involving simulation functions, in the
setting of ordered metric spaces.

In this paper, we introduce the notion of b-simulation function in the set-
ting of b-metric spaces and consider nonlinear operators satisfying a nonlinear
contractive condition involving a b-simulation function in a b-metric space or
in a b-metric space endowed with a partial order. For this kind of contractions,
we establish existence and uniqueness of fixed points. As consequences of this
study, we deduce several related results in fixed point theory in a b-metric
space.

2. PRELIMINARIES

The aim of this section is to present and collect some notions used in the
paper.
Definition 2.1. Let X be a nonempty set and let b > 1 be a given real number.

A function d : X x X — [0, + oo] is said to be a b-metric if and only if for all
x,y,z € X the following conditions are satisfied:

(1) d(z,y) =0 if and only if x = y;
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(2) d(z,y) = d(y, z);
(3) d(z,z) < bld(z,y) + d(y, z)].
A triplet (X,d,b), is called a b-metric space.

We observe that a metric space is included in the class of b-metric spaces. In
fact, the notions of convergent sequence, Cauchy sequence and complete space
are defined as in metric spaces.

Next, we give some examples of b-metric spaces.

EXAMPLE 2.2. Let X = [0,1] and d : X x X — [0, +00[ be defined by d(z,y) =
(r —y)?, for all 7,y € X. Clearly, (X,d,2) is a b-metric space.

EXAMPLE 2.3. Let Cy(X) = {f : X > R : [[f]loc = supgex [f(z)| < +o0}
and let || f]| = ¢/[[/3][oe. The function d : Cy(X) x Cyp(X) — [0, 4 oo[ defined
by

d(f,9) = Ilf —gll, forall f,geCp(X)
is a b-metric with constant b = /4 and so (Cy(X),d, V/4) is a b-metric space.

Let X be a non-empty set. If (X,d,b) is a b-metric space and (X, <) is a
partially ordered set, then (X, d, b, <) is called an ordered b-metric space. Two
elements = and y of X are called comparable if + < y or y =< x holds. A
self-mappings f on (X, =) is said to be dominated if fo < x for all z € X
and non-decreasing if fx < fy whenever x < y for all ,y € X. An ordered
b-metric space (X,d,b, <) has a sequential limit comparison property if the
following holds:

(S) for every decreasing sequence {z,} in X such that z,, — z € X, we have
T X Ty,

Khojasteh et al. gave the following definition of simulation function, see
[24].

Definition 2.4. A simulation function is a mapping ¢ : [0, +00[x [0, +oo[— R
satisfying the following conditions:
(¢1) €(0,0) = 0;
(C2) C(t,s) < s—t, forall t,s > 0;
(¢3) if {tn}, {sn} are sequences in |0, +o00[ such that lim, o0 t, = limy, 400 Sp =
£ €]0, +o0], then

lim sup {(ty, sn) < 0.

n—-+oo
Then, they proved a theorem of existence and uniqueness of fixed point.

Theorem 2.5 ([24]). Let (X,d) be a complete metric space and f : X — X be
a Z-contraction with respect to a certain simulation function (, that is,

Cd(fz, fy),d(x,y)) 20,  forall z,y € X. (2.1)

Then f has a unique fized point. Moreover, for every xo € X, the Picard
sequence {f"xo} converges to this fized point.
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In [4], Argoubi et al. note that the condition ((;) was not used for the
proof of Theorem 2.5. Also they observe that taking z =y in (2.1), we obtain
€(0,0) > 0 and hence, if ¢(0,0) < 0, then the set of operators f : X — X
satisfying (2.1) is empty.

Taking in consideration the above remarks, Argoubi et al. slightly modified
the previous definition, by removing the condition (¢;). Precisely, we have to
consider the following definition.

Definition 2.6. A simulation function is a mapping ¢ : [0, +00[x [0, +oo[— R
satisfying the conditions ({2) and ((3).

Clearly, any simulation function in the original Khojasteh et al. sense (Defi-
nition 2.4) is also a simulation function in Argoubi et al. sense (Definition 2.6),
but the converse is not true, as we show in the following example.

EXAMPLE 2.7 ([4], Example 2.4). Let ¢y : [0, +00[X [0, +00[— R be the function

defined by
1 if (s,t) = (0,0),
Ga(t, s) = \ ). 0.0
As —t otherwise,

where A €]0,1[. Then () satisfies (¢2) and (¢3) with ¢x(0,0) > 0.

Now, we give the definition of b-simulation function in the setting of b-metric
space.

