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ABSTRACT. In this paper, we study generalized Douglas-Weyl Finsler
metrics. We find some conditions under which the class of generalized
Douglas-Weyl («, 8)-metric with vanishing S-curvature reduce to the class

of Berwald metrics.
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1. INTRODUCTION

Let (M, F) be a Finsler manifold. In local coordinates, a curve c(t) is a
geodesic if and only if its coordinates (c'(t)) satisfy ¢ + 2G%(¢) = 0, where
the local functions G* = G¥(z,y) are called the spray coefficients [10]. F is
called a Berwald metric, if G* are quadratic in y € T,M for any © € M
or equivalently G¥ = %Fék(w)yjyk. As a generalization of Berwald curva-
ture, Bacsé-Matsumoto introduced the notion of Douglas metrics which are
projective invariants in Finsler geometry [2]. F is called a Douglas metric if
G' = 3T (2)y'y* + P(,y)y'.

A Finsler metric F' is called generalized Douglas-Weyl metric (briefly, GDW-
metric) if Dijkl‘lmym = jklyi holds for some tensor T}, where D? de-
notes the horizontal covariant derivatives of D’ ki With respect to the Berwald
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connection of F' [8][18]. For a manifold M, let GDW (M) denotes the class
of all Finsler metrics satisfying in above relation for some tensor Tjg;. In [3],
Bécsé-Papp showed that GDW (M) is closed under projective changes. Then,
Najafi-Shen-Tayebi characterized generalized Douglas-Weyl Randers metrics
[8]. In [18], it is proved that all generalized Douglas-Weyl spaces with vanish-
ing Landsberg curvature have vanishing the quantity H. For other works, see
[12] and [13].

The notion of S-curvature is originally introduced by Shen for the volume
comparison theorem [9]. The Finsler metric F is said to be of isotropic S-
curvature if S = (n + 1)cF, where ¢ = ¢(x) is a scalar function on M. In [14],
it is shown that every isotropic Berwald metric has isotropic S-curvature. In
[4], Cheng-Shen show that every (a, 8)-metric with constant Killing 1-form has
vanishing S-curvature. Then, Bécs6-Cheng-Shen proved that a Finsler metric
F = o + 8%/a + €8 has vanishing S-curvature if and only if 3 is a constant
Killing 1-form [1]. Therefore, the Finsler metrics with vanishing S-curvature
are of some important geometric structures which deserve to be studied deeply.

An (a, f)-metric is a Finsler metric on M defined by F := a¢(s), s = 8/«
where ¢ = ¢(s) is a C*° function on the (—bg,by) with certain regularity,
a = \/a;j(z)y'y7 is a Riemannian metric and 8(y) = b;(z)y’ is a 1-form on
M [6]. In this paper, we are going to study generalized Douglas-Weyl («, 3)-
metrics with vanishing S-curvature.

Theorem 1.1. Let F = a¢(s), s = B/a, be an (a, B)-metric on a manifold
M of dimension n > 3. Suppose that

c2 1
T¥ca T¥co
F7é03a<5> <016+02+1> and F # div/ a2+ daB2 + dsf.
o a

where ¢y, co ,c3 ,d1, do and dz are real constants. Let F has vanishing S-
curvature. Then F' is a GDW-metric if and only if it is a Berwald metric.

2. PRELIMINARY

Given a Finsler manifold (M, F'), then a global vector field G is induced
by F on TMy, which in a standard coordinate (z¢,3") for TMy is given by
G =y 8?% —2G"(x, y)aiyi, where
1

G = Zgil{[FQ]Ikyzyk - [FQ]xz}, y €T, M.

The G is called the spray associated to F.
Define By : T,M @ T,M @ T,M — T, M and E, : T, M ® T, M — R by
By (u,v,w) := Bijkl(y)ujvkwl 25| and Ey (u,v) := Ejj,(y)uv* where

3Gt 1

Bljkl = mv Ejj, = 9 ﬂ;km'
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B and E are called the Berwald curvature and mean Berwald curvature, re-
spectively. F' is called a Berwald and weakly Berwald if B = 0 and E = 0,
respectively [5][7].

