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Abstract. Wireless Sensor Networks (WSNs) are networks of autonomous

nodes used for monitoring an environment. In designing WSNs, one of

the main issues is limited energy source for each sensor node. Hence,

offering ways to optimize energy consumption in WSNs which eventu-

ally increases the network lifetime is strongly felt. Gravitational Search

Algorithm (GSA) is a novel stochastic population-based meta-heuristic

that has been successfully designed for solving continuous optimization

problems. GSA has a flexible and well-balanced mechanism to enhance

intensification (intensively explore areas of the search space with high

quality solutions) and diversification (move to unexplored areas of the

search space when necessary) abilities. In this paper, we will propose

a GSA-based method for near-optimal positioning of Base Station (BS)

in heterogeneous two-tiered WSNs, where Application Nodes (ANs) may

own different data transmission rates, initial energies and parameter val-

ues. Here, we treat with the problem of positioning of BS in heterogeneous

two-tiered WSNs as a continuous optimization problem and show that
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proposed GSA can locates the BS node in an appropriate near-optimal

position of heterogeneous WSNs. From the experimental results, it can

be easily concluded that the proposed approach finds the better location

when compared to the PSO algorithm and the exhaustive search.

Keywords: Wireless sensor network (WSN), Two-tiered WSNs, Base station

location, Energy consumption, Network lifetime, Gravitational search algo-

rithm (GSA).

2000 Mathematics subject classification: 68M10, 90B18.

1. Introduction

Wireless Sensor Networks (WSNs) are networks of distributed autonomous

nodes that can sense their environment cooperatively. WSNs are used in diverse

applications such as environment and habitat monitoring, structural health

monitoring, healthcare, home automation, and traffic surveillance. These net-

works with their applications have created a small revolution in the evolution

of information and hence those are an attractive field for computer science

and engineering researchers [3]. In designing WSNs, one of the main issues

is limited energy source for each sensor. Moreover, due to the large number

of sensors in the network or lack of access to them, battery replacement for

sensors is not practical. Hence, offering ways to optimize energy consumption,

which eventually increases the network lifetime is strongly felt [3].

A two-tiered WSN consists of a number of Sensor Node (SN)/Application

Node (AN) clusters and at least one Base Station (BS). A physical and logical

view of two-tiered WSN is shown in Figure 1 and 2, respectively. In each

cluster, there are many SNs and at least one AN. SNs are responsible for all

sensing-related activities. Once triggered by an internal timer or an external

event, an SN starts to capture and encode live information sent directly to an

AN in the same cluster. SNs are small, low cost, and disposable, and can be

densely deployed within a cluster. SNs do not communicate with other SNs

in the same or other clusters, and usually are independently operated. ANs,

on the other hand, have much more responsibilities than SNs. First, an AN

receives raw data from all active SNs in the same cluster. It may also instruct

SNs to be in sleep, idle, or active state, if some SNs are found to always

generate uninterested or duplicated data, thereby allowing these SNs to be

reactivated later when some existing active SNs run out of energy. Second, the

AN creates an application-specific local view for the whole cluster by exploring

correlations among the data sent from SNs. Excessive redundancy in raw data

can be alleviated, and the fidelity of captured information should be enhanced.

Third, the AN forwards the composite bit-stream toward a BS that generates a
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comprehensive global-view for the entire WSN. Optionally, ANs can be involved

in inter-AN relaying, if such activities are applicable and favorable [12].

Figure 1. A physical view of two-tiered architecture of Wireless Sensor

Networks [12].

Figure 2. A logical view of two-tiered architecture of Wireless Sensor

Networks [12].

In this paper, we will solve K-of-N lifetime problem in heterogeneous two-

tiered WSNs. The definition of K-of-N lifetime problem in heterogeneous two-

tiered WSNs which is shown by LK
N is as follow: suppose given N ANs, where

each ANs may own different data transmission rates, initial energies and pa-

rameter values, and the network survives as long as there are at least K ANs

alive (1 ≤ k ≤ N), or the network fails when N-K+1 ANs run out of energy, i.e.

LK
N = minN−K+1{li} . Notice that even if some ANs fail, their responsibilities

can be taken by nearby ANs, so that the WSN still has the capability to carry

on its mission. Normally, K is close to N ; otherwise, the deployment of ANs

has too much redundancy. To solve K-of-N lifetime problem in heterogeneous

two-tiered WSNs, we must find a location for BS in two-tiered WSNs so that

network lifetime increases.
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The remaining parts of this paper are organized as follows: Some related

works about finding the location of BS in the two-tiered WSNs is reviewed

in Section 2. The GSA is introduced in Section 3. A GSA-based method to

find near-optimal location for BS in a two-tiered WSN is proposed in Section

4. Experimental results for demonstrating the performance of the proposed

algorithm are described in Section 5. Finally, conclusions are stated in Section

6.

