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ABSTRACT. Since the turn of the century there have been several notions
of convergence for subsets of metric spaces appear in the literature. Ap-
pearing in as a subset of these notions is the concepts of epi-convergence.
In this paper we peresent definitions of epi-Cesaro convergence for se-
quences of lower semicontinuous functions from X to [—oo, 0o] and Ku-
ratowski Cesaro convergence of sequences of sets. Also we characterize
the connection between epi-Cesaro convergence of sequences of functions

and Kuratowski Cesaro convergence of their epigarphs.

Keywords: Cesaro convergence, Epi-convergence, Epi-Cesaro convergence,
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1. INTRODUCTION AND BACKGROUND

During the past five decades new concepts of convergence for sequences of
functions have been appearing in mathematical analysis. These concepts are
especially designed to approach the limit of sequences of variational problems
and are called variational convergence. With each type of variational problem
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is associated a particular concept of convergence. In [3], Attouch developed
a convergence theory for sequences of functions, called epi-convergence. This
concepts of convergence has natural applications in all branches of optimization
theory. In this paper, we will introduce a new convergence kind for sequences
of function sequences and call it epi-Cesaro convergence.

To facilitate this process we recall the basic definitions and concepts (see
[1]-[16]). The Cesaro limit superior and Cesaro limit inferior a real sequence
(z,,) are defined as follow:

(C,1) — hmsupxn = inf sup — Zxk

n2lm>p M

and

(C,1) - hmlnfmn = sup inf — ka.

n>1m2nm
The sequence x = (x;,) is Cesaro convergent if and only if

(C,1) —limsupz,, = (C,1) — liminf z,,.
The following characterization may be found in [9].
A sequence (x,,) is Cesaro convergent to ¢, provided

nlinwazxk—g

In this case we shall write (C,1) — limz,, = .
The notion of Cesaro convergence extend the usual concept of convergence
in a non-trivial fashion. We know that a convergent sequence is a Cesaro
convergent sequence. But the converse does not holds in general. For example,
the sequence = = (z,,) = (1,0,1,0,...) is Cesaro convergent %, however this
sequence is not convergent.

Let (X,d) be a metric space. An extended real-valued function f : X —
[—00, 00] on a metric space X is called lower semicontinuous provided its epi-
graph

epif ={(z,a):z€ X,a e Rand o> f(z)}

is closed subset of X x R. Given a sequence (f,) of lower semicontinuous
functions from X into [—o0, 00], we say that (f,) is epi-convergent to f, and
we write f = limef,, provided at each z € X, the following two conditions
both hold:

(i) whenever (z,,) is convergent to x, we have f (x) < liminf f, (z,);
(ii) there exists a sequence (z,,) convergent to x such that f (z) = lim f, (z,).
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Although closely connected to the notion of pointwise convergence it is neither
stronger nor weaker. In fact, certain of functions have different pointwise and
epi-limits. Consider the sequence
0, ifx= %
In (x) =
1, ifz#

that pointwise convergent to the function h(x) = 1 for all « and epi-convergent
to

SI=

0, ifz=0
f(x):{ 1, ifx£0.

The epi-limit takes into account the behaviour of the f in the neighborhood of
0, whereas the pointwise limit restricts attention to what happens with the f,
at the point 0.

2. MAIN RESULTS

Definition 2.1. Let (X,d) be a metric space, for every z € X, let us denote
the system of the neighbourhood of = by U(z). With any sequence (f,,) of lower
semicontinuous functions from X into [—oo, oo] are associated two Cesaro limit
functions:
(iii) The epi-Cesaro limit inferior of the sequence (f,), denoted by (C,1) —
lie fp, is defined by

(C)1) —licfn(x) = sup (C,1)—liminf inf f,(u).
VeU(z) n ueV

(iv) The epi-almost limit superior of the sequence ( f,), denoted by (C,1) —
IS¢ [ is defined

(C,1) —lsefn(x) = sup (C,1) —limsup inf f,(u).
VeU(x) n  uev

Definition 2.2. Let (X, d) be a metric space and (f,,) be a sequence of lower
semicontinuous functions from X into [—oo, 00]. This sequence (f,,) is said to
be epi-Cesaro convergent at z, if the following equality holds:

(Cv 1) - liEfn(x) = (07 1) - lsefn(x)'
This common value is then denoted (C, 1) — lim, f,,(x):
(Oa 1) - lzmefn(x) - (C7 1) - liefn(l') = (Cv 1) - lsefn(x)'

For lower semicontinuous functions, equivalent definition can be given as
following.