Definition 2.8. Let (X,d,b) be a b-metric space. A b-simulation function is
a function & : [0, +00[x [0, +00[— R satisfying the following conditions:

(&) &(t,s) < s—t, for all ¢,5 > 0;

(&2) if {tn}, {sn} are sequences in |0, +o00[ such that

0< lim t, <liminfs, <limsups, <b lim t, < +oo,
n—+00 n—+00 n——+oo n—+00

then
limsup &(bty, $p) < 0.

n—-+oo

Following are some examples of b-simulation functions.

EXAMPLE 2.9. Let ¢ : [0, +00[X[0, +00[— R, be defined by
(i) &(t,s) =As—tforallt,s e [0,+o00], where A € [0, 1].
(ii) &(t,8) = YP(s) — ¢(¢t) for all t,s € [0,400[, where ¢,9 : [0, +oo[—
[0, 4+00[ are two continuous functions such that ¥ (t) = ¢(¢) = 0 if and
only if t =0 and ¥(t) <t < p(t) for all t > 0.
f(t, )
(iii) &(t,s) =s o(t5)

10, +o00[ are two continuous functions with respect to each variable such
that f(t,s) > g(t,s) for all t,s > 0.

tforallt, s € [0, 400, where f, g : [0, +00[x[0, +00[—
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(iv) &(t,s) =s—(s) —t for all t, s € [0, 400, where ¢ : [0, +00[— [0, +00]
is a lower semi-continuous function such that ¢(¢) = 0 if and only if
t=0.

(v) &(t,8) = sp(s) —t for all t,s € [0,+00[, where ¢ : [0, 4+00[— [0,1] is
such that lim;_,,+ ¢(t) < 1 for all » > 0.

Each of the function considered in (i)-(v) is a b-simulation function.

3. FIXED POINTS VIA b-SIMULATION FUNCTIONS

The following lemmas, on Picard sequence, are needed to establish the main
result. Let X # () and f a self-mapping on X. Let 29 € X and z,, = fx,,_1 for
all n € N. Then {z,} is called a Picard sequence of initial point at xzy. Denote
with Fiz(f) = {x € X : © = fzx}, that is, the set of fixed points of f.

Lemma 3.1. Let (X, d,b) be a b-metric space and let f : X — X be a mapping.
Suppose that there exists a b-simulation function & such that

Ed(fz, fy),d(z,y)) >0 forallz,y € X. (3.1)

Let {x,} be a sequence of Picard of initial point at o € X. Suppose that
Tp_1 F Xy for allm € N. Then

ngrfoo d(xp—1,z,) =0.

Proof. It follows from (3.1) and (&;) that for all n € N, we have
0 < &bdzn,Tni1),d(@n—1,2n))
< d(xp-1,2n) —bd(Xpn, Tpi1)-
The above inequality shows that
bd(xp, xnt1) < d(xp—1,T,), forallneN,

which implies that {d(z,—1,x,)} is a decreasing sequence of positive real num-
bers. So there is some r > 0 such that
nEToo d(xp—1,2y) =1
Suppose that r > 0. It follows from the condition (&), with ¢, = d(zn, zp41)
and s, = d(zp—_1,2y), that
0 <limsup¢ (bd(xna In-‘rl)» d(mn—ly In)) <0,
n—-+oo
which is a contradiction. Then we conclude that » = 0, which ends the proof.
]

Lemma 3.2. Let (X, d,b) be a b-metric space and let f : X — X be a mapping.
Suppose that there exists a b-simulation function £ such that (3.1) holds. Let
{zn} be a sequence of Picard of initial point at xy € X. Suppose that x,,—1 # x,
for alln € N. Then {x,} is a bounded sequence.
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Proof. Let us assume that {z,} is not a bounded sequence. Then, there exists
a subsequence {z,, } of {x,} such that ny =1 and for each k € N, ngy; is the
minimum integer such that

A(Xnpyy> Tny) > 1
and
A, Tp, ) <1, for ngy <m <mnpgq — 1.

By the triangle inequality, we obtain

1 < d(‘rnkJrl?xnk) S bd(xnk+1’xnk+171) + bd(‘rnkJrl*lvxnk)
<bd(Tny s Tnyy,—1) + 0.

Letting £ — +o0 in the above inequality and using Lemma 3.1, we get

1 <liminfd(zp,, ,,Ty,) <limsupd(zy,, ,,Tn,) < b. (3.2)
k—+o0 k——+oco )

Again, from (3.1), we deduce

bd(xnk+1"rnk) < d($ﬂk+1*17xnk*1)
<bd(Tnyy,—1,%n,) +bd(Tp,, Tny—1)
<b+bd(xn,, Tn,—1)-

Letting & — 400 in the above inequality and using (3.2), we deduce that
there exist

kgrfoo d(xp, .\, Tpn,) =1 and kgrfoo d(Znyyy—1,Tnj—1) = b.

