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Abstract. In this paper, we integrate goal programming (GP), Tay-

lor Series, Kuhn-Tucker conditions and Penalty Function approaches to

solve linear fractional bi-level programming (LFBLP)problems. As we

know, the Taylor Series is having the property of transforming fractional

functions to a polynomial. In the present article by Taylor Series we

obtain polynomial objective functions which are equivalent to fractional

objective functions. Then on using the Kuhn-Tucker optimality condition

of the lower level problem, we transform the linear bilevel programming

problem into a corresponding single level programming. The complemen-

tary and slackness condition of the lower level problem is appended to

the upper level objective with a penalty, that can be reduce to a single

objective function. In the other words, suitable transformations can be

applied to formulate FBLP problems. Finally a numerical example is

given to illustrate the complexity of the procedure to the solution.
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1. Introduction

Bilevel programming problems provide a framework to deal with decision

processes involving two decision makers with a hierarchical structure. Both of

the leader at the upper level of the hierarchy and the follower at the lower level

seek to optimize their individual objective functions and control their own set

of decision variables. The hierarchical process means that the leader sets the

value of his variables first and then the follower reacts, bearing in mind the

selection of the leader. The goal of the leader is to optimize his own objective

function but incorporating within the optimization scheme of the reaction of the

follower to his course of action. The leader can influence, but can not control,

the decisions of the follower. In formal terms, bilevel programming problems

are mathematical programs in which a subset of the variables is required to

be an optimal solution of another mathematical program. There are many ap-

proaches in the literatures towards BLP problems such as [1, 7, 9, 11, 12] There

are may algorithms, such as, the Kth best approach [1], Kuhn-Tucker approach

[4], complementarity pivot approach [2], penalty function approach [13], which

have been proposed for solving linear BLP problems. Fractional programming

has received remarkable attention in the literature[10]. Calvetea and Gal [3]

considered the linear fractional bilevel programming (LFBP) problem in which

both objective functions are linear fractional. A problem of fuzzy production

inventory model with resalable returns by using fuzzy trapezoidal number as

a parameter is investigated by Nagoorgania and Palaniammalb [8]. By us-

ing a generalized parametric vector companion form, the problem of eigenvalue

assignment with minimum sensitivity is re-formulated as an unconstrained min-

imization problem is recently considered by Karbassi and Soltanian in [5].

In this paper, we integrate goal programming (GP), Taylor Series (TS),

Kuhn-Tucker conditions (KKT) and Penalty Function (PF) approaches to solve

linear fractional Bi-Level Programming problems. The paper is organized as

follows; in next section we present the formulation of FBLP; in Section 3 a

solution method for solving new problem are described; in Section 4 we present

a numerical example in order to show implementation of the method; finnally,

conclusion remarks are presented in Section 5.

2. Problem Formulation

In a FBLP problem, each decision-maker tries to optimize its own objective

function(s) without considering the objective(s) of the other party, but the deci-

sion of each party affects the objective value(s) of the other party as well as the

decision space. The general formulation of a fractional bi-level programming

problem (FBLPP) is as follows:

Min
x

F (x, y) =
c11x+ c12y + α1

d11x+ d12y + β1
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s.t

G(x, y) 6 0 (2.1)

Min
y

f(x, y) =
c21x+ c22y + α2

d21x+ d22y + β2
s.t

g(x, y) 6 0

where x ∈ Rn1 and y ∈ Rn2. The variables of problem (1) are divided into

two classes, namely the upper-level variables x and the lower-level variables y.

Similarly, ci1, di1 ∈ Rn1, ci2, di2 ∈ Rn2; αi and βi, i = 1, 2 are scalars and it is

further assumed that the denominators are positive, i.e., di1x+ di2y + βi > 0,

i = 1,2 , respectively, while the vector-valued functions G : Rn1 × Rn2 −→
Rm1 and g : Rn1 × Rn2 −→ Rm2 are called the upper-level and lower-level

constraints, respectively. All of the constraints and objective functions may

be linear, quadratic, non-linear, fractional, etc. In this paper, we restrict our

attention to linear fractional objective functions and linear constraints. The

relaxed problem associated with (1) can be stated as:

Min
x,y

F (x, y) =
c11x+ c12y + α1

d11x+ d12y + β1
s.t

G(x, y) 6 0 (2.2)

g(x, y) 6 0

and its optimal value is a lower bound for the optimal value of F(x, y) in

(1). Similarly optimal value of:

Min
x,y

f(x, y) =
c21x+ c22y + α2

d21x+ d22y + β2

s.t (2.3)

g(x, y) 6 0

is also a lower bound for f(x, y) in (1) [12].

3. Solution Method Representation

In this section, Linearization of the objective functions by using a Taylor

series approach, formulation of BLP on using a GP approach, KKT conditions

and PF approaches to solve FBLP problems will be explained in detail.