2. Related Work

In the past, many approaches were proposed to efficiently utilize energy in

wireless networks. For example, appropriate transmission ways were designed

to save energy for multi-hop communication in ad-hoc networks [5,6,8,10,14,17,

19]. Good algorithms for allocation of BSs and SNs were also proposed to

reduce power consumption [9, 11, 13, 14, 16].

Pan et al. [12] proposed an algorithm to find the optimal locations of BSs

in two-tiered wireless homogeneous sensor networks. Let d be the Euclidean

distance from an AN to a BS, and r be the data transmission rate. Pan et

al. adopted the following formula to calculate the energy consumption per unit

time:

p(r, d) = r(α1 + α2d
n), (2.1)

where α1 is a distance-independent parameter, α2 is a distance-dependent pa-

rameter, and n is the Euclidean dimension. The energy consumption thus

relates to Euclidean distances and data transmission rates. Pan et al. assumed

each AN has the same α1, α2 and initial energy. For homogenous ANs, they

showed that the center of the minimal circle covering of the whole ANs was the

optimal BS location (with the maximum lifetime).

Also, Pan et al. extended their approach to find the optimal BS location

for ANs with different transmission rates by using stacked planes [12]. But if

the ANs have different data transmission rates, initial energies and parameter

values, their approach can’t work.

Hong et al. presented solving the K-of-N Lifetime Problem in two-tiered

WSNs by Particle Swarm Optimization (PSO). Their proposed approach can

find near-optimal BS locations in heterogeneous sensor networks, where ANs

may own different data transmission rates, initial energies and parameter values

[7].

3. Gravitational Search Algorithm

In physics, gravitation is the tendency of agents with object to accelerate

towards each other [4]. In the Newtonian gravitational law, each object at-

tracts every other object by a gravitational force. For example, consider a

2-dimensional space which includes objects O1, O2, O3, and O4. As seen in

Figure 3, F1j(j ∈ {2, 3, 4}) is the force acting on O1 from Oj(j ∈ {2, 3, 4}),

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
5.

01
.0

06
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
30

 ]
 

                             4 / 13

http://dx.doi.org/10.7508/ijmsi.2015.01.006
http://ijmsi.com/article-1-333-en.html


Gravitational Search Algorithm to Solve the K-of-N Lifetime Problem in ... 85

and F1 is the overall force that acts on O1 from all other objects and generates

acceleration a1 based on Newton’s second law .

Figure 3. Every object accelerates in the direction of the resultant force that

acts on it from the other objects [15].

Gravitational Search Algorithm (GSA) is one of the newest stochastic pop-

ulation based meta-heuristics that has been inspired by Newtonian laws of

gravity and motion. In the basic model of the GSA which originally has been

designed to solve continuous optimization problem, a set of agents, called ob-

jects, are introduced in the n-dimensional search space of the problem to find

the optimum solution by simulation of Newtonian laws of gravity and motion.

In GSA, the position of each agent demonstrates a candidate solution to the

problem, and hence is represented by the vector Xi in the search space of the

problem. Agents with a higher performance get a greater gravitational mass,

because a heavy object has a large effective attraction radius and hence a great

intensity of the attraction. During the lifetime of GSA, each agent successively

adjusts its position Xi toward the positions of KGSA best agents of population

using gravitational law and laws of motion.

To describe the more details of GSA, consider a system with s agents (swarm

size) in which the position of the i -th agent is defined as follows:

Xi = (x1i , ..., x
d
i , ..., x

n
i ); i = 1, 2, ..., s, (3.1)

where xdi presents the position of the i -th agent in the d -th dimension where

n is dimension of the search space. Based on [15], gravitational mass of each

Newton’s second law states that when a force is applied to an object, the acceleration of

this object depends only on the force and gravitational mass of this object. For example,

suppose Oi is an object, Fi is a force which acts on Oi, and ai is the acceleration of Oi. The

value of ai will be obtained as follows: ai = Fi
gravitational mass of Oi
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agent is calculated after computing current population’s fitness as follows:

qi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

, (3.2)

Mi(t) =
qi(t)∑s
j=1 qj(t)