Let
93 , 1 oG™

% . % i

JRCT ayﬂﬁykayl( B ni—l—lﬁyimy )
It is easy to verify that D := D; pdr? ® 0; @ dz* ® dx' is a well-defined
tensor on slit tangent bundle TMy. We call D the Douglas tensor. A Finsler
metric with D = 0 is called a Douglas metric. The notion of Douglas metrics
was proposed by Bacsé-Matsumoto as a generalization of Berwald metrics [2].
The Douglas tensor D is a non-Riemannian projective invariant, namely, if
two Finsler metrics F' and F are projectively equivalent, G* = G* + Py’, where
P = P(z,y) is positively y-homogeneous of degree one, then the Douglas tensor
of F is same as that of F. Finsler metrics with vanishing Douglas tensor are
called Douglas metrics [11].

For a Finsler metric F' on an n-dimensional manifold M, the Busemann-
Hausdorff volume form dVp = op(z)da! - - - dz™ is defined by

e Vol(B™(1))
e Vol () & B | F(vigkle) < 1]

Let G* denote the geodesic coefficients of F in the same local coordinate system.
The S-curvature is defined by

OG?
S = .
(¥) oy

.0

(@) —y'5 5 [anF(w)},
where y = 9/ % | € T, M. S is said to be isotropic if there is a scalar functions
¢ =c(z) on M such that S = (n+ 1)cF.

For an («, 8)-metric F = a¢(s), s = §/a, put

@ = —(q—5¢)[nA + 1+ sq] — (b* = s*)(1 + 59)q",

where

¢/
¢—s¢’

In [4], Cheng-Shen characterize («, 8)-metrics with isotropic S-curvature.

q:= A =1+ sq+ (b —s%)q.

Lemma 2.1. ([4]) Let F = a¢(s), s = f/a, be an non-Riemannian (a, §)-
metric on a manifold M of dimension n > 3. Suppose that ¢ # ci1v/1 + co52 +
c3s for any constant ¢; > 0, ¢o and c3. Then F is of isotropic S-curvature
S = (n+ 1)cF if and only if one of the following holds

(a) [ satisfies

Tij = s(b2aij - bibj), Sj = 0, (21)
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where € = () is a scalar function, b := ||8z]|« and ¢ = ¢(s) satisfies
PA?
where k is a constant. In this case, S = (n + 1)cF with ¢ = ke.
(b) B satisfies
rij =0, s;=0 (2.3)

In this case, S = 0.

The characterization of Finsler metrics with isotropic S-curvature in Cheng-
Shen’s paper is not complete [4]. Their result is correct for dimension n > 3.
For the case dimension(M) = 2, see [16].

3. PROOF OF MAIN RESULTS

Let F := ad(s), s = B/a, be an («, )-metric on a manifold M, where
o = /ai;(x)y'y’ and B(y) = bi(x)y'. Define b;); by b; ;07 := db; — b;0,”, where

0% := dz* and Qij = fgkdazk denote the Levi-Civita connection forms of «. Let

Tij = %[bﬂj + bj\z}a Sij = %[bi\j - bj|i:|7

ri0 ‘= T‘ijyj, oo ‘= Tijyiyj, 7’]‘ = biT‘ij7 t; =S mS j
Si0 ‘— Sijyj, Sj = bisij, To := T’jyj, Sp ‘= Sjyj.
Then 8 = b;(z)y’ is a constant Killing one-form on M if r;; = s; = 0 hold. By
definition, we have
bz‘] = Sij + Tij-
Since yi‘s = 0, then for a constant Killing 1-form 5 we have
T00 :0, T+ S5 =0.