3.1. Linearization of the objective functions on using a Taylor series

approach

In the linear fractional bi-level programming problem (1), the linear fractional

objective functions from each levels is converted to a linear polynomial on using

Taylor series. The proposed approach can be explained in two steps.
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Step 1. In this step we first maximize the upper level F(x, y) subject to

the whole constraints of the upper and lower level to get the optimal solution

as (x∗1, y
∗
1) and then we maximize the lower level f(x, y) subject to its own

constraints in lower level to get the optimal solution as (x∗2, y
∗
2).

Step 2. Transform objective functions by using first-order Taylor polyno-

mial series.

F (x, y) ∼= F̂ (x, y) = F (x∗1, y
∗
1)+

(
(x−x∗1)

∂F (x∗1, y
∗
1)

∂x
+(y−y∗1)

∂F (x∗1, y
∗
1)

∂y

)
(3.1.1)

From this method f(x, y) can be easily obtained.

f(x, y) ∼= f̂(x, y) = f(x∗2, y
∗
2)+

(
(x−x∗2)

∂f(x∗2, y
∗
2)

∂x
+(y−y∗2)

∂f(x∗2, y
∗
2)

∂y

)
(3.1.2)

In the next stage, the linear fractional objective bi-level problem is converted

to a linear objective bi-level problem.

3.2. Formulation of BLP using a GP approach

Li in [6] proposed a solution method for solving a goal programming (GP)

problem which is described in the following theorem.

Theorem 3.1. A GP problem minimize Z = |f(X)− g| subject to: X ∈ F (F

is a feasible set) can be liberalized using the following form:

Min f(X)− g + 2δ

s.t (3.2.1)

g − f(X)− δ 6 0

δ > 0, X ∈ F

Proof. (See Ref.[6]) �

Let F ∗, f∗ be the goal values for F(x, y), f(x, y) respectively, therefore BLP

is transformed to the following form:

Min
x

|F (x, y)− F ∗|
s.t

G(x, y) 6 0 (3.2.2)

Min
y

|f(x, y)− f∗|

s.t

g(x, y) 6 0

By using Theorem 1 we have,

Min
x

F (x, y)− F ∗ + 2δF

s.t

G(x, y) 6 0 (3.2.3)
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F ∗ − F (x, y)− δF 6 0

δF > 0

Min
y

f(x, y)− f∗ + 2δf

s.t

g(x, y) 6 0

f∗ − f(x, y)− δf 6 0

δf > 0

3.3. KKT conditions and PF approach to solve BLP problems

Shi et al. [11] proposed an extended the Kuhn-Tucker approach to deal with

linear bi-level problems. In their approach a linear BLP is considered as the

following form:

Min
x∈X

F (x, y) = c1x+ d1y (3.3.1)

s.t

A1x+B1y 6 b1 (3.3.2)

Min
y∈Y

f(x, y) = c2x+ d2y (3.3.3)

s.t

A2x+B2y 6 b2 (3.3.4)

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m, A2 ∈
Rq×n, B2 ∈ Rq×m.

Let u ∈ Rp, ν ∈ Rq and w ∈ Rm be the dual variables associated with

constraints (3.3.2) and (3.3.4) with y > 0, respectively. We now have the

following theorem.

Theorem 3.2. A necessary and sufficient condition that (x∗, y∗) solves the

linear BLP problem (3.3.1)-(3.3.4) is that there exist (row) vectors u∗, ν∗ and

w∗ such that (x∗, y∗, u∗, ν∗, w∗) solves:

Min F (x, y) = c1x+ d1y (3.3.5)

s.t

A1x+B1y 6 b1 (3.3.6)

A2x+B2y 6 b2 (3.3.7)

uB1 + νB2 − w = −d2 (3.3.8)

u(b1 −A1x−B1y) + ν(b2 −A2x−B2y) + wy = 0 (3.3.9)

x > 0, y > 0, u > 0, ν > 0, w > 0 (3.3.10)

Proof. (See Ref.[11]) �
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All of the constraints except (3.3.9) are linear.We use following penalty func-

tion to transfer (3.3.9) to objective function and convert (3.3.5)-(3.3.10) to a

Quadratic programming [7]:

Min F (x, y) = c1x+ d1y +M(us+ νr + wy)

s.t

A1x+B1y + s = b1

A2x+B2y + r = b2 (3.3.11)

uB1 + νB2 − w = −d2
x > 0, y > 0, u > 0, ν > 0, w > 0, s > 0, r > 0, withM > 0 (

which can be consider as a penalty coefficient)

4. Numerical Example

To demonstrate the proposed procedure for solving FBLP problem, consider

the following example:

Min
x

F (x, y) =
2x+ y

x+ 3y
s.t

x+ 2y > 3

2x− y 6 5

Min
y

f(x, y) =
x+ 2y

3x+ y + 1
s.t

−x+ 3y 6 4

3x+ 2y 6 12

x > 0, y > 0

As we stated in step 1, we are now to maximize the first level with the con-

straints of both of the upper and lower level simultaneously and then maximize

the lower level with the constraints appeared in the lower level to get the op-

timal solution for both of the levels as (x∗1, y
∗
1) and (x∗2, y

∗
2) respectively as

below.

