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ABSTRACT. In this paper, we investigate the means of the values of primes
counting function 7 (z). First, we compute the arithmetic, the geometric,
and the harmonic means of the values of this function, and then we study

the limit value of their ratio.
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1. INTRODUCTION AND SUMMARY OF THE RESULTS

1.1. Means of the values of primes counting function. Assume that
(@n),cn is a strictly positive real sequence. The arithmetic mean of the numbers
ai,as, . ..,an is defined by

1 n
Alay,y ... a,) = ﬁZak.
k=1

The geometric and harmonic means of the these numbers, defined in terms of
arithmetic mean, respectively, by

Glay, ..., ay) = eAlogai logan)
and
H(a a ) 1
TR pry
) »om 14(é7 . 5 aln)
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All of the above means are special cases of the so-called generalized mean with
parameter r € R, defined by

M. (ay,...,a,) = (A(af,... ar))% .

We note that My = A, My =1lim,_, ¢ M, =G, and M_, = H.

Analogue to the above discrete case, we assume that for some fixed a € R
the functions f with f : [a,00) — (0,00) is an integrable function. For any
real number b > 0, we define the arithmetic, the geometric and the harmonic
means of the values of f over the interval [a,b + a] respectively by

1

b+a
A= [ FO & G =D ad Hy(f)

1
Ap(3)
More generally, we define the generalized mean with parameter r € R by

My, (f) = Ap(f7)7.

Our intention in writing this paper is to investigate means of the values
of primes counting function 7(z), which denotes the number of primes not
exceeding x. Since 7(t) = 0 for ¢t < 2, and 7 (¢) > 0 for ¢ > 2, we take the mean
values of this function over the interval [2,b + 2]. We prove the following.

Theorem 1.1. Assume that Ay(m), Gp(m), and Hy(m) denote the arithmetic,
the geometric and the harmonic means of the values of the prime counting
function 7(x), over the interval [2,b+ 2] with b > 5, and p,, denotes the largest
prime not exceeding b+2. Then, asn — oo (and equivalently b — oo), we have

n logn
Ay(m) = 5 + 0( - ) (1.1)
Gy(m) = o +OW), (1.2)
and
2n 1
Hy(m) = loglogn <1 +O(loglogn)) ' (1.3)

To prove the above theorem, we need to compute 2b+2 g(m(t)) dt for g(z) =
x, g(x) =logz, and g(x) = % In Section 2 we give a result, which enables us
to compute the above mentioned integral for a certain function g, covering the
required cases.

1.2. The ratio of the arithmetic and geometric means. For the sequence
consisting of positive integers, Stirling’s approximation for n! implies that
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Motivated by this fact, recently we obtained similar asymptotic result concern-
ing the sequence of prime numbers, by proving

Alp1,...,pn) € 1
Vo Z 1.
G(p1,---,pn) 2+O(logn>’ (1.5)

where as usual p,, denotes the nth prime number (see [2]).

Similar to the above, we denote

AL AW
g\) = Jim Gy

G

provided the above limit exits. For instance, if we let f(z) = [z], the integer
part of real z, then over the interval [1,b+ 1] we have

n

1 n+1 1 k+1 1 n
Ab(f)z—/1 [t]dt:fZ/k [t]dt:ﬁ;k:A(l,z...,n),

n n
k=1

and Gy(f) = G(1,2,...,n), which gives the limit relation (1.4) for é(f) More-
over, analogously to (1.4), one may consider %(f) for f(x) = . For the case

of prime numbers, the prime number theorem asserts that p, ~ nlogn as

n — oo. Thus, analogously to the limit relation (1.5), one may consider %(f)

for f(z) = zlogz. Straightforward computations imply that g( f) =5 for
f(x) =2 and f(x) = zlogxz. We note that the appearance of the similar limit
value 5 is not a global property. For example, a similar computation as the

above implies that %(f) = 1 for f(z) = logz. In general, A,(f) = Gu(f),
and we observe that the limit value of the ratio % could be any arbitrary real

number 3 > 1, as the following constructive result confirms.

Theorem 1.2. For any real number 8 > 1 there exists a real positive function
f such that

Remark 1.3. One may ask about existence and the value of limp_. s éi—%ff;,

for f(x) = m(x). The prime number theorem asserts that m(x) ~ as

x
log z?
r — oo. For the function f(x) = 5=, straightforward computation implies

g T
e

that %(f) = §. But, our computations in (1.1) and (1.2), mainly those of

geometric mean values, is not enough strong to get similar result for w(z).

