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Abstract. Let nq(k, d) denote the smallest value of n for which there

exists a linear [n, k, d]-code over the Galois field GF (q). An [n, k, d]-code

whose length is equal to nq(k, d) is called optimal. In this paper we

present some matrix generators for the family of optimal [n, 3, d] codes

over GF (7) and GF (11). Most of our given codes in GF (7) are non-

isomorphic with the codes presented before. Our given codes in GF (11)

are all new.
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1. Introduction

Let Vn(q) be the vector space of all ordered n-tuples over GF (q) (Galois

field of q elements). Each subspace of Vn(q) is called a linear code. By an

[n, k, d]-code of length n and dimension k over GF (q) we mean a k-dimensional

subspace of Vn(q) with minimum Hamming distance d. Sometimes we use

the term [n, k]-code if the minimum distance d is not under consideration.

Optimizing any one of the parameters n, k and d, when the other two values

are given is one of the main problems in coding theory. These problems over a

∗Corresponding Author

Received 31 January 2013; Accepted 13 September 2014

c©2015 Academic Center for Education, Culture and Research TMU

11

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
5.

01
.0

02
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
30

 ]
 

                             1 / 12

http://dx.doi.org/10.7508/ijmsi.2015.01.002
http://ijmsi.com/article-1-384-en.html


12 M. Emami, L. Pedram

fixed GF (q) can be characterized as follows [7,9,11]:

1. What is the maximum value of d (denoted by dq(n, k)) for which there exists

an [n, k, d]-code?

2. What is the minimum value of n (denoted by nq(k, d)) for which there exists

an [n, k, d]-code?

3. What is the maximum value of k (denoted by kq(n, d)) for which there exists

an [n, k, d]-code?

For a literature backlog of this topic when q = 2, 3, 5 and 7 one is refereed to

[2,3,4,5,7,9,14,15,17,18,21,22,23]. In this paper we consider the problem for the

case of codes over GF (7) and GF (11). In section 2 we give a brief review of our

method. In Section 3 we give some basic necessary preliminaries. In Section

4 and 5 we study the value of functions n7(k, d) and n11(k, d) for k ≤ 3 and

some values of d.

2. A Brief Review of Our Method

In all parts of this study we followed a random process to obtain generator

matrices for specified codes. For a given k and d, the length n of the optimal

code can be obtained from the Griesmer bound and the existence of a possible

[n, k, d]-code can be investigated by the MacWilliams identities. In case of

nonexistence, we try to produce an [n + 1, k, d]-code. In case of existence, the

weight distributions given by MacWilliams identities help us to produce the

code. We generate matrices of size k × n by a random process (based on a

computer programming), we then test each of these matrices to be a generator

matrix for a specific [n, k, d]-code. Since the parameters are small, in case of

necessity we may produce all code words to find the weight distributions of the

code to see whether the weight distributions satisfy the MacWilliams identities.

In quasi-cyclic codes we studied only the cases where n is a multiple of k.

Now since n = ks, for some positive integer “s”, we produced the first row of

each of the s circulant matrices Gi of size k × k, by the same random process,

where G = [G1|G2| · · · |Gs] by the notations given in the corresponding section,

is the generating matrix of a code. The remaining rows of each Gi would fill

cyclically. In last step the weight distributions should be tested.

As an example the QC[32, 4, 25]-code is consist of 8 circulant matrices of size

4×4, which is built as above. Gulliver method, as cited in Grassl code table [6],

gives a different construction for this code which is based on two polynomials

of degree 15 to produce the first rows of two matrices of sizes 4× 16.

Also, it is important to note that in [4] as cited in Grassl table [6], the study

uses the following method: given the parameters n and k, the optimality of

code is focused on d (minimum distance), whereas in our papers, we employ a
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Optimal Linear Codes Over GF (7) and GF (11) with Dimension 3 13

different method: given the parameters k and d, the optimality is focused on n.

Sure both methods reach to a unique optimal code, while the methods are com-

pletely different. In quasi cyclic codes we tried to find the generating matrices,

where their weight distributions satisfy MacWilliams identities, meanwhile the

other references such as [4] have a different approach.

