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174 A. Mofidi

1. Introduction

The general theme of this paper belongs to the area of applications of model

theory (a subfield of mathematical logic) in mathematics. The Radon-Nikodym

theorem and Stone representation theorem for measure algebras are two im-

portant classical existence result in analysis. These theorems have been widely

used in the literature. On the other hand, one of the missions of the mathe-

matical logic is to study mathematical objects by logical means. Indeed, there

are numerous applications of ideas and techniques from mathematical logic

in analysis, probability theory, dynamical systems, etc (see for example [3]

or [5] where logic gets involved with probability theory and dynamical sys-

tems). Probability logics, such as the variants introduced in [2], [3] and [8], are

among various classical logical frameworks designed to deal with probability

and measure structures. These frameworks have been investigated from differ-

ent perspectives in particular model theory (see [1] and [3]). Integration logic

is one of the forms of probability logics which was investigated in [3], and then

was further developed in [1]. This setting enables one to use integral opera-

tion as a logical quantifier. It was used for giving new proofs for the classical

Daniell-Stone theorem and Riesz representation theorem in [6]. It is worth

mentioning that in [7], integration logic is represented as a specific example of

a more abstract and general framework with a viewpoint close to functional

analysis.

During the course of our investigation in this paper, we mainly pursue two

main goals. One is to provide new proofs with logical flavor in the setting of

integration logic for Radon-Nikodym theorem and also the Stone representation

theorem for measure algebras. The main logical ingredient of our proofs is the

logical compactness theorem. The second and even more important goal is

to elaborate, highlight and emphasize the power of the logical methods in the

realm of analysis, in particular measure theory, and make stronger connections

between these two fields. Indeed, our proofs, beside the fact that are some new

proofs for two classical theorems which might be of interest of its own right,

indicates the strength of the logical methods in analysis and measure theory.

Although the methods of the proofs involves techniques from mathematical

logic, the reader does not need to have any significant amount of prerequisite

knowledge from logic to follow the proofs or even be possibly able to apply

its ideas for proving similar results. These proofs can be considered as some

applications of the setting of the integration logic. Employing suitable logical

frameworks can sometimes enables one to provide uniform proofs with similar

techniques for seemingly different theorems. It is the case in this paper and both

theorems are proved by using the technique of the logical compactness theorem.

There are many facts in analysis that can be considered in this way. In fact,

the method and strategy of the proof here seems to be more general than the
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result of this paper and is possibly applicable, to some degree, in more results

in measure theory. Logical compactness theorem is easy to be used in practice

for a general mathematician. In a suitable logical setting, it roughly states that

if we have a family of properties formally stated in that setting and every finite

subset of them is satisfied in some structure, then there exists a structure which

satisfies all of them together. There are many interesting notions, properties or

claims in measure theory that can be expressed by an infinite number of simple

statements. Then, by applying the compactness theorem, the truth of such

notions or claims is reduced to the satisfiability of every finite number of those

statements. The paper is self-contained and we mention all prerequisites from

logic and measure theory in it. It is mostly written for general mathematicians,

in particular those active in logic or analysis as the main audiences.

Presentation of the rest of the paper is as follows. In Section 2, we briefly

review basic measure theoretic concepts and give a concise introduction to the

integration logic. We also introduce some technical notions and prove some

lemmas which we need later in the paper. Section 3 contains the the main

results of the paper namely the proofs of the Radon-Nikodym theorem and the

Stone representation theorem for measure algebras by using logical tools.

2. Preliminaries

A measure on a σ-algebra B of subsets of a set M is a real-valued function

µ : B → [0,∞] such that µ(∅) = 0 and for any countable sequence Ak ∈ B of

disjoint sets, we have µ(
⋃

k Ak) =
∑

k µ(Ak). As usual, the notion of “almost

everywhere” (usually abbreviated by “a.e.”) in a given measure space means

everywhere in that space except on a subset with measure zero. We recall the

definition of a subspace measures. For any measure space (N,B, µ), the outer

measure µ∗ on N is defined by µ∗(X) := inf{µ(A)| X ⊆ A ∈ B} for every

X ⊆ N . If M ⊆ N , then BM := {A ∩M | A ∈ B} forms a σ-algebra of subsets

of M and the restriction of µ∗ to it, denoted by µM , is a measure. Indeed,

elements of BM are µ∗|M -measurable. µM is called the subspace measure onM .