Then by condition (&), with tx = d(2n,, ,, s, ) and sp = d(Tn,, 1, Tn,—1),
we obtain
0 <limsup& (bd(Tn,,ys Tny), d(@ny -1, Tnp—1)) <0,
k—40c0

which is a contradiction. This ends the proof.
O

Lemma 3.3. Let (X, d,b) be a b-metric space and let f : X — X be a mapping.
Suppose that there exists a b-simulation function £ such that (3.1) holds. Let
{zn} be a sequence of Picard of initial point at xo € X. Suppose that x,,—1 # T,
for alln € N. Then {x,} is a Cauchy sequence.

Proof. Let
C,, = sup{d(z;,z;) : i,j >n}, neN.

From Lemma 3.2, we know that C,, < 400 for every n € N. Since {C,} is a
positive decreasing sequence, there is some C' > 0 such that

lim C, = C. (3.3)

n—-+oo
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Let us suppose that C' > 0. By the definition of C),, for every k& € N, there
exists ng, mr € N such that mg > nyp > k and

1
Cr — = < d(Tmy, Tn,) < Ck.

k
Letting K — +o0 in the above inequality, we get
kll):r_loo d(zpm,, Tn,) = C. (3.4)

Again, from (3.1) and the definition of C,,, we deduce
bd(zmkamnk) S d(xmk—laznk—l) S Ck—l-
Letting k — 400 in the above inequality, using (3.3) and (3.4), we get

bC < liminf d(zpm, —1,%n,—1) < lmsup d(@m, —1, Tn,—1) < C. (3.5)

k—+oo k——+oo
Now, if b > 1, the previous inequality implies C = 0. If b = 1, by the
condition (&2), with tg, = d(@m,,, Tn, ) and s = d(Tm, —1, Tn,—1), We get
0 < limsup&(bd(xm,, Tn,, )s A(Tmy,—1, Tnj—1)) <0,
k— 400

which is a contradiction. Thus we have C = 0, that is,

lim C,=0 forallb>1.

n—-+oo

This proves that {x,} is a Cauchy sequence.

Now, we present our first main result.

Theorem 3.4. Let (X,d,b) be a complete b-metric space and let f : X — X be
a mapping. Suppose that there exists a b-simulation function & such that (3.1)
holds, that is,

§bd(fz, fy),d(z,y)) =20, forallz,ye X.
Then f has a unique fixed point.

Proof. Let zy € X and {x,} be a sequence of Picard with initial point at x.
At first, observe that if x,,, = ,,41 for some m € N, then z,, = ;41 = fom,
that is, x,, is a fixed point of f. In this case, the existence of a fixed point is
proved. So, we can suppose that x, # x,1 for every n € N.
Now, by Lemma 3.3, the sequence {z,} is Cauchy and since (X,d,b) is
complete, then there exists some z € X such that
lim z, = z. (3.6)

n—+00

We claim that z is a fixed point of f. Using (3.1) with z = z,, and y = z, we
deduce that

0< f(bd(fxmfz)’d(xmz)) < d(xnaz) - bd(fl'n»fz)'
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This implies
bd(fan, fz) <d(x,,z) foralneN
and consequentily

d(z, f2) <bd(z,2nq1) +bd(fn, f2) <bd(2, Tng1) + d(zy, 2).

Letting n — 400 in the above inequality, we obtain that d(z, fz) = 0, that is,
z = fz.
Now, we establish uniqueness of the fixed point. Suppose that there exists
w € X such that w = fw and z # w. Using (3.1) with x = w and y = 2, we
get that
0 <EObd(fw, f2),d(w,2)) < d(w,z) —bd(w,z) <0,

which ia a contradiction and hence w = z. This ends the proof of Theorem
3.4. |

4. CONSEQUENCES

We show the unifying power of b-simulation functions by applying Theorem
3.4 to deduce different kinds of contractive conditions in the existing literature.
The following corollary give a result of Banach type [5].

Corollary 4.1 ([21], Theorem 3.3). Let (X, d,b) be a complete b-metric space
and let f: X — X be a mapping. Suppose that there exists A €]0, 1] such that

bd(fz, fy) < Xd(z,y) forall z,y € X.
Then f has a unique fixed point.
Proof. The result follows from Theorem 3.4, by taking as b-simulation function
E(t,s) = As—t,
for all £,s > 0. O
The following corollary give a result of Rhoades type [37].