For more emphasis on the originality of our methods and our results we

tested some of our generator matrices, for any possible isomorphism, compared

with the generator matrices given in Grassl table [6]. So we computed the

weight distributions of some of the codes given in Grassl tables by a computer

programming and found that they are all completely different.

For example our QC[20, 4, 15] and [32,4,25]-codes are both non-isomorphic

with the same QC[20, 4, 15] and [32,4,25] codes given in Grassl table, as their

weight distributions are different. One of the [28,4,21]-codes and two of the

[24,4,18]-codes given in Grassl table, are all non-isomorphic from our corre-

sponding codes (their weight distributions are different).

3. Preliminaries

let w(x) denotes the Hamming weight of a vector x. That is the number of

nonzero entries in x. For a linear code, the minimum distance d is equal to the

smallest value of w(x) when x range over all nonzero codewords. Let C be an

[n, k]-code and let Ai and Bi be the number of codewords of weight i in C and

in dual code C⊥, respectively [9]. Now note that:

Theorem 3.1. (The MacWilliams identities [19]). Let C be an [n, k]-code over

GF (q). Then the Ai
,s and Bi

,s satisfy

n−t∑
j=0

(
n− j

t

)
Aj = qk−t

t∑
j=0

(
n− j

n− t

)
Bj . (3.1)

for t = 0, 1, . . . , n.

Lemma 3.2. [9]. For an [n, k, d]-code over GF (q), Bi = 0 for each value of i

(where 1 ≤ i ≤ k ) such that there does not exist an [n− i, k − i + 1, d]-code.

Lemma 3.3. [10] : Let C be an [n, k, d]-code over GF (q) with k ≥ 2 , and

with weight enumerator
∑n

i=0 Aiz
i . Then

(i) if x and y are a linearly independent pair of codeword of C ,

w(x) + w(y) ≤ qn− qd + d, (3.2)

(ii) Ai = 0 for i > q(n− d).

Corollary 3.4. (I) Let C be an [n, k, d]-code over GF (7) with k ≥ 2. Then :

(i) if x and y are a linearly independent pair of codewords of C, then w(x)+

w(y) ≤ 7n− 6d,

(ii) Ai = 0 for i > 7(n− d),
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14 M. Emami, L. Pedram

(iii) Ai = 0 or 6 for i > 1/2(7n− 6d),

(iv) if Ai > 0, then Aj = 0 for j > 7n− 6d− i and i 6= j;

(II) If C be an [n, k, d]-code over GF (11) with k ≥ 2, then :

(i) if x and y are a linearly independent pair of codewords of C, then w(x)+

w(y) ≤ 11n− 10d,

(ii) Ai = 0 for i > 11(n− d),

(iii) Ai = 0 or 10 for i > 1/2(11n− 10d),

(iv) if Ai > 0, then Aj = 0 for j > 11n− 10d− i and i 6= j.

Proof. (I) (i) and (ii) are immediate from Lemma 2.

(iii) Suppose i > 1/2(7n − 6d). By part (i), there cannot be two linearly

independent codeword of weight i. So there are either no codeword of weight

i or just six (x, 2x, 3x, 4x, 5x and 6x for some x ∈ C).

(iv) By part (i), there cannot exist codeword of weight i and j, with i 6= j,

satisfying i + j > 7n− 6d.

(II) The same way of (I). �

Definition 3.5. Let C be an [n, k, d]-code over GF (q). If we delete a given

coordinate from all codewords of C then we have a punctured code of C. This

code is an [n − 1, k, d − 1]-code. The set of all codewords of C having zero in

a given coordinate position and then deleting that coordinate is a code called

a shortened code of C. This code is an [n− 1, k − 1, d]-code, provided not the

given position in all code words C is zero [9].

Lemma 3.6. [9] (i) nq(k, d) ≤ nq(k, d + 1)− 1,

(ii) nq(k, d) ≥ nq(k, d− 1) + 1,

(iii) nq(k, d) ≤ nq(k + 1, d)− 1,

(iv) nq(k, d) ≥ nq(k − 1, d) + 1.