For an («, 8)-metric F = a¢(s), s = 8/, the following hold.

Proposition 3.1. Let F = a¢(s), s = B/a, be an («, B)-metric on an n-
dimensional manifold M of dimension n > 3, where o = \/a;;(x)yiy’ is a
Riemannian metric and 3 = b;(x)y* is a one-form on M. Suppose that F is of
vanishing S-curvature. Then F is a GDW-metric if and only if the following
holds

Ci 500y’ — (Cays + Cabj)y'too = Cay;s'oe + Cs(bs' o) + 5j05"0)
+Cs Sij‘o + C7(yjti0 + Sjosio) + Cy bjtio, (3.1)
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C1 == [(n+ 1)Qa +26Qus|a® = [Qua + 1 Qas]a 2,
Cz i=(n+1)[Q2 + QQaa — 07'QRu] 0™ = 2[QuQs + QQap| Ba™®
+ 2[2Q0Qus + Qaa@s + QQuas] S~ +12[2QusQs + Qu@pa|a”?
+ [12QQuss +3QaQaa + QQuaa) ™,
C3 :=(n+3) [QaQB + QQaB} a™’ 42 [Q“QBB + QQQW} o>
+ [2QaQas + QsQaa + QQuas + 4807 QsQus| a2
+ b7 [3QﬁQ66 + QQﬁBﬁ} a?,
Cyi==[(n+1)Qu +26Qas| 0~ +2[6Quas + Qua o

[b2QaﬁB + anca:| a_la

+

Cs :=(n+3)a 'Qups + Quas + 280" Qupp + b*Qpp5,
Co :=(n+1)a'Qu + Qan + 25@’1@15 + szﬁ&
Cr=(n+1)a?QQs — (n+ 1)a"%(Q% + QQaa) — 280 2 QQaap
+ 2[QQus + QaQs) B0~ ~ 12[QQuss + 2QusQs]a”!
— 2[2QuQap + QsQaa] Ba~2
~ 1%a7'QuQs 307 QuQaa — 207 QQuna;
Ch = ~(n+3) |QQup + Qa@s]a™" —2(205Qus + QQuss + QuQps) o™

— 1|QQuss +3Q5Qs5] — QsQaa — QQuap — 2QuQas

Proof. Let G* and GY, denote the spray coefficients of F' and «, respectively, in
the same coordinate system. Then, we have

G'=G.L + Py +Q', (3.2)
where

agd’
=aq=—"—,
Q "
P = Ct_l(a('f'()o — 2QS()), Ql = QSlO + \I/(T'o() — QQSO)bl,

o 1=5¢ _ _ ¢¢' —5(¢¢" +¢'¢)

28 26|(6 - 59/) + (12— )¢
ql

\II . B 1 ¢//
T2A T 2(p—s¢)+ (2 — %)
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By Lemma 2.1, we have rgo = s9 = 0. Then (3.2) reduces to following

G' =G+ Qsl. (3.3)
Let “|" and “|” denote the covariant differentiations with respect to G* and
G, respectively. Then by (3.3), we have

oD,
oyP

) . , . - oL
D;’klﬂmym = D;’kl\mym —2Qsp + D?klN;zlJ - D;klN]p

- D}plNI]; - ;‘klepv (34)
where

Diaim¥™ = " H(Qaa — @™ Qo) (Ajkyr + Ay + Ajiyr)s’ o0
+ a2 Qu(Ajks' 1o + Aws’jo + Ajis )

+a *Qap {(Ajkbl + Apb; + Ajlbk>3i0|0

+ (Ajrsio + Arisjo + Ajlsko)sio]

+a"?Qaap [(yjykbl + yryibs + Y uibk)s o0

+ (Yjyxsio + yryisjo + yjylsko)sio}

+ 07 Qu | (ysbrbt + byt + wibr;)s'opg

+ ((y;bi + wibj)sko + (yjbk + yib;)sio

+ (yxbi + ylbk)Sjo)Sio} + aiQQaa(yjyksi”O + ykylsiﬂo + yjylsik‘o)
+ Qppp(brbisjo + bjbisko + bibrsio)sy + @ > QuaatjUkyis’ oo

