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Abstract. In this paper we will generalize a singular value inequality

that was proved before. In particular we obtain an inequality for numer-

ical radius as follows:

2
√
t(1 − t)ω(tAνB1−ν + (1 − t)A1−νBν) ≤ ω(tA+ (1 − t)B),

where, A and B are positive semidefinite matrices, 0 ≤ t ≤ 1 and

0 ≤ ν ≤ 3
2
.

Keywords: Matrix monotone functions, Numerical radius, Singular values,

Unitarily invariant norms.

2000 Mathematics subject classification: 15A42, 15A60, 47A30.

1. Introduction

Let Mn be the algebra of all n× n complex matrices. A norm |||.||| on Mn is

said to be unitarily invariant if |||UAV ||| = |||A||| for all A ∈Mn and all unitary

U, V ∈Mn. Special examples of such norms are the ”Ky Fan norms”

‖A‖(k) =

k∑
j=1

sj(A), 1 ≤ k ≤ n.

Note that the operator norm, in this notation, is ‖A‖ = ‖A‖(1) = s1(A); see

[4] and [9] for more information.
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If ‖A‖(k) ≤ ‖B‖(k) for 1 ≤ k ≤ n, then |||A||| ≤ |||B||| for all unitary

invariant norms. This is called the ”Fan dominance theorem.” If A is a

Hermitian element of Mn, then we arrange its eigenvalues in decreasing order

as λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). If A is arbitrary, then its singular values

are enumerated as s1(A) ≥ s2(A) ≥ · · · ≥ sn(A). These are the eigenvalues

of the positive semidefinite matrix |A| = (A∗A)1/2. If A and B are Hermitian

matrices, and A−B is positive semidefinite, then we say that B ≤ A.
Weyl’s monotonocity theorem [4, p. 63] says that B ≤ A implies

λj(A) ≤ λj(B), for all j = 1, . . . , n. Let f be a real valued function on an

interval I. Then f is said to be matrix monotone if A,B ∈ Mn are Hermitian

matrices with all their eigenvalues in I and A ≥ B, then f(A) ≥ f(B) and also,

f is said to be matrix convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B), 0 ≤ t ≤ 1

and matrix concave if

f(tA+ (1− t)B) ≥ tf(A) + (1− t)f(B), 0 ≤ t ≤ 1.

In response to a conjecture by Zhan [13], Audenaert [2] has proved that if

A,B ∈Mn are positive semidefinite, then the inequality

sj(A
νB1−ν +A1−νBν) ≤ sj(A+B), 1 ≤ j ≤ n

holds, for all 0 ≤ ν ≤ 1. In this paper we generalize this inequality as follows:

If A,B ∈ Mn are positive semidefinite matrices, then for all 0 ≤ t ≤ 1 and

0 ≤ ν ≤ 3
2

2
√
t(1− t)sj(tAνB1−ν + (1− t)A1−νBν) ≤ sj(tA+ (1− t)B).

For more details about inequalities and their generalizations with their history

of origin, the reader may refer to [1, 5, 6, 11, 12, 13].

2. Main Results

Lemma 2.1. [14] If X =

[
A C

C∗ B

]
is positive, then 2sj(C) ≤ sj(X) for all

1 ≤ j ≤ n.

Theorem 2.2. Let f be a matrix monotone function on [0,∞) and A and B

be positive semidefinite matrices. Then

tAf(A)+(1−t)Bf(B) ≥ (tA+(1−t)B)1/2(tf(A)+(1−t)f(B))(tA+(1−t)B)1/2

(2.1)

for all 0 ≤ t ≤ 1.

Proof. The function f is also matrix concave, and g(x) = xf(x) is matrix

convex. (See [4]). The matrix convexity of g implies the inequality

(tA+ (1− t)B)f(tA+ (1− t)B) ≤ tAf(A) + (1− t)Bf(B), 0 ≤ t ≤ 1. (2.2)
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Since the matrix tA+ (1− t)B is positive semidefinite, in view of the spectral

decomposition theorem, it is easy to see that for all 0 6 t 6 1,

(tA+(1−t)B)f(tA+(1−t)B) = (tA+(1−t)B)1/2f(tA+(1−t)B)(tA+(1−t)B)1/2.

