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ABSTRACT. In this paper we will generalize a singular value inequality
that was proved before. In particular we obtain an inequality for numer-
ical radius as follows:

2/t(1 — )w(tAYB'™Y + (1 — ) A’ BY) < w(tA + (1 — t)B),

where, A and B are positive semidefinite matrices, 0 < t < 1 and

0<wv< i
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1. INTRODUCTION

Let M, be the algebra of all n x n complex matrices. A norm |||.||| on M, is
said to be unitarily invariant if [|[UAV||| = |||A]|| for all A € M, and all unitary
U,V € M,,. Special examples of such norms are the "Ky Fan norms”

k
Ay =D _si(A),  1<k<n,

Jj=1

Note that the operator norm, in this notation, is ||A]| = ||A[q) = s1(A); see
[4] and [9] for more information.
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IF | All gy < 1Bl for 1<k < n, then [JAJ| < [|B| for all unitary
invariant norms. This is called the ”Fan dominance theorem.” If A is a
Hermitian element of M,,, then we arrange its eigenvalues in decreasing order
as A1 (A4) > Aa(A4) > -+ > A\ (A4). If A is arbitrary, then its singular values
are enumerated as s1(A4) > s9(A) > -+ > s,(A). These are the eigenvalues
of the positive semidefinite matrix |A| = (4*A)Y/2. If A and B are Hermitian
matrices, and A — B is positive semidefinite, then we say that B < A.

Weyl’s monotonocity theorem [4, p. 63] says that B < A implies

Ai(A) < Aj(B), for all j = 1,...,n. Let f be a real valued function on an
interval I. Then f is said to be matrix monotone if A, B € M, are Hermitian
matrices with all their eigenvalues in I and A > B, then f(A) > f(B) and also,
f is said to be matrix convex if

f@A+ (1 -t)B)<tf(A)+ (1—-t)f(B), 0<t<1
and matrix concave if
f@A+ (1 -t)B) > tf(A)+(1—-¢t)f(B), 0<t<1.

In response to a conjecture by Zhan [13], Audenaert [2] has proved that if
A, B € M, are positive semidefinite, then the inequality

sj(A”Bl_” —|—A1_”B”) <sj(A+B), 1<j<n
holds, for all 0 < v < 1. In this paper we generalize this inequality as follows:
If A,B € M,, are positive semidefinite matrices, then for all 0 < ¢ < 1 and
0<rv< %
2y/t(1 —t)s;(tAVB"™" + (1 —t)A'""BY) < 5;(tA + (1 — t)B).

For more details about inequalities and their generalizations with their history
of origin, the reader may refer to [1, 5, 6, 11, 12, 13].

2. MAIN RESULTS

Lemma 2.1. [14] If X = {A

o g} is positive, then 2s,;(C) < s;(X) for all

1<j<n.

Theorem 2.2. Let f be a matriz monotone function on [0,00) and A and B
be positive semidefinite matrices. Then

tAf(A)+(1=t)Bf(B) > (tA+(1—t)B)"2(tf (A)+(1—t) f(B))(tA+(1-t)B)'/?
(2.1)
forall0 <t <1.

Proof. The function f is also matrix concave, and g(x) = zf(x) is matrix
convex. (See [4]). The matrix convexity of g implies the inequality

(tA+ (1 —t)B)f(tA+ (1 —t)B) < tAf(A) + (1 — t)BF(B), 0<t<1. (2.2)


http://dx.doi.org/10.7508/ijmsi.2015.02.003
http://ijmsi.com/article-1-464-en.html

[ Downloaded from ijmsi.com on 2025-11-16 ]

[ DOI: 10.7508/ijmsi.2015.02.003 ]

A Generalized Singular Value Inequality for Heinz Means 25

Since the matrix tA + (1 — t) B is positive semidefinite, in view of the spectral
decomposition theorem, it is easy to see that for all 0 < ¢ < 1,

(tA+(1—t)B) f(tA+(1—t)B) = (tA+(1—t)B)Y/? f(tA+(1—t) B)(tA+(1—t) B)*/2.