Our argument in the next section, supports that the value of limy_, o éZ—E’fcg for

f(x) = m(x), if exists, is closely related to the value of the limit

lim ————*——,
n—00 n

(1.6)

provided it exists, where S(n) = Y_}'_, px. In [2] we prove that

n 9 5 n 1,
5P = <S(n)<§pn—ﬁn,
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where the left hand side inequality is valid for any integer n > 2, and the right
hand side inequality is valid for any integer n > 10. Thus, the value of the

limit (1.6) lies in the interval [—2, —<5]. We guess that its true value is —1,
and consequently, we conjecture that the true value of O(1) in (1.2) is also —1,

and hence, 2(f) = % for f(x) = n(x).

2. AN AUXILIARY GENERAL RESULT

The following results prepare the main tool of explicit and approximate
computing several means of the values of 7(x).

Lemma 2.1. For S(n) = Y ,_,pr and g be continuously differentiable on
[1,n — 1], we have

n—1
I / S + 1)t +1) — ¢'(t)) dt

= S(n)(g(n) — g(n —1)) +29(1) = ¢g — Y _(g(k +1) = g(k))pir1,
k=1

where cg4 is a constant defined in terms of g.

Proof. Welet I = [[""" — [ :=I; — [ with

i [ TS+ D)+ 1) — g (0) dt

k=1
n—2 n—2
=Y Sk+1)(gk+2) —g(k+1)) = > S(k+1)(g(k+1) — g(k))
k=1 k=1
n—1 n—2
= S(k)(g(k+1) —g(k)) = Y Sk + 1)(g(k+1) — g(k))
k=2 k=1

= 8(n)(g(n) —g(n—1)) —29(2) +29(1) — ipzm(g(k +1) —g(k)).
k=1

This completes the proof. ([l

Theorem 2.2. Assume that b > 0 is a real number, and p, denotes the largest
prime not exceeding b+ 2. Also, assume that g : (0,400) = R is a continuous
function. Then, we have

b+2 n—1
/2 g () dt = g(m) (B2 — pu) + S (e — pi)g (k) (21)
k=1
n—1
= ()b +2) —29(1) = S (g(k + 1) — g(k))prs1.
k=1
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Moreover, if g is continuously differentiable on the interval [1,n—1] and ¢'(t) =
L g(t), then for any b > 5 we have

b+2
/2 g(m(t)) dt = (b+2)g(n) — S(n)(g(n) — g(n — 1)) (2.2)

eyt /n_1 S([H] + DA() dt,

where S(n) = >} _, pk, ¢g = 10g(e + 1) — 10g(e) — 59(3) + 29(2) + g(1), and
A(t):=¢'(t+1)—g'(t). Also, as n — oo (and equivalently b — oo ), we have

b+2
/2 g(m(t)) dt = G(n) + O(R()), (2.3)
where
n 1 n—1 9
G(m) = (9(m) — 5 (9(n) — g(n = 1)) ntlm) + g+ [ CEOA® at,

with £(t) = logt + loglogt, and

R(n) = (g(n) +n(g(n) — g(n — 1)))n + /en_1 £2A(t) dt.

As more as, we have

b+2 n—1 c
%/2 g(m(t)) dt = 27%1(”)/ t20(t)A(t) dt + ng(gn) (2.4)
n G(n) R(n
+ (g(n) —5(g(n) —g(n - 1))) +0 (W) :

Proof. Since p,, is the largest prime not exceeding b 4+ 2, one may write

b+2 Pn b+2
/2 g(m(t)) dt = /2 g(m(t)) dt +/ g(m(t)) dt := I + I,

n

say, respectively. We note that 7(¢) = k— 1 if and only if py_1 < t < pg. Thus,
we obtain I = g(n)(b+ 2 — p,), and

L= Z/pk g(m(t)) dt = g(k = 1)(pr — pr—1) i= Ty(n — 1),
K=2

Pk—1 k=2

say. This implies validity of (2.1). Now, we apply the truth of Lemma 2.1 to
(2.2). Note that we take b > 5 to guarantee n > 4. Finally, we deduce (2.3) by
applying the known approximations (see [2] and [1], respectively)

S(n) = %npn +0(n?), as n — 00, (2.5)
and
pn =n(l(n) +0(1)), asn— oo, (2.6)
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from which we get S([t] +1) = gé(t) + O(?), and so

/enls([]+1 / t)dt + O (/enlt“‘A(t) dt).
nd

Moreover, the relations (2.5) a (2 6) yield

S(n) = §n 20(n) + O(n?).
Also, we have p, < b+ 2 < pp41, from which by applying (2.6) we get
b+2=n(l(n)+ O(1)).