If f : N → R is a measurable function, then by
∫
M
f |M we mean

∫
M
(f |M )dµM

where f |M is the notation for the restriction of f to M .

Proposition 2.1. (see [4], Subsection 214) Assume that (N,B, µ) is a measure

space, M ⊆ N and f an integrable function on N . Then f |M is µM -integrable.

Moreover, If µ∗(M) = µ(N) or f is equal to 0 almost everywhere on N −M ,

then
∫
M
f |M =

∫
N
f .

As usual, for every two real-valued functions f and g, we denote max(f, g)

and min(f, g) by f ∨ g and f ∧ g respectively. In a measure space and for any

two measurable subsets A and B of it, by the notation A
a.e
⊆ B we mean that

A \B has measure zero with the respected measure.
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176 A. Mofidi

Now we consider logic and briefly review the framework of the “integration

logic”. This logical framework was investigated in [1], [2] and [3] for studying

measure and probability structures by logical methods. We use the terminology

of [1]. Using this framework enables us to formalize and express certain measure

theoretic properties of spaces, functions on them, etc, in a unified way. We first

briefly review some essential concepts and then formally define some notions.

By a simple relational structure (or simply, a structure), intuitively we mean

a measure space we wish to study equipped with a family of relations where a

relation is a real-valued measurable function on (some power of) the measure

space. Also there might be a family of elements of the domain set of the measure

space which are required to be considered as distinguished elements. We usu-

ally assign a symbol corresponding to each of such relations and distinguished

elements and call them relation symbols and constant symbols respectively. We

also call the family of such symbols a (relational) language and usually denote

it by the notation L.
We call any structure in which the symbols in L are interpreted, a L-structure

(it formally will be defined in Definition 2.2 below). Indeed, in order for us to

systematically study one or a family of structures by logical means, we usually

first choose a suitable language L consisting of the symbols corresponding to

all relations and distinguished elements we intend to investigate in our struc-

ture(s). Now those structure(s) can be viewed as L-structure(s). Then, we

can use symbols in L as well as variable symbols (which will be defined below)

and logical symbols (namely, connectives and quantifiers as explained below)

to write formal logical expressions (called formulas, statements and sentences)

describing our L-structure(s) logically. This enables us to study mathematical

properties of the structure(s) in hand through formal logical tools and syntac-

tical methods.

It should be mentioned that in most of the structures in this paper, the

real-valued functions on the spaces play the main role. Therefore, it would be

sufficient for us to only work with relational structures and avoid introducing

or working with function symbols in a fundamental way.

We always assume that any language L contains a distinguished binary rela-

tion symbol e for equality. Moreover, we assume that to each relation symbol

R a nonnegative real number ♭R is assigned which is called its universal bound.

In particular, for the equality relation we have ♭e = 1. As will be explained

more in Definition 2.3, logical symbols consist of the binary functions +, ·, the
unary absolute value function | | and a 0-ary function r for every real number

r. We consider these as connectives in this logical setting on integration logic.

The integration symbol
∫

is also considered as a logical symbol and used as a

quantifier. We also use an infinite list x, y, ... of individual variable symbols.

We call the family of all variable symbols and constant symbols, the collection

of L-terms in this logical setting.
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Definition 2.2. Let L be a relational language. By a simple relational L-
structure, or simply a L-structure), we mean a a nonempty measure space

(M,B, µ), in which every singleton is measurable and µ(M) = 1, and is equipped

with the following:

(1) For each constant symbol c ∈ L (if there is any), there is an element

cM ∈M .

(2) For each n-ary relation symbol R ∈ L (if there is any), there is a

measurable function RM :Mn → R with |RM (ā)| ⩽ ♭R for each ā ∈M .

We call RM and cM the interpretations of the relation and constant symbols

R and c in M .

Regarding Definition 2.2, it worth to emphasize that µ or B are not logical

symbols or formulas or elements of the syntax of the logic. Instead, they are

just part of the notion of structure which satisfy the conditions mentioned in

the definition.

Note that in every structure, the binary equality relation e(x, y) is inter-

preted as a two variable function taking value 1 if x = y and 0 otherwise.

Definition 2.3. For a language L, the family of L-formulas is inductively

defined as follows.