Definition 3.7. Let G be the generator matrix of a linear [n, k, d]-code C over

GF (q). Then the residual code of C with respect to a codeword c, denoted be

Res(C, c), is the code generated by the restriction of G to the columns where c

has a zero entry [9].

Lemma 3.8. [9] Suppose C is an [n, k, d]-code over GF (q) and suppose c ∈ C

has weight w, where d > w(q−1)/q. Then Res(C, c) is an [n−w, k−1, d0]-code

with d0 ≥ d− w + dw/qe.
(dxe denotes the smallest integer greater than or equal to x.)

Corollary 3.9. Suppose C is an [n, k, d]-code over GF (q), and let c be a

codeword of weight d. Then Res(C, c) is an [n− d, k − 1, dd/qe]-code [9].

Theorem 3.10. (The Griesmer bound ). Let gq(k, d) denote the sum expres-

sion
∑k−1

i=0 dd/qie. Then nq(k, d) ≥ gq(k, d).

The class of codes which satisfy the Griesmer bound is addressed as codes of

type BV. Such codes can be produced by certain puncturings of concatenations
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Optimal Linear Codes Over GF (7) and GF (11) with Dimension 3 15

of simplex codes and one can show that, for given q and k, the Griesmer bound

is attained for all sufficiently large d. The following theorem gives a necessary

and sufficient condition for the existence of a code of type BV [7,11,16].

Theorem 3.11. For given q, k and d, write d = sqk−1 −
∑p

i=1 q
ui−1, where

s = dd/qk−1e, k > u1 ≥ u2 ≥ . . . ≥ up ≥ 1, and at most q − 1 of u,
is take any

given value. Then there exists a [gq(k, d), k, d]-code of type BV if and only if∑min(s+1,p)
i=1 ui ≤ sk.

4. Optimal Codes with q = 7, 11 of Dimension ≤ 3

For k ≤ 2, it follows from Theorem 11 that n7(k, d) = g7(k, d) for all d. Thus

n7(1, d) = d and n7(2, d) = d + dd/7e for all d.

For k = 3, Theorem 11 implies that n7(3, d) = g7(3, d) for d ≥ 36. The

remaining values of d are listed in Table 1.

Table 1 : value of n7(3, d)

d g7(3, d) n7(3, d)

1 3 3

2 4 4

3 5 5

4 6 6

5 7 7

6 8 8

7 9 10

8 11 11

9 12 12

10 13 13

11 14 14

12 15 15

13 16 17

14 17 18

15 19 19

16 20 20

17 21 21

18 22 22

19 23 24

20 24 25

21 25 26

22 27 27

23 28 28

24 29 29

25 30 31

26 31 32

27 32 33

28 33 34

29 35 35

30 36 36

31 37 38

32 38 39

33 39 40

34 40 41

35 41 42

Theorem 4.1. (i) n7(3, 5) ≤ 7, (ii) n7(3, 6) ≤ 8, (iii) n7(3, 11) ≤ 14.
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16 M. Emami, L. Pedram

Proof. (i) The matrix  0 4 3 2 0 3 1

6 0 0 3 2 1 3

5 2 4 2 1 5 1


generates [7, 3, 5]-code over GF (7).

(ii) it is shown in [11] that [q+ 1, 3, q−1]-code exists over GF (q). In particular, there

exists [8, 3, 6]-code over GF (7). Its generator matrix is 4 4 3 2 1 0 3 0

4 0 1 5 4 3 6 0

5 6 3 5 0 0 5 1


(iii) The matrix 1 3 2 1 1 1 2 3 0 1 3 1 3 3

5 0 4 1 5 2 5 5 0 1 2 6 2 5

2 1 2 6 3 4 6 4 4 1 1 6 2 3


generates [14, 3, 11]-code over GF (7) and its weight distribution is A11 = 162, A12 =

60, A13 = 66 and A14 = 54. �

Theorem 4.2. n7(3, 10) ≤ 13.