Corollary 4.2. Let (X,d,b) be a complete b-metric space and let f: X — X
be a mapping. Suppose that there exists a lower semi-continuous function
¢ : [0, +00[— [0, +oo[ with ¢~1(0) = {0} such that

bd(fx, fy) <d(z,y) —p(d(z,y)) forall z,ye X.

Then f has a unique fixed point.

Proof. The result follows from Theorem 3.4, by taking as b-simulation function

£(t,s) =s—p(s) — t,
for all t,s > 0. O

We have also the following corollary, see [34].
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Corollary 4.3. Let (X,d,b) be a complete b-metric space and let f: X — X
be a mapping. Suppose that there exists a function ¢ : [0, +00[— [0, 1] with
limsup,_,,+ ¢(t) < 1 for all > 0 such that

bd(fx, fy) < o(d(z,y))d(xz,y) forall z,y e X.

Then f has a unique fixed point.

Proof. The result follows from Theorem 3.4, by taking as b-simulation function

E(t,s) = sp(s) — t,
for all t,s > 0. O

The following corollary give a result of Boyd-Wong type [8].

Corollary 4.4. Let (X,d,b) be a complete b-metric space and let f: X — X
be a mapping. Suppose that there exists an upper semi-continuous function
7 : [0, +oo[— [0, 400 with n(t) < ¢ for all ¢ > 0 and n(0) = 0 such that

bd(fx, fy) <n(d(z,y)) forall z,ye€ X.

Then f has a unique fixed point.

Proof. The result follows from Theorem 3.4, by taking as simulation function

C(t7 S) = 77(5) —t,
for all t,s > 0. O

Following example shows that the above Theorem 3.4 is a proper general-
ization of Banach contraction principle in the setting of b-metric spaces.

ExXAMPLE 4.5. Let X =[0,1] and d : X X X — R be defined by d(z,y) = (z —
y)2. Then (X, d,?2) is a complete b-metric space. Define a mapping f: X — X
by

1
fr= o for all z € X and a €]0, —=].

1+ V2

For all z,y € X with = > y, we have

_ 2 (z—y)* 2 (z-y)° 2 (z—y)?
W I = g S Tr a—nP = T+ @9

Now, let  : [0,4o00[— [0,+00[ be defined by n(t) = 1/(1 +t) for all ¢ > 0.
From the previous inequality, we get

2d(fz, fy) <n(d(z,y)) forall z,y e X.

Since all the conditions of Corollary 4.4 are satisfied, then f has a unique
fixed point.
Note that for a = %, there does not exist A € [0, 1] such that

2d(fzx, fy) < Ad(z,y) forall z € X.
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In fact, the previous inequality for z > 0 and y = 0 implies

2

T
m § Amz for all x 6]0, 1],

that is, 1 < A.

5. FIXED POINTS IN ORDERED B-METRIC SPACES

The existence of fixed points of self-mappings defined on certain type of
ordered sets plays an important role in the order theoretic approach for appli-
cations in differential and matrix equations. This approach has been initiated
by Ran and Reurings [32], and further studied by Nieto and Rodriguez-Lopez
[26]. Other contributions can be found in [2, 3, 9, 16, 17, 27, 28, 29, 41].

First, we formulate Lemmas 3.1-3.3 in ordered b-metric spaces as follows.

Lemma 5.1. Let (X,d, b, =) be an ordered b-metric space and let f : X — X
be a mapping. Suppose that there exists a b-simulation function £ such that for
every x,y € X with x <y, we have

£ (bd(fo, fy), d(z,y)) > 0. (5.1)
Let {x,} be a sequence of Picard with initial point at xg € X such that

Tpy1 = frn < Ty, for alln € N, (5.2)
Then

(1> hmn—HrOO d<xn+la l‘n) = 0;
(i1) {zn} is a bounded sequence;
(iii) {zn} is a Cauchy sequence.

Clearly, one can prove Lemma 5.1 by proceeding as in the proofs of Lemmas
3.1-3.3.

Theorem 5.2. Let (X,d,b, <) be a complete ordered b-metric space and let
f: X — X be a dominated mapping. Suppose that there exists a b-simulation
function & such that

§(bd(fx, fy),d(z,y)) = 0
for all x,y € X with x < y. If the following condition is satisfied:
(i) X has the property (S),
then f has a fized point. Moreover, the set Fix(f) of fixed points of f is well
ordered if and only if f has a unique fixed point.