(2.3)

Also, the matrix concavity of f implies that

tf(A) + (1− t)f(B) ≤ f(tA+ (1− t)B), 0 ≤ t ≤ 1. (2.4)

Combining the relations (2.2), (2.3) and (2.4), we get (2.1). �

Theorem 2.3. Let A,B ∈ Mn be positive semidefinite matrices. Then for all

0 ≤ t ≤ 1 and 0 ≤ ν ≤ 3
2

2
√
t(1− t)sj(tAνB1−ν + (1− t)A1−νBν) ≤ sj(tA+ (1− t)B). (2.5)

Proof. The proof depends on the fact that the matrices XY and Y X have the

same eigenvalues. Let f(x) = xr, 0 ≤ r ≤ 1. This function is matrix monotone

on [0,∞). Hence from (2.1) and Weyl’s monotonocity theorem we have

λj(tA
r+1 + (1− t)Br+1) ≥ λj ((tA+ (1− t)B)(tAr + (1− t)Br)) . (2.6)

Except for trivial zeroes the eigenvalues of (tA+ (1− t)B)(tAr + (1− t)Br)
are the same as those of the matrix[

tA+ (1− t)B 0

0 0

] [√
tAr/2

√
1− tBr/2

0 0

] [ √
tAr/2 0√

1− tBr/2 0

]
and in turn, these are the same as the eigenvalues of[ √
tAr/2 0√

1− tBr/2 0

] [
tA+ (1− t)B 0

0 0

] [√
tAr/2

√
1− tBr/2

0 0

]

=

[
tAr/2(tA+ (1− t)B)Ar/2

√
t(1− t)Ar/2(tA+ (1− t)B)Br/2√

t(1− t)Br/2(tA+ (1− t)B)Ar/2 (1− t)Br/2(tA+ (1− t)B)Br/2

]
.

So, Lemma 2.1 and inequality (2.6) together give

λj(tA
r+1 + (1− t)Br+1) ≥ 2

√
t(1− t)sj(Ar/2(tA+ (1− t)B)Br/2)

= 2
√
t(1− t)sj(tA1+ r

2Br/2 + (1− t)Ar/2B1+ r
2 ).

Replacing A and B by A1/r+1 and B1/r+1, respectively, we get from this

sj(tA+(1−t)B) ≥ 2
√
t(1− t)sj(tA

r+2
2r+2B

r
2r+2 +(1−t)A

r
2r+2B

2+r
2r+2 ), 0 ≤ r, t ≤ 1.

Now, if we put ν =
r + 2

2r + 2
, then trivially, we get

sj(tA+ (1− t)B) ≥ 2
√
t(1− t)sj(tAνB1−ν + (1− t)A1−νBν),
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for all 0 ≤ t ≤ 1 and 1
2 ≤ ν ≤ 3

2 and we have proved (2.5) for this special

range.

Symmetry, if we put ν =
r

2r + 2
, then it is easy to see that the inequality (2.5 )

holds for all for all 0 ≤ t ≤ 1 and 0 ≤ ν ≤ 1
2 . Hence the proof is complete. �

If in Theorem 2.3, we put t = 1
2 , then we have the following corollary, which

obtained by Audenaert in [2] and by Bhatia and Kittaneh in [6].

Corollary 2.4. Let A,B ∈Mn be positive semidefinite matrices. Then for all

0 ≤ ν ≤ 1

sj(A
νB1−ν +A1−νBν) ≤ sj(A+B).

Corollary 2.5. Let A,B ∈Mn be positive semidefinite matrices. Then for all

0 ≤ t ≤ 1 and 0 ≤ ν ≤ 3
2

2
√
t(1− t)

∣∣∣∣∣∣tAνB1−ν + (1− t)A1−νBν
∣∣∣∣∣∣ ≤ |||tA+ (1− t)B||| .

For A ∈Mn, the numerical radius of A is defined and denoted by

ω(A) = max{|x∗Ax| : x ∈ Cn, x∗x = 1}.

The quantity ω(A) is useful in studying perturbations, convergence, stability,

approximation problems, iterative method, etc. For more information see [3, 7].

It is known that ω(.) is a vector norm on Mn, but is not unitarily invariant.

We recall the following results about the numerical radius of matrices which

can be found in [8] (see also [10, Chapter 1]).

Lemma 2.6. Let A ∈Mn and ω(.) be the numerical radius. Then the following

assertions are true:

(i) ω(U∗AU) = ω(A), where U is unitary;

(ii) 1
2‖A‖ ≤ ω(A) ≤ ‖A‖;

(iii) ω(A) = ‖A‖ if ( but not only if) A is normal.

Utilizing Lemma 2.6 (parts (ii) and (iii)) and by Corollary 2.5 we obtain the

following corollary.

Corollary 2.7. Let A,B ∈Mn be positive semidefinite matrices. Then for all

0 ≤ t ≤ 1 and 0 ≤ ν ≤ 3
2

2
√
t(1− t)ω(tAνB1−ν + (1− t)A1−νBν) ≤ ω(tA+ (1− t)B).
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