By applying the three last relations in (2.2), we obtain validity of (2.3). Also,
we use b =n(f(n) + O(1)) to get
1
ol—)).
(log n))

2:@(1+

This implies validity of (2.4), and completes the proof. |

Remark 2.3. The constants of O-terms in the relations (2.5) and (2.6) are
known explicitly (see [2] and [3]). Thus, one may compute the constants of
O-terms in the relations (2.3) and (2.4) for the given function g.

3. PROOFS OF THE OTHER RESULTS

We will need some integration formulas, recalled here briefly. We recall that
Li is the logarithmic integral function defined by
. Tl
Li(z) = — dt,
o logt
where we take the Cauchy principal value of the integral. Integration by parts
implies that

T o k! x
Li(x) = — 4+ 0 — ), 3.1
i(@) 1ngU Z logk x (logm+2 x) (3:1)

for any integer m > 0. A simple computation verifies that
/log logz do = zloglogx — Li(x), (3.2)
and this gives
/E(x) dr = /log(x logz) de = zlogx + xloglogx — x — Li(x). (3.3)
Moreover, by elementary computations, we have

1 1
/ Ux) dr = B log? & + log zlog log 2 — log . (3.4)
x
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Proof of Theorem 1.1. We utilize the statement of Theorem 2.2 with g(z) = .
We have ¢, = 0, and A(t) = 0. Thus, we get G(n) = 1n2((n), and R(n) = 2n?,
and these imply (1.1).
To compute the geometric mean, we apply the statement of Theorem 2.2 with
g(z) = logz. We have

1 1 1
At)== -1+~ — .
=5 ( *3 t(t—i—l))
Hence, we obtain
n—1
/ t?A(t) dt = —n +logn +e+ 1 —log(e + 1) = O(n),

" (0w
t t
UOA(L) = —L(t) + —= —
(AW =~ + =7 ~ gy
from which by using the relations (3.3) and (3.4), together with the relation
(3.1), we deduce that

/ " RUOA® dt = —nt(n) + O(m).

Also, (with g(x) = log ) we have
9(n) — 2 (g(n) — g(n — 1)) =logn — 5 +0(=),
and
1
n
Therefore G(n) = £(n)(nlogn —n) + O(n), and R(n) = nlogn + O(n). Thus,

we obtain

g(n) + nlg(n) - g(n 1)) =logn +1+0(~).

1 b+2

E/ logw(t) dt = logn + O(1),
2

and this gives (1.2).

Similarly, we compute the harmonic mean, by using Theorem 2.2 with g(z) = %

‘We have 941 5 )
At) = ——s = — — ).
O=GarnE 7 +0(5)

Thus, fcn_l t2A(t) dt = O(logn), and fcn_l t20(t)A(t) dt = log? n+2log nloglogn+

O(logn). Also, (with g(x) = %) we have g(n) — 5(g(n) —g(n—1)) = O(%) and
g(n)+n(g(n)—g(n—1)) = O(%). So, G(n) = %log2 n+lognloglogn+0O(logn),
and R(n) = O(logn). By using the expansion

1 loglog n loglogn
— = 140
{(n) log®n ( + ( logn ) ’

which is valid as n — oo, we obtain

12 log logn 1
- — dt = o(—).
b /2 7(t) 2n + ( )
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and this gives (1.3). The proof is completed. O

Proof of Theorem 1.2. For any real number n > 0, we set f(z) = 2”. We have

(b1t -1 _ b+1
Ap(f) = D) and  Gp(f) =exp 77( log(b + 1)—1) .
Therefore, we obtain
A e
say. We note that (%]U(n) = v(n)#, hence v(n) is strictly increasing for n > 0,

as well as v(0) = 1 and lim, o v(n) = oco. Thus, for any real number § > 1
there exists a real number 7 > 0 such that v(n) = 3, as desired. (]
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