Proof. The matrix 0 6 1 6 2 5 1 0 1 5 0 6 2

2 4 6 3 1 6 1 6 1 2 2 1 4

2 1 4 3 2 4 2 1 3 2 0 6 3


generates [13, 3, 10]-code over GF (7) and its weight distribution is A10 = 126, A11 =

90, A12 = 66 and A13 = 60. �

Theorem 4.3. (i) n7(3, 7) > 9, (ii) n7(3, 35) > 41.

Proof. (i) If q is odd, an [q+k−1, k]-code MDS does not exist [1]. Then [9, 3, 7]-code

does not exist. This matrix generates [10, 3, 7]-code with weight distribution A7 = 54,

A8 = 108, A9 = 102 and A10 = 78 3 1 1 3 1 2 0 1 1 4

2 6 3 6 5 0 1 6 5 6

1 4 1 6 6 0 0 1 0 6


(ii) For d = (k− 2)qk−1 − (k− 1)qk−2, nq(k, d) > gq(k, d) holds for q ≥ k , k = 3, 4, 5

[12]. Then we have for k = 3 and q = 7, [41, 3, 35]-code dose not exist. �

Theorem 4.4. n7(3, 13) > 16.

Proof. Suppose, for a contradiction, that there exist a [16, 3, 13]-code C over GF (7).

Since there do not exist codes over GF (7) with parameters [15, 3, 13] and [14, 2, 13],

it follows from Lemma 2 that B1 = B2 = 0. The first three MacWilliams identities

(Theorem 1) become,

A13 + A14 + A15 + A16 = 342,

A14 + 2A15 + 3A16 = 258,
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Optimal Linear Codes Over GF (7) and GF (11) with Dimension 3 17

A15 + 3A16 = 210.

By Lemma 8, the residual code of C with respect to a codeword of weight 15 would be

a [1, 2, 1]-code, which dose not exist. so A15 = 0. Bearing in mind that each Ai must

be a nonnegative integer multiple of 6 (because if x is a nonzero codeword, then so

also are 2x, 3x, 4x, 5x and 6x of the same weight). The last equation gives A16 = 70

that is not divisible by 6.

This matrix generates [17, 3, 13]-code 4 6 0 4 5 5 5 5 1 6 6 6 4 1 0 6 5

2 6 4 5 0 2 5 6 0 5 5 1 2 1 2 3 3

6 1 5 3 3 6 1 2 6 3 2 5 2 5 4 5 3


and its weight distribution is A13 = 60, A14 = 126, A15 = 78, A16 = 42 and A17 =

36. �

Theorem 4.5. n7(3, 21) > 25.

Proof. Suppose there exist an [25, 3, 21]-code C over GF (7).By Lemma 2, B1 = B2 =

0. The MacWilliams identities become,

(a) A21 + A22 + A23 + A24 + A25 = 342,

(b) A22 + 2A23 + 3A24 + 4A25 = 168,

(c) A23 + 3A24 + 6A25 = 252.

By Lemma 8, A22 = A23 = A24 = 0. By Corollary 4(iii), A25 = 0 or 6, this contradicts

(c).

This matrix generates [26, 3, 21]-code and its weight distribution is A21 = 108, A22 =

108, A23 = 60, A24 = 42, A25 = 12 and A26 = 12.∣∣∣∣ 0 1 2 3 6 3 2 6 3 5 4 5 4 5 5 1 5 2 4 3 0 0 2 3 0 4

4 2 2 4 1 2 5 4 6 5 0 2 5 4 0 3 2 4 1 1 6 6 4 3 3 4

4 5 1 4 3 5 0 6 2 2 1 1 6 0 0 0 3 5 4 3 1 0 1 3 1 1

∣∣∣∣
�

Theorem 4.6. n7(3, 28) > 33.

Proof. Suppose there exist an [33, 3, 28]-code C over GF (7).By Lemma 2, B1 = B2 =

0. The MacWilliams identities become,

(a) A28 + A29 + A30 + A31 + A32 + A33 = 342,

(b) A29 + 2A30 + 3A31 + 4A32 + 5A33 = 126,

(c) A30 + 3A31 + 6A32 + 10A33 = 252,

By Lemma 8, A29 = A30 = A31 = A32 = 0. By Corollary 4(iii), A33 = 0 or 6, which

contradicts (c). �

Theorem 4.7. (i) n11(3, 5) ≤ 7, (ii) n11(3, 7) ≤ 9, (iii) n11(3, 13) ≤ 16,

(iv) n11(3, 14) ≤ 17.