(2.3)

Also, the matrix concavity of f implies that
LAY+ (1= 0f(B) < [(tA+ (1~ )B), 0<t<1. (2.4)
Combining the relations (2.2), (2.3) and (2.4), we get (2.1). O

Theorem 2.3. Let A, B € M, be positive semidefinite matrices. Then for all
0<t<land0<v<3

2¢/t(1 —t)s;(tA"B* ™ + (1 —t)A'™"B¥) < s;(tA+ (1 — t)B). (2.5)

Proof. The proof depends on the fact that the matrices XY and Y X have the
same eigenvalues. Let f(x) = 2",0 < r < 1. This function is matrix monotone
on [0,00). Hence from (2.1) and Weyl’s monotonocity theorem we have

N(ATT (1= 6)B™) > N\ (tA+ (1 —t)B)(tA" + (1 —t)B")).  (2.6)

Except for trivial zeroes the eigenvalues of (tA+ (1 —¢)B)(tA” 4+ (1 —¢)B")
are the same as those of the matrix

tA+(1—t)B 0] [VtA™/?2 T —tB"/? VEATZ 0
T SR |

and in turn, these are the same as the eigenvalues of
VEAT2 0] [tA+ (1 —t)B 0] [VtA™/?2 T —tB"/?
VI—=1tB"? 0 0 0 0 0

_ tAT/2(tA + (1 — t)B)A"/? VI =) AT2(tA+ (1 — t)B)B"/?
B [«/t(l —t)B"2(tA+ (1 —t)B)A™2 (1 —-t)B"/?(tA+ (1 —t)B)B"/? ] '

So, Lemma 2.1 and inequality (2.6) together give
(AT 4+ (1= 1) B > 2/t(1 — t)s;(A™/2(tA+ (1 — t)B)B™/?)

=2 t(l — t)Sj(tAlJr%BT/Q 4 (1 _ t)Ar/2B1+%)'
Replacing A and B by A"+ and BY/"*!, respectively, we get from this

s;(LA+(1—t)B) > 2/t(1 — t)s;(tA% 52 B¥r2 4 (1-t) AZT2 B7e2), 0 < r,t < 1.

Now, if we put v = , then trivially, we get

rt2
2r 42
sj(tA+ (1 —t)B) > 23/t(1 — t)s;(tA”B'™" + (1 — t)A' ™" B"),
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forall 0 <t <1 and % <v< % and we have proved (2.5) for this special
range.

Symmetry, if we put v = , then it is easy to see that the inequality (2.5 )

_r
2r 42
holds for all for all 0 <t<land0<v < % Hence the proof is complete. [

If in Theorem 2.3, we put t = %, then we have the following corollary, which
obtained by Audenaert in [2] and by Bhatia and Kittaneh in [6].

Corollary 2.4. Let A, B € M, be positive semidefinite matrices. Then for all
0<r<i1
s;(A”B'™" + A'""B¥) < s5;(A+ B).

Corollary 2.5. Let A, B € M, be positive semidefinite matrices. Then for all
0<t<land0<v<3

2¢/t(1 —t)||[tAB* ™" + (1 —t) A"V B”||| < ||ltA+ (1 — t) B .
For A € M,,, the numerical radius of A is defined and denoted by
w(A) = max{|z"Az|: x € C",z"x = 1}.

The quantity w(A) is useful in studying perturbations, convergence, stability,
approximation problems, iterative method, etc. For more information see [3, 7].
It is known that w(.) is a vector norm on M, but is not unitarily invariant.
We recall the following results about the numerical radius of matrices which
can be found in [8] (see also [10, Chapter 1]).

Lemma 2.6. Let A € M,, and w(.) be the numerical radius. Then the following
assertions are true:

(i) w(U*AU) = w(A), where U is unitary;

(ii) L A] < w(A) < ||A];

(iii) w(A) = ||A]| if ( but not only if) A is normal.

Utilizing Lemma 2.6 (parts (ii) and (iii)) and by Corollary 2.5 we obtain the
following corollary.

Corollary 2.7. Let A, B € M, be positive semidefinite matrices. Then for all
0<t<land0<v<3

2\/t(1 — t)w(tAYB*™" + (1 —t)A'™"B") < w(tA + (1 — t)B).
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