, (3.3)

where Mi(t) and fiti(t) represent the gravitational mass and the fitness value

of the agent i at time t, respectively, and worst(t) and best(t) are defined as

follows for a minimization problem:

best(t) = minj∈{1,...,s}fitj(t), (3.4)

worst(t) = maxj∈{1,...,s}fitj(t), (3.5)

To compute acceleration of an agent, total forces from a set of KGSA heavier

agents (Kbest set) that apply on it should be considered based on the law of

gravity using Eq. (3.6), which is followed by calculation of agent acceleration

using the law of motion by Eq. (3.7):

F d
i (t) =

∑
j∈Kbest,j 6=i

randjG(t)
Mj(t)Mi(t)

Rij(t) + ε
(xdj (t)− xdi (t)), (3.6)

adi (t) =
F d
i (t)

Mi(t)
=

∑
j∈Kbest,j 6=i

randjG(t)
Mj(t)

Rij(t) + ε
(xdj (t)− xdi (t)), (3.7)

where:

• randj is a uniformly distributed random number in the interval [0,1],

• ε is a very small value used in order to escape from division by zero

error whenever the Euclidean distance between two agents i and j is

equal to zero,

• Rij(t) is the Euclidean distance between two agents i and j, defined as

‖Xi(t), Xj(t)‖2 ,

• Kbest is the set of first KGSA agents with the best fitness value and

biggest gravitational mass, which KGSA is a function of time, initialized

to Kinitial value at the beginning and the its value is decreased with

time, and

• G(t) is the gravitational constant that will take an initial value, Ginitial,

and it will be reduced with time toward end value, Gend, by Eq. (3.8):

G(t) = G(Ginitial, Gend, t). (3.8)

Afterwards, next velocity of an agent is calculated as a fraction of its current

velocity added to its acceleration by Eq. (3.9). Then, its next position can be

calculated using Eq. (3.10):

vdi (t+ 1) = randi ∗ vdi (t) + adi (t), (3.9)
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xdi (t+ 1) = xdi (t) + vdi (t+ 1). (3.10)

where randi is a uniformly distributed random number in the interval [0,1].

The pseudo code of the original GSA is shown in the algorithm (1).

———————————————————————————————

Algorithm (1): Template of Gravitational Search Algorithm.

———————————————————————————————

Randomly generate initial population;

Randomly generate initial velocity;

Evaluate the fitness for each agent;

While stopping criteria is not satisfied Do

Update G, KGSA, and Kbest ;

Calculate the acceleration of each agent by Eq. (3.7);

Calculate the velocity of each agent by Eq. (3.9);

Update the position of each agent by Eq. (3.10);

Evaluate the fitness for each agent;

Endwhile

Output: Best solution found.

———————————————————————————————

In GSA, parameters KGSA and G are two main components to balance its

intensification (intensively explore areas of the search space with high quality

solutions) and diversification (move to unexplored areas of the search space

when necessary). It is obvious that each meta-heuristic algorithm, in order to

avoid trapping in a local optimum, must use the diversification at the beginning

iterations. In GSA, this point is accomplished by assignment of high values

to parameters KGSA and G at the beginning. That is, the value of Kinitial

and Ginitial must be high. It is obvious that the high value for parameter

KGSA allows that an agent moves in the search space based on the position of

more agents and consequently the diversification of the algorithm is increased.

Also, a high value for parameter G increases the mobility of each agent in the

search space and hence the diversification of the algorithm is increased. With

high value for parameters KGSA and G, we can hope that the good regions of

solution space are recognized in premier iterations. Hence, by laps of iterations,

the diversification of GSA must fade out and the intensification of it must fade

in. This issue is accomplished by reducing the value of parameters KGSA and

G by laps of iterations. It is obvious that the low value for parameter KGSA

causes that an agent moves in search space based on the position of few agents

and consequently the intensification of the algorithm is increased. Also, the

low value for parameter G decreases the mobility of each agent in the search

space and hence the intensification of the algorithm is increased. Therefore, we
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can hope that the good regions of the search space are exploited in the ultimate

iterations [1, 18].

4. The Proposed Approach: Using the GSA Meta-Heuristic to

Find Near-Optimal BS Location

The ANs produced by different manufacturers may own different data trans-

mission rates, initial energies and parameter values. When different kinds of

ANs exist in a WSN, it is hard to find the optimal BS location. In this sec-

tion, a heuristic algorithm based on GSA to find near-optimal location for BS

in two-tiered is proposed. In the proposed approach, an initial population of

agents is first randomly generated, so that each agent representing the coordi-

nate of a possible BS location. Each agent is also allocated an initial velocity

for changing its state.