Max F (x, y) =
2x+ y

x+ 3y
Max f(x, y) =

x+ 2y

3x+ y + 1

s.t s.t

x+ 2y > 3 −x+ 3y 6 4

2x− y 6 5 3x+ 2y 6 12

−x+ 3y 6 4 x > 0, y > 0

3x+ 2y 6 12

x > 0, y > 0

If we solve the above problem by charnes and cooper method then F(2.6, 0.2)

and f(0, 1.33) are obtained as an optimal solution. Then objective functions
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are transformed by using first-order Taylor polynomial series to the following

form.

F (x, y) ∼= F̂ (x, y) = F (2.6, 0.2)+
(

(x−2.6)
∂F (2.6, 0.2)

∂x
+(y−0.2)

∂F (2.6, 0.2)

∂y

)
F (x, y) ∼= F̂ (x, y) = 0.1x− 1.27y + 1.68

f(x, y) ∼= f̂(x, y) = f(0, 1.33) +
(

(x− 0)
∂f(0, 1.33)

∂x
+ (y − 1.33)

∂f(0, 1.33)

∂y

)
f(x, y) ∼= f̂(x, y) = −1.04x+ 0.37y + 0.65

If leader and follower select 2 and -1.5 as goal values for their objectives, re-

spectively; according to (3.2.2) we can then transform the problem to:

Min
x

|F (x, y)− F ∗| = |0.1x− 1.27y − 0.32|

s.t

x+ 2y > 3

2x− y 6 5

Min
y

|f(x, y)− f∗| = | − 1.04x+ 0.37y + 2.15|

s.t

−x+ 3y 6 4

3x+ 2y 6 12

x > 0, y > 0

Now again according to (3.2.3) we can further transform the problem to:

Min
x

F (x, y)− F ∗ + 2δF = 0.1x− 1.27y − 0.32 + 2δF

s.t

x+ 2y > 3

2x− y 6 5

−0.1x+ 1.27y + 0.32− δF 6 0

δF > 0

Min
y

f(x, y)− f∗ + 2δf = −1.04x+ 0.37y + 2.15 + 2δf

s.t

−x+ 3y 6 4

3x+ 2y 6 12

1.04x− 0.37y − 2.15− δf 6 0

δf > 0

x > 0, y > 0

Let us rewrite all the inequalities of final problem as follows:

g1 = −x− 2y + 3 6 0; g2 = 2x− y − 5 6 0; g3 = −0.1x+ 1.27y + 0.32− δF 6
0; g4 = −δF 6 0; g5 = −x + 3y − 4 6 0; g6 = 3x + 2y − 12 6 0; g7 = 1.04x −
0.37y − 2.15− δf 6 0; g8 = −δf 6 0; g9 = −x 6 0; g10 = −y 6 0.
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By implementing the extended Kuhn-Tucker approach, the problem has the

following form:

Min 0.1x− 1.27y − 0.32 + 2δF

s.t

x+ 2y > 3

2x− y 6 5

0.1x− 1.27y + δF > 0.32

−x+ 3y 6 4

3x+ 2y 6 12

1.04x− 0.37y − δf 6 2.15

−2u1 − u2 + 1.27u3 + 3ν1 + 2ν2 − 0.37ν3 − w = −0.37

−ν3 − ν4 = −2

xu1 + 2yu1 − 3u1 − 2xu2 + yu2 + 5u2 + 0.1xu3 − 1.27yu3
−0.32u3 + δFu3 + xν1 − 3yν1 + 4ν1 − 3xν2 − 2yν2 + 12ν2
−1.04xν3 + 0.37yν3 + 2.15ν3 + δfν3 + δfν4 + wy = 0

x > 0, y > 0, δF > 0, δf > 0, w > 0, ui > 0, νi > 0,

i = 1, 2, 3

By using (3.3.11) the above problem will be converted to:

Min 0.1x− 1.27y − 0.32 + 2δF +M
( 3∑

i=1

uisi +

4∑
j=1

νjrj + wy
)

s.t

s1 = x+ 2y − 3

s2 = −2x+ y + 5

s3 = 0.1x− 1.27y + δF − 0.32

r1 = x− 3y + 4

r2 = −3x− 2y + 12

r3 = −1.04x+ 0.37y + δf + 2.15

r4 = δf
−2u1 − u2 + 1.27u3 + 3ν1 + 2ν2 − 0.37ν3 − w = −0.37

−ν3 − ν4 = −2

x > 0, y > 0, δF > 0, δf > 0, w > 0, ui > 0, νi > 0,

si > 0, ri > 0, i = 1, 2, 3,M = 1000

solving the above problem by Lingo-11 the results will be obtained as

x = 2.208, y = 0.396

F = 1.42, f = 0.37

This result may be unacceptable for leader, thus he/she should select another

goal for his/her objective. proceeding in this way, the follower goal may get
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unachievable; therefore they should change theirs goals in an interactive frame-

work that satisfy both of them. Now let us consider new goals as F ∗ = 1.7 and

f∗ = 0.5 New problem is:

Min 0.1x− 1.27y − 0.02 + 2δF +M
( 3∑

i=1

uisi +

4∑
j=1

νjrj + wy
)

s.t

s1 = x+ 2y − 3

s2 = −2x+ y + 5

s3 = 0.1x− 1.27y + δF − 0.02

r1 = x− 3y + 4

r2 = −3x− 2y + 12

r3 = −1.04x+ 0.37y + δf + 0.15

r4 = δf
−2u1 − u2 + 1.27u3 + 3ν1 + 2ν2 − 0.37ν3 − w = −0.37

−ν3 − ν4 = −2

x > 0, y > 0, δF > 0, δf > 0, w > 0, ui > 0, νi > 0,

si > 0, ri > 0, i = 1, 2, 3,M = 1000

By solving the above problem by Lingo-11 we will get the results as

x = 2.6, y = 0.2

F = 1.69, f = 0.33

This is closer to DMs goal value than earlier results.

5. Conclusion

Linear fractional bi-level programming problems has been solved by many

investigator in the literature so far. In this article on using GP, TS, KKT

conditions and PF approach, although it may seems to be abit complicated ,

but, each of these technique is used individually to make the problem simpler

and more important from practical point of view, since the DM by choosing

different goals, can get more appropriate and accurate according to his/her

wish.

Acknowledgments

The authors would like to thank the referee for some useful comments.

References

1. W. Bialas, M. Karwan, Two-level linear programming, Management Science, 30, (1984),

1004-1020.

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
5.

01
.0

01
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
30

 ]
 

                             9 / 10

http://dx.doi.org/10.7508/ijmsi.2015.01.001
http://ijmsi.com/article-1-281-en.html


10 M. Saraj, N. Safaei

2. W. Bialas, M. Karwan, J. Shaw, A parametric complementary pivot approach for two-

level linear programming, Technical Report 80-2, State University of New York at Buffalo,

1980.

3. H. I. Calvetea, C. Gal, Solving linear fractional bilevel programs, Operations Research

Letters, 32, (2004), 143-151.

4. P. Hansen, B. Jaumard, G. Savard, New branch-and-bound rules for linear bilevel pro-

gramming, SIAM Journal on Scientific and Statistical Computing, 13, (1992), 1194-1217.

5. S. M. Karbassi, F. Soltanian, A new approach to the solution of sensitivity minimization

in linear state feedback control, Iranian Journal of Mathematical Sciences and Infor-

matics, 2(1), (2007), 1-13.

6. H. L. Li, An efficient method for solving linear goal programming problems, Journal of

Optimization Theory and Applications, 90(2), (1996), 465-469.

7. Y. Lv, T.Hu, G. Wang and Z. Wan, A penalty function method based on KuhnTucker

condition for solving linear bi-level programming, Applied Mathematics and Computa-

tion, 188(1), (2007), 808-813.

8. A. Nagoorgania, P. Palaniammalb, A fuzzy production model with probabilistic resalable

returns, Iranian Journal of Mathematical Sciences and Informatics, 3(1), (2008), 77-86

9. M. Saraj, N. Safaei, solving Bi-Level Programming Problems on Using Global Criterion

Method with an Interval Approach, Applied Mathematical Sciences, 6, (2012), 1135-l141.

10. S. Schaible, Fractional programming, Kluwer Academic Publishers, Dordrecht, 1995, 495-

608.

11. C. Shi, J. Lu, Guangquan Zhang, An extended KuhnTucker approach for linear bi-level

programming, Applied Mathematics and Computation, 162, (2005), 51-63.

12. L. N. Vicente, P. H. Calamai, Bi-level and multilevel programming: a bibliography re-

view, Journal of Global Optimization, 5(3), (1994), 291-306.

13. D. White, G. Anandalingam, A penalty function approach for solving bi-level linear

programs, Journal of Global Optimization, 3, (1993), 397-419.

 [
 D

O
I:

 1
0.

75
08

/ij
m

si
.2

01
5.

01
.0

01
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

0-
30

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            10 / 10

http://dx.doi.org/10.7508/ijmsi.2015.01.001
http://ijmsi.com/article-1-281-en.html
http://www.tcpdf.org