Proof. (i) This matrix generates [7, 3, 5]-code and its weight distribution is A5 = 210,

A6 = 420 and A7 = 700.  3 9 10 0 9 3 4

6 9 5 3 8 10 9

7 1 6 4 8 9 4


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18 M. Emami, L. Pedram

(ii) This matrix generates [9, 3, 7]-code and its weight distribution is A7 = 360, A8 =

360 and A9 = 610. Another generator matrix is given in section 4. 10 4 5 1 1 1 1 3 8

1 9 7 1 1 0 8 0 7

2 1 10 2 4 6 9 9 0


(iii) The matrix 0 2 1 10 9 1 10 6 4 5 2 3 0 5 10 4

1 4 10 1 7 2 4 6 0 3 2 3 5 2 6 6

4 7 5 3 9 5 9 2 10 1 6 0 7 6 4 9


generates [16, 3, 13]-code over GF (11) and its weight distribution is A13 = 300, A14 =

300, A15 = 420 and A16 = 310.

(iv) The matrix 3 6 0 1 8 10 8 3 3 2 5 4 4 5 6 3 3

6 6 7 8 4 5 2 8 0 8 10 10 1 9 2 7 9

3 4 9 1 8 1 3 2 5 8 7 1 0 10 7 6 6


generates [17, 3, 14]-code over GF (11) and its weight distribution is A14 = 340, A15 =

340, A16 = 340 and A17 = 310. �

5. Quasi-Cyclic Codes

QC codes are a generalization of cyclic codes whereby a cyclic shift of a codeword

by p positions results in another codewords. It can be shown that p must be divisor

of n [8]. Therefore, cyclic codes are QC codes with p = 1. With a suitable

permutation of coordinate, many QC codes can be characterized in terms of m×m

circulant matrices, so the blocklength, n, is a multiple of m, n = mp. The generator

matrix can then be represented as G = [C0, C1, C2, . . . , Cp−1]. Ci is an m×m

circulant matrix of the form

C =


c0 c1 c2 . . . cm−1

cm−1 c0 c1 . . . cm−2

cm−2 cm−1 c0 . . . cm−3

...
...

...
...

c1 c2 c3 . . . c0


where each successive row is a right cyclic shift of the previous one. These codes are

a subclass of the more general 1-generator QC codes [20], which is in turn a subclass

of all QC codes.

This has been confined mainly to the case m = k. An s-QC [sk, k]-codes has a

generator matrix of the form G = [G1 | G2 | . . . | Gs], where each Gi is a k × k

circulant matrix. The matrix G1 is usually taken to be the identity matrix I [8]. In

this section we produce generator matrix of QC [sk, k]-codes with k = 3 over GF (7)

and GF (11).

Theorem 5.1. (i) n7(3, 4) = 6, (ii) n7(3, 9) = 12, (iii) n7(3, 12) = 15, (iv) n7(3, 14) =

18.
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Proof. There exist codes with parameters [6, 3, 4], [12, 3, 9], [15, 3, 12] and [18, 3, 14]-

codes. The weight distributions and generators matrices are :

[6, 3, 4] A0 = 1, A4 = 90, A5 = 108 and A6 = 144;

(422 | 533);

[12, 3, 9] A0 = 1, A9 = 102, A10 = 90, A11 = 90 and A12 = 60;

(322 | 633 | 022 | 046);

[12, 3, 9] A0 = 1, A9 = 96, A10 = 108, A11 = 72 and A12 = 66;

(532 | 066 | 212 | 040);

[15, 3, 12] A0 = 1, A12 = 180, A13 = 90, A14 = 0 and A15 = 72;

(205 | 021 | 642 | 054 | 346);

[18, 3, 14] - A0 = 1, A14 = 90, A15 = 90, A16 = 108, A17 = 18 and A18 = 36;

(322 | 633 | 022 | 046 | 450 | 244);

[18, 3, 14] - A0 = 1, A14 = 90, A15 = 108, A16 = 54, A17 = 72 and A18 = 18;

(515 | 212 | 343 | 531 | 630 | 500). �

Theorem 5.2. (i) n7(3, 17) = 21, (ii) n7(3, 19) = 24, (iii) n7(3, 22) = 27 and (iv)

n7(3, 27) = 33.