Let ej(0) be the initial energy, rj be the data transmission rate, aj1 be the

distance-independent parameter, and aj2 be the distance-dependent parameter

of the j -th AN. The lifetime of an application node ANj for the i -th agent

which is stated by lij(t) is calculated by the following formula:

lij(t) =
ej(0)

rj(aj1 + aj2dnij)
, (4.1)

where dnij is the n-order Euclidian distance from the j -th AN to the i -th agent

[13]. In the K-of-N lifetime problem, given N ANs, where each ANs may own

different data transmission rates, initial energies and parameter values, and the

network survives as long as there are at least K ANs alive (1 ≤ K ≤ N), or the

network fails when N-K+1 ANs run out of energy, i.e. LK
N = minN−K+1{li}.

Hence, the fitness function for evaluating each agent can be considered as below:

fiti(t) = minN−K+1
j=1,...,m

{lij(t)}. (4.2)

That is, the fitness of the i -th agent is its (N-K+1 )-th minimal lifetime

among all the ANs. A larger fitness value denotes a better solution quality for

the K-of-N lifetime problem, meaning the corresponding BS location is better.

To achieve near-optimal location for BS, all agents continuously move in the

search space of the problem. When the termination conditions are achieved,

the best location in the population will be output as the location of the BS.

Notice that the termination conditions may be predefined execution time, a

fixed number of generations or when the agents have converged to a certain

threshold. In the proposed algorithm, termination condition of algorithms is a

fixed number of generations. The template of the proposed algorithm is shown

in the algorithm (2).

———————————————————————————————

Algorithm (2): Template of proposed algorithm.
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———————————————————————————————

Randomly generate a group of s agents, each representing a possible BS loca-

tion;

Randomly generate initial velocity for each agent;

Randomly generate an initial velocity for each agent;

Evaluate the fitness for each agent;

Set value of KGSA with s (s is the number of population);

t = 0;

While stopping criteria is not satisfied Do

Calculate the lifetime lij(t) of the j -th AN for the i -th agent in step t by

Eq.(4.1);

Calculate the (N-K+1 )-th minimal lifetime among all the ANs for the i -th

agent as its fitness value, fiti(t) , by Eq.(4.2);

Calculate KGSA and identify Kbest set of KGSA best agents;

Calculate G(t), best(t), worst(t), Mi(t), Fi(t), ai(t) and vi(t+ 1);

Update the position of each agent, xi(t+ 1) , by Eq. (3.10);

t = t+ 1;

Endwhile

Output: Best solution found.

———————————————————————————————

To better understand how the proposed GSA can be used to find BS location

for the K-of-N lifetime problem, a small example in a two-dimensional space

is given as follows. Suppose there are five ANs in our example and their initial

parameters are shown in Table 1. For simplicity, all aj1’s are set at 0 and all

aj2’s at 1. Also assume the allowed number K of alive ANs is 3.

Table 1. The initial value of parameters of ANs in our example

AN NO. Location Rate Power

1 (2,3) 4 8000

2 (8,4) 3 10000

3 (3,7) 4 6000

4 (10,8) 5 10000

5 (5,4) 3 8000

Assume 4 agents are used as initial swarm and are randomly located at (2,

7), (6, 1), (5, 9), and (1, 4). For simplicity, initial velocity of each agent is

equaled to zero. Then, the lifetime of each AN for an agent is calculated by

Eq. (12). Table 2 shows the lifetime of all ANs for all agents. For example,
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the lifetime of first AN for first agent is calculated as follows:

l11 = 8000
4(0+1((2−2)2+(7−3)2)) = 125.

Table 2. The lifetime of all ANs for all agents.

Agent
AN

1(2,3) 2(8,4) 3(3,7) 4(10,8) 5(5,4)

1(2,7) 125 74.07 1500 30.77 148.15

2(6, 1) 100 256.41 33.33 30.77 266.67

3(5, 9) 44.44 98.04 187.50 76.92 106.67

4(1, 4) 1000 68.03 115.38 20.62 166.67

As mentioned above, the (N-K+1 )-th minimal lifetime among all the ANs

for each agent is computed as its fitness value. For example, (5-3+1)-th min-

imal lifetime ANs for each agent are 125, 100, 98.04, and 115.38, respectively.

Therefore, we have fit1 = 125, fit2 = 100, fit3 = 98.04, and fit4 = 115.38.