Proof. Let 9 € X be an arbitrary point and let {z,} be a Picard sequence
of initial point at =g € X. If x,,_1 = x,,, for some m € N, then z,, 1 =
Ty = fTm—1 and S0 x,,_1 is a fixed point of f. Assume that z,,_1 # x,, for all
n € N. Using the property of mapping f, we deduce

Ty = fTn_1 < Tp_1, for all n € N.


http://dx.doi.org/10.7508/ijmsi.2016.01.011
http://ijmsi.com/article-1-684-en.html

[ Downloaded from ijmsi.com on 2025-11-18 ]

[ DOI: 10.7508/ijmsi.2016.01.011 ]

Fixed Point Results on b-Metric Space via Picard Sequences and b-Simulation Functions 133

Then z,, < x,—1 for all n € N. Thus {z,} is a decreasing sequence and by
Lemma 5.1 the sequence {x,} is Cauchy. Then there exists z € X sucht that
Z, — z. Note that condition (S) ensures that z < z,,_; for all n € N.

Now, we show that z is a fixed point of f. Using (5.1) with x = z and
Yy = T,_1, we deduce that

0 < f(bd(fzv fxnfl)a d(Z, xnfl)) < d(za xnfl) - bd(fZ, fxnfl)'
This implies
bd(fz, fxn—1) <d(z,zp,—1) forallneN

and consequently
d(fz,z) <bd(fz, frn_1) + bd(xn,2) <d(z,2,-1) + bd(xy, 2).

Letting n — +o0 in the above inequality, we obtain that d(fz, z) = 0, that is,
z= fz.

Now, assume that the set of fixed points of f is well ordered and establish
uniqueness of the fixed point. Suppose that there exists w € Fiz(f) such that
z # w. Assume that w < z. Using (5.1) with z = w and y = z, we get that

0 <&bd(fw, fz),d(w,2)) < d(w,z) —bd(w,z) <0,

which is a contradiction and hence w = z.
Conversely, if f has a unique fixed point, then the set Fia(f) being singleton
is well ordered. This ends the proof of Theorem 5.2. (Il

Theorem 5.3. Adding to the hypotheses of Theorem 5.2 the following condi-
tion:
(H) for all z,w € Fix(f) that are not comparable there exists v € X such
that v < z and v < w,

then f has a unique fized point in X.

Proof. If z and w are two comparable fixed points of f, then z = w by condition
(&1). Assume that z and w are not comparable, then by condition (H) there
exists v € X such that v < z and v < w. Since f is a dominated mapping, we
deduce that v, = f™v < z for all n € N. Now, using (5.1) with z = v, and
Yy = z, we obtain

E(bd(vp, 2),d(vp-1,2)) < d(vp—1,2) — bd(vn, 2).
This implies

d(vn, 2) < %d(vn,l,z) for all n € N

and hence

1
d(vn, 2) < ﬁd(v, z) foralln eN.
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Now, if b > 1, we get lim, 1o d(vy,,2) = 0. If b = 1, from the previous
inequality, we deduce that d(v,, z) — r with » > 0. If » > 0, by the property
(&2), with ¢, = d(vn41,2) and s, = d(vy, z), we have

0< hmsupg(bd(vn+1aZ)vd(vnvz)) <0

n—-+4oo
which is a contradiction and so r = 0,
Similar, we deduce that lim,, 1 d(v,, w) = 0. From

d(z,w) < bd(z,v,) + bd(v,,w),

letting n — +o00, we get d(z,w) = 0, that is, 2 = w. This ends the proof of
theorem. O

Now, we give a result of fixed point for non-decreasing self mappings in the
setting of ordered b-metric spaces.

Theorem 5.4. Let (X,d,b, <) be a complete ordered b-metric space and let
f X — X be a non-decreasing mapping. Suppose that there exists a b-
simulation function & such that

§d(fr, fy),d(z,y)) >0

for all x,y € X with x < y. If the following conditions are satisfied:

(i) there exists xg € X such that fxo = xo;
(S) X has property (S),

then f has a fived point. Moreover, the set Fix(f) is well ordered if and only
if f has a unique fized point.

Theorem 5.5. Adding to the hypotheses of Theorem 5.4 the following condi-
tion:

(H) for all z,w € Fix(f) that are not comparable there exists v € X such
that v < z and v < w,

then f has a unique fized point in X.

Also in the setting of ordered b-metric space, we can deduce some results of
fixed point analogous to Corollaries 4.1-4.4, via specific choices of b-simulation
functions. In order to avoid repetition we omit the details.
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