Proof. There exist codes with parameters [21, 3, 17], [24, 3, 19], [27, 3, 22] and [33, 3, 27]

codes. The weight distributions and generators matrices are :

[21, 3, 17] - A0 = 1, A17 = 126, A18 = 168, A19 = 0, A20 = 0 and A21 = 48;

(002 | 521 | 321 | 640 | 434 | 633 | 624);

[24, 3, 19] - A0 = 1, A19 = 72, A20 = 108, A21 = 90, A22 = 18, A23 = 54 and A24 = 0;

(255 | 520 | 452 | 045 | 423 | 544 | 546 | 202);

[24, 3, 19] - A0 = 1, A19 = 108, A20 = 36, A21 = 84, A22 = 108, A23 = 0 and A24 = 6;

(164 | 566 | 346 | 114 | 110 | 311 | 552 | 034);

[27, 3, 22] - A0 = 1, A22 = 126, A23 = 90, A24 = 102, A25 = 0, A26 = 0 and A27 = 24;

(646 | 623 | 565 | 101 | 354 | 136 | 605 | 130 | 043);

[33, 3, 27] - A0 = 1, A27 = 96, A28 = 126, A29 = 54, A30 = 42, A31 = 18, A32 = 0

and A33 = 6;

(245 | 664 | 023 | 432 | 513 | 404 | 056 | 104 | 543 | 051 | 246);

[33, 3, 27] - A0 = 1, A27 = 54, A28 = 216, A29 = 18, A30 = 24, A31 = 18, A32 = 0

and A33 = 12;

(426 | 210 | 060 | 533 | 461 | 105 | 453 | 552 | 242 | 305 | 022). �

Theorem 5.3. (i) n7(3, 30) = 36, (ii) n7(3, 32) = 39 and (iii) n7(3, 35) = 42.

Proof. There exist codes with parameters [36, 3, 30], [39, 3, 32] and [42, 3, 35] codes.

The weight distributions and generators matrices are :

[36, 3, 30] - A0 = 1, A30 = 168, A31 = 90, A32 = 54, A33 = 6, A34 = 18, A35 = 0 and

A36 = 6;

(515 | 146 | 605 | 153 | 130 | 200 | 012 | 253 | 302 | 251 | 411 | 434);
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[36, 3, 30] - A0 = 1, A30 = 168, A31 = 72, A32 = 90, A33 = 0, A34 = 0, A35 = 0 and

A36 = 12;

(503 | 166 | 402 | 265 | 351 | 022 | 352 | 565 | 510 | 535 | 312 | 631);

[39, 3, 32] - A0 = 1, A32 = 90, A33 = 108, A34 = 90, A35 = 18, A36 = 12, A37 = 18,

A38 = 0 and A39 = 6;

(601 | 164 | 426 | 210 | 060 | 533 | 461 | 105 | 453 | 552 | 242 | 305 | 022);

[39, 3, 32] - A0 = 1, A32 = 90, A33 = 114, A34 = 72, A35 = 36, A36 = 6, A37 = 18,

A38 = 0 and A39 = 6;

(414 | 660 | 442 | 120 | 406 | 553 | 030 | 543 | 056 | 106 | 541 | 561 | 661);

[42, 3, 35] - A0 = 1, A35 = 162, A36 = 78, A37 = 54, A38 = 18, A39 = 24, A40 = 0,

A41 = 0 and A42 = 6;

(400 | 423 | 320 | 224 | 463 | 606 | 145 | 221 | 312 | 334 | 020 | 155 | 402 | 612);

[42, 3, 35] - A0 = 1, A35 = 162, A36 = 84, A37 = 126, A38 = 0, A39 = 0, A40 = 0,

A41 = 0 and A42 = 6;

(350 | 120 | 212 | 051 | 256 | 144 | 463 | 066 | 564 | 545 | 432 | 340 | 233 | 005). �

Generator matrices of two QC-codes that meet the Griesmer bound are given in the

following,

[45, 3, 38] - A0 = 1, A38 = 180, A39 = 120, A40 = 36, A41 = 0, A42 = 0, A43 = 0,

A44 = 0, A45 = 6.