5. Experimental Results

In this section, the experiments were made to show the performance of the

proposed approach on finding the near-optimal location of BS in two-tiered

WSNs. All of them were implemented in C language and were performed on

an Intel PC with a 2.0GHz processor and 1GB main memory and the Microsoft

Window XP operating system. The simulation was done in a two-dimensional

real-number space of 1000m*1000m. The data transmission rate was limited

within 1 to 10 and the range of initial energy was limited between 100000000

to 999999999.

In simulation, the number of ANs is equal to 50. Some data of all ANs such

as: its own location, data transmission rate and initial energy, were randomly

generated based on the above assumptions. Also, the distance-independent

parameter (aj1) for each ANs are set at zero, the distance-dependent parameter

(aj2) for each ANs was set at one, and the allowed number of alive ANs (i.e.

K ) was set at 40. As said, K must close to N ; otherwise, the deployment of

ANs has too much redundancy.

Moreover, for tuning the parameters of GSA, the number of agents is equal

to 15 (i.e. s = 15), the number of generations equal to 50, Kinitial is equal to s
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Table 3. The lifetime comparison of the proposed approach,

the PSO algorithm and the exhaustive grid search

Method Lifetime

The proposed

approach

212.4413

The PSO

algorithm [7]

212.4404

The exhaustive

grid search (grid

size = 1) [7]

212.0781

The exhaustive

grid search (grid

size = 0.1) [7]

212.4158

The exhaustive

grid search (grid

size = 0.01) [7]

212.4379

(i.e. the number of agents), Ginitial is equal to 5, and Gend is equal to 1. Also,

we will use the linear function to reduce the value of parameters G and KGSA

with time.

The found life time for 40-of-50 life time problem by proposed algorithm is

shown in Table 3. the lifetime of the proposed approach is obtained as follows:

first 10 WSNs have created randomly and run 50 times the proposed approach

on each WSN (i.e. the proposed approach runs 50*10=500 times). We assume

network lifetime is equal to average of obtained lifetime from running the 500

times the proposed approach. In Table 3, the lifetime of a PSO algorithm

and an exhaustive search with different grid sizes are also shown. One can see

from Table 3 that the lifetime obtained by our proposed approach is not worse

than PSO algorithm and exhaustive grid search within a certain precision. The

lifetime by the PSO algorithm was 212.4404 and also by the exhaustive search

for the grid size was set at 1, 0.1 and 0.01 was 212.0781, 212.4158 and 212.4379,

respectively. Therefore, our proposed approach can find better BS location than

the PSO algorithm and the exhaustive search when grid size equal 1, 0.1 and

0.01.

In Table 4, the execution time by the three mentioned approaches is shown.

It can be seen from Table 4 that the execution time of the exhaustive grid

search increased along with the decrease of grid sizes. It was very consistent

with the processing way of the exhaustive grid search. Besides, the exhaustive

grid search spent much more execution time than our proposed approach and

PSO algorithm, especially when the grid size was small. The advantage of the

proposed approach and PSO algorithm for solving the problem lies in that it

can reduce the computation time and keep the same good quality. However,
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Table 4. Comparison of execution time by the three approaches

Method Time

(sec.)

The proposed

approach

0.17

The PSO

algorithm [7]

0.06

The exhaustive

grid search (grid

size = 1) [7]

36.563

The exhaustive

grid search (grid

size = 0.1) [7]

2480.718

The exhaustive

grid search (grid

size = 0.01) [7]

170871.8558

computation time of our approach is somewhat more than the PSO algorithm

because the GSA meta-heuristic has more computational steps than PSO al-

gorithm in each iteration [15].
6. Conclusion

In Wireless Sensor Networks, minimizing power consumption to prolong

network lifetime is very important. In this paper, a two-tiered Wireless Sen-

sor Networks has been considered and an algorithm based on Gravitational

Search Algorithm (GSA) has been proposed for general power-consumption

constraints. The proposed approach can find near-optimal BS location in het-

erogeneous sensor networks, where ANs may own different data transmission

rates, initial energies and parameter values. It is very easy to model such a

problem by the proposed algorithm based on GSA. Experiments show the per-

formance of the proposed approach. From the experimental results, it can be

easily concluded that the proposed approach finds the better location when

compared to the PSO algorithm and the exhaustive search (with investigated

grid size, i.e. 1, 0.1 and 0.01) and also converges very fast when compared to

the exhaustive search (with investigated grid sizes, i.e. 1, 0.1 and 0.01).
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