+a ' Qap [(yjbk + ykbj)siuo + (yrby + ylbk)sij\o + (ybj + yjbz)sik‘o
+ (yjsko + Yrsjo)s's + (Yesio + Yisko)s'; + (Wisjo + Yjsi0)s'y

+ Qap [bjbksi”o + bibus’ 1o + bybus' o + (sj0bk + bisko)s'y

+ (Skobl + kalo)Sij + (bZSjO + bjSlO)Sik} + Q,Bﬁﬂbjbkblsimo (3.5)

and
Aij = aPaij — yiyj, (3.6)
N = Qs + [oleayp n Qﬂb,,} sy, (3.7)
8D§'kl i i i i i
Dy = Qjrips’o + Qjrs’y + Qikps’y + Qjips'y, + Qrips’ ;- (3.8)

Let F'is a GDW-metric. Then there exists a tensor Djj; such that

D;’lemym = Djuy'.
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By (3.4), we have

i_pi om ODj G iR
Dijiy' = Dipmy™ — 2Q Tyjpspo + D8y Ny — Dy NY
-D\ NI — D’ N} (3.9)

By contracting (3.9) with y; and using (3.5), (3.7) and (3.8) we get the following

Djp =

where

D,
+ Dy
+ Dy
+ Dy
+Ds
+ Dg
+D,

+ Dg
+ Dy
+ Dy

+ D,

Dy
Do :
Ds
Dy :
Ds
Dyg :
Dy
Dg :
Dy :
D :
D1y
Dys -

:Ajkle\O + Arisjojo + Ajlskolo}

:yjyk3l0|0 + YrYisjolo + yjy15k0|0}

:(yjbk + yrbj)sio0 + (Yrbi + yibr)s 010 + (Y500 + yibs)skolo
:b,jbk3l0|0 + bbisjojo + bjbl5k0|0]

:Ajkyl + Apy; + Ajlyk} too

Ajrby + Apib; + Ajlbk} too

Yiurbr + yryib; + yjylbk] too

ylbjbk + yjbkbl + ykbjbl} too
Yiyryitoo + D1o bjbrbitoo

1 [ylsjosko + YjSkoSio + yksjoslo}

2 [bZSjOSkO + b;skosio + bk5j0510]7 (3.10)

=—a"Qa,

=—a"Qaa;

=—a"*Qugp,

=—a"?Qps,

=—a%Q% -0 QQun + a7 TQQ.,
=—a"’QaQp — a°QQuap,

— _a_4QaaQ6 — 2a_4Qa5Qa — 04_4QQaa,@,
=—a’QppQa — 20 °QupQp — o *QQupp,
=-30""Quala — @ °QQuaa,
=-3072QpsQp — @ *QQppp;

=-2073Qup + 207 Q% + 207 QQua — 207°QQu,
=—20"%Qup + 20 QQup + 20 Qu Q-
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Now, by plugging (3.10) into (3.9), and contracting the obtained result with
akl) we get (3.1). O

Proof of Theorem 1.1: Let F' = a¢(s), s = /«, be an («, 3)-metric on an
n-dimensional manifold M. By multiplying (3.1) with y; and y?, we get

—OéQQaaato() =0. (311)

If Quae = 0 then
2

«
Q=cia+cr—,
B

where ¢; and co are real constants. Thus, we get
_c2 _1
TFeg TFeg

F=csal S ci—+ca+1
« a

where c3 is a real constant. This is a contradiction with our assumption. Then
by (3.11), we get too = 0 which results that s;p = 0. This means that g is a
closed one-form. By assumption, § is parallel one-form and then F' reduces to
a Berwald metric. O
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