(500 | 524 | 042 | 043 | 545 | 252 | 513 | 206 | 636 | 153 | 163 | 036 | 440 | 121 | 454).

[48, 3, 41] - A41 = 288, A42 = 48, A43 = 0, A44 = 0, A45 = 0, A46 = 0, A47 = 0,

A48 = 6

(643 | 406 | 332 | 216 | 533 | 525 | 003 | 263 | 521 | 660 | 103 | 240 | 415 | 014 | 136 |
121).

Theorem 5.4. (i) n11(3, 4) = 6, (ii) n11(3, 7) = 9 and (iii) n11(3, 10) = 12.

Proof. There exist codes with parameters [6, 3, 4], [9, 3, 7] and [12, 3, 10] codes. The

weight distributions and generators matrices are :

[6, 3, 4] - A0 = 1, A4 = 150, A5 = 420 and A6 = 760;

(5 2 7 | 10 3 4);

[9, 3, 7] - A0 = 1, A7 = 360, A8 = 360 and A9 = 610;

(9 1 8 | 4 1 3 | 5 6 5);

[12, 3, 10] - A0 = 1, A10 = 660, A11 = 120 and A12 = 550;

(3 6 10 | 6 6 9 | 4 6 8 | 5 5 10).

�

Theorem 5.5. (i) n11(3, 12) = 15, (ii) n11(3, 15) = 18 and (iii) n11(3, 18) = 21.

Proof. There exist codes with parameters [15, 3, 12], [18, 3, 15] and [21, 3, 18] codes.

The weight distributions and generators matrices are :

[15, 3, 12] - A0 = 1, A12 = 210, A13 = 420, A14 = 330 and A15 = 370;

(7 10 4 | 6 4 10 | 0 10 4 | 2 6 5 | 6 7 6);
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[18, 3, 15] - A0 = 1, A15 = 400, A16 = 330, A17 = 300 and A18 = 300;

(0 4 8 | 0 3 3 | 3 9 9 | 1 8 2 | 8 2 5 | 1 6 1);

[21, 3, 18] - A0 = 1, A18 = 630, A19 = 210, A20 = 210 and A21 = 280;

(6 2 1 | 1 1 2 | 1 5 4 | 8 10 10 | 6 4 9 | 7 1 10 | 2 2 9).

�

Theorem 5.6. (i) n11(3, 27) = 23, (ii) n11(3, 26) = 30 and (iii) n11(3, 34) = 39.

Proof. There exist codes with parameters [27, 3, 23], [30, 3, 26] and [39, 3, 34] codes.

The weight distributions and generators matrices are :

[27, 3, 23] - A0 = 1, A23 = 390, A24 = 280, A25 = 330, A26 = 180 and A27 = 150;

(10 5 1 | 0 5 3 | 2 1 7 | 0 10 4 | 2 0 9 | 2 7 9 | 2 5 7 | 2 6 1 |
9 10 6);

[30, 3, 26] - A0 = 1, A26 = 540, A27 = 300, A28 = 210, A29 = and A30 = 120;

(9 4 4 | 2 4 9 | 10 0 8 | 3 3 0 | 8 4 3 | 0 9 6 | 7 6 4 | 2 3 7 |
10 2 3 | 8 6 1);

[39, 3, 34] - A0 = 1, A34 = 450, A35 = 360, A36 = 220, A37 = 90, A38 = 150 and

A39 = 60;

(5 3 6 | 4 4 0 | 2 9 3 | 2 6 1 | 4 5 3 | 1 1 4 | 5 9 2 | 9 7 9 |
6 10 8 | 3 7 10 | 7 1 3 | 3 5 7 | 3 8 6). �
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