Definition 2.3. Given a sequence (f,,) of lower semicontinuous function on a
metric space (X, d), we say that (f,) is epi-Cesaro convergent to f provided at
each x € X, the following two conditions both hold:
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(v) whenever (z,) is Cesaro convergent to x,we have f(x) < (C,1) —
liminf f,, (,);
(vi) there exists a sequence (x,) Cesaro convergent to = such that f () =

(C,1) — lim f,, (z) .

In this case we write (C, 1) — lim.f, = f.

The notion of pointwise Cesaro convergence it is neither stronger nor weaker
than epi-Cesaro convergence. In fact, there exist some functions that have
different pointwise Cesaro and epi-Cesaro limits.

EXAMPLE 2.4. Let

= (=", if k=n? k=1,2,3,..
k 0, otherwise.

Since

k2
1 B2 — (k=124 (k—-22—-(k—3)2+..+22 -1
EDIP I =

i=1 [=1

(12432452 + . 4+k%) — (22442 +6°+ ...+ (k—1)%) 1k+1

2 2 k

if k is odd and

1Y k—1)2— (k—2)°+ (k—3)2—(k—4)>+...+22 1
@ZZGF( )= (k—2)"+( kZ) (k—4)"+..+
i=11=1
(12+32+52+ .+ (k—1)%) — (22442 +6*+ ...+ (k—2)?) 1k-1
k2 T2k
if k is even, the sequence (f,(x)) is Cesaro convergent to the function f(z) = 1.
However this sequence is epi-Cesaro convergent to the function f(z) = —1.

ExXAMPLE 2.5. If

22, ifnisodd

fn (@) = { 0, if nis even,
then the sequence (f,,(z)) is Cesaro convergent to the function f(z) = % but
epi-Cesaro convergent to the function f(z) = 0 that is (C,1) — lime f,(z) = 0.
EXAMPLE 2.6. Let

0 — (=™, if k=2" k=1,2,3,..
b 0, otherwise.
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Define the following function sequence:

fn(x) = Zak.

k=1
Since .
27 7
1 ok okl ok=2__ 1921
DD = 5
=1 =1
1 1 1 1 1 1 1
T e
2+22 23+ +2"f—1 2k 3( 2k)

if k is odd and

2k
1 k=1 _9k=2 4 ok=3 _ 1921
DD = o

=1 =1
11 N 1 1 - 1 1 1(1 1)
T2 0922 93 93 U U ok-1 9k 3 ok

if k is even, we have (C,1) — liminf f,(z) = % and (C,1) — limsup f,(z) = 2,
that is the sequence (f,(z)) is not Cesaro convergent. However this sequence
is epi-Cesaro convergent to the function f(x) = —1.

Definition 2.7. Let (4,) be a sequence of closed subsets of metric space
(X,d). We say that (A,) is Kuratowski Cesaro convergent to a closed subset
A of X provided A = (C,1) — LiA,, = (C,1) — LsA,, where
(C,1) — LiA,, = {x € X : there exist a sequence (a,) Cesaro
convergent to x with a, € A, for all but finitely integers n}
(C,1) — LsA,, = {z € X : there exists positive integers
ny <mng <ng <..and a € Ay, suchthat (C,1)— klim ar =z}
s —» 00
in this case we write A = (C,1) — LimA,,.
Theorem 2.8. Let (X,d) be a metric space and (fy,) be a sequence of lower
semicontinuous functions from X into [—o0o,00]. The Cesaro limit sets (C,1)—
Li(epif,) and (C,1)— Ls(epify) are still epigraphs. They are equal respectively
to the epigraphs of (C,1) —lif, and (C,1) —lif, that is,
(C,1) — Li(epif,) = epi((C,1) — lsc fr) (2.1)
and
(C,1) — Ls(epify) = epi((C, 1) — lic frn) (2.2)
Proof. Let us first prove (2.1). By definition (C,1) — Li, (z,a) € (C,1) —
Li(epify) if and only if for all V € U(z) and for every € > 0 there exist n € N
such that there exists z € V satisfying

m

a+e> %ka(xk)

k=1
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for m > n.
This can be reformulated in the following way:

1 m
a > sup inf sup inf — fr(u
VeU(z) ™ mznuev m ; ( )

that is

m

o> sup limsup inf e fe(u) = ((C,1) = lsc fn) ()
VeU(z) =n uweVm —

which means (z, «) € epi((C,1) — Ise fn)-
In view of the definition of (C, 1) — Li(epif,), the proof of (2.2) follows from
exactly the same argument as above. O

We are now able to state the main result of this paper and establish the
equivalence between epi-Cesaro convergence of a sequence of functions and the
Kuratowski Cesaro convergence of their epigraphs. It is direct consequence of
Definition 2.3 and Theorem 2.8.

Theorem 2.9. Let (X, d) be a metric space and (f,) a sequence of lower semi-
continuous functions from X into [—oco,00]. The sequence (f,) is epi-Cesaro
convergent if and only if the sequence of sets (epify) is Cesaro convergent in
the Kuratowski sense. In that case following equality holds:

epi((C, 1) = lime frn) = (C,1) — Lim(epify).

Theorem 2.9 allows us to view epigraphs, as epi-Cesaro convergence of a
sequence of functions in terms of set Cesaro convergence.

ACKNOWLEDGMENTS

The authors are indebted to an anonymous referee for his/her suggestions
and helpful remarks.

REFERENCES

1. A. A. Arefijamaal, G. Sadeghi, Frames in 2-inner Product Spaces, Iranian Jour. Math.
Sci. Inform., 8 (2), (2013), 123-130.

2. J. P. Aubin, H. Frankowska, Set-valued analysis, Boston, Birkhauser, 1990.

3. H. Attouch, Variational convergence for functions and operators, Pitman, New York,
1984.

4. H. Attouch, R. Wets, Quantitative stability of variational systems: I. The epigraphical
distance, Trans. Amer. Math. Soc., 328, (1991), 695-730.

5. S. Banach, Theorie des operations linearies, Warsaw, 1932.

6. G. Beer, R. T. Rockafeller ,J. B. Roger, R. Wets, A characterization of epi-convergence
in terms of convergence of level sets, Proc. Amer. Math. Soc., 3 (116), (1992), 753-761.

7. J. Boos, Classical and modern methods in summability, Oxford University Press, Oxford,
2000.


http://dx.doi.org/10.7508/ijmsi.2015.01.012
http://ijmsi.com/article-1-639-en.html

[ Downloaded from ijmsi.com on 2026-01-30 ]

[ DOI: 10.7508/ijmsi.2015.01.012 ]

10.

11.

12.

13.

14.

15.

16.

Epi-Cesaro Convergence 155

. J. Connor, The statistical and strong p-Cesro convergence of sequences, Analysis, 8,

(1988), 47-63.

. S. Dolecki, G. Salinetti , J. B Roger, R Wets, Convergence of functions: Equi-

semicontinuity I, Trans. Amer Math. Soc., 1 (276), (1980), 409-429.

G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.

B. Hazarika, Strongly Almost Ideal Convergent Sequences in a Locally Convex Space
Defined by Musielak-Orlicz Function, Iranian Jour. Math. Sci. Inform., 9 (2), (2014),
15-35.

K. Pall, Approximation to Optimization Problems: An Elementary Review, Mathematics
of Operations Research, 11, (1986), 9-18.

I. J. Maddox, Elements of functional analysis, Cambridge University Press, Cambridge,
1970.

I. J. Maddox, I. J., A new type of convergence, Math. Proc. Cambridge Phil. Soc., 83,
(1978), 61-64.

G. Petersen, Regular Matrixz Transformations, Mc-Graw Hill Publ. Comp., London-New
York-Toronto-Sydney, 1966.

I. J. Schoenberg, The integrability of certain functions and related sumability methods,
Amer. Math. Monthly, 66, (1959), 361-375.


http://dx.doi.org/10.7508/ijmsi.2015.01.012
http://ijmsi.com/article-1-639-en.html
http://www.tcpdf.org