(1) If R is a n-ary relation symbol in L and t1, ..., tn are L-terms, then

R(t1, ..., tn) is a formula. In particular, e(x, y) is a formula.

(2) For any r ∈ R, r is a formula.

(3) If ϕ and ψ are formulas then |ϕ|, ϕ+ ψ, ϕ ∨ ψ, ϕ ∧ ψ and ϕ · ψ are all

formulas too.

(4) If ϕ(x̄, y) is a formula, then
∫
ϕ(x̄, y)dy is a formula.

Free variables of formulas are easily defined (inductively) as the variables

which are not bounded by the quantifies
∫
. For example, in the formula

∫
(2x+

y) dy+ |3z|, the variables x and z are free while y is bounded by the quantifier∫
. One writes ϕ(x1, ..., xn) to indicate that all free variables of the formula

ϕ are among x1, ..., xn. By a closed formula we mean a formula without any

free variable. If ϕ(x̄) is a formula and ā ∈ M |x̄|, then the value of ϕ(ā) in M ,

denoted by ϕM (ā), is defined inductively in the natural way. For example

(ϕ+ ψ)M (ā) = ϕM (ā) + ψM (ā), (ϕ ∨ ψ)M (ā) = ϕM (ā) ∨ ψM (ā),(∫
ϕ(x̄, y)dy

)M

(ā) =

∫
M

ϕM (ā, y)dy.

Thus, ϕ(x̄) gives rise to a real-valued function on M |x|, which is called the

interpretation of the formula ϕ and is denoted by ϕM . Note that, in particular,

if ϕ is a closed formula, then for any L-structure M , ϕM is a uniquely deter-

mined constant function with a fixed real number as its value. For example if
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178 A. Mofidi

ϕ =
∫
ψ(y)dy where ψ(y) is a formula, then we have

ϕM =

∫
M

ψM (y)dy.

Definition 2.4. By a statement, we mean an expression of the form ϕ(x) ⩾ r

or ϕ(x) = r for some formula ϕ(x) and some r ∈ R. If ϕ is a closed formula,

then we call the statement a closed statement (or sentence). We call any set

of closed statements a theory.

Obviously expressions such as ϕ(x) ⩽ r, ϕ(x) ⩾ ψ(x)+r or ϕ(x) = ψ(x)+r,

where ϕ(x) and ψ(x) are formulas, are statements since they can be written in

the form −ϕ(x) ⩾ −r, ϕ(x)−ψ(x) ⩾ r or ϕ(x)−ψ(x) = r while we know that

−ϕ(x) and ϕ(x)−ψ(x) are again formulas. A closed statement ϕ = r or ϕ ⩾ r

is called satisfied in a simple L-structure M , denoted by M ⊨ “ϕ = r” and

M ⊨ “ϕ ⩾ r”, if we have ϕM = r and ϕM ⩾ r respectively. We call a simple

L-structure M a model of a theory T , denoted by M ⊨ T , if each statement

in T is satisfied in M . A theory is called satisfiable if it has a model. Also a

theory is called finitely satisfiable if every finite subset of it has a model.

The main logical tool used in this paper is the following theorem. It is

basically Theorem 4.7 of [1].

Theorem 2.5. (The logical compactness theorem) Every finitely satisfiable

theory is satisfiable.

In the following remark, we mention some basic measure theoretic properties

expressible in the logical setting of integration logic.

Remark 2.6. For any formulas ϕ(x) and ψ(x) with the same free variables x (in

a relevant language in the integration logic), the expressions “ϕ(x) = 0 almost

everywhere” and “ϕ(x) = ψ(x) almost everywhere” can be expressed by the

closed statements
∫

|ϕ(x)| dx = 0 and
∫

|ϕ(x) − ψ(x)| dx = 0 respectively

in integration logic, where we recall that the interpretations of formulas ϕ and

ψ are measurable functions on our measure space. If A := {r1, . . . , rn} ⊆ R,
then the expression “ψ takes its values in A almost everywhere” (or equiva-

lently speaking, “range(ψ) ⊆ A (a.e)”), is expressible by the closed statement∫
|(ϕ(x) − r1).(ϕ(x) − r2) . . . (ϕ(x) − rn)|dx = 0. In particular, the expression

ϕ(x)
a.e
= 0 or 1 is expressible by the statement

∫
|(ϕ(x)− 0).(ϕ(x)− 1)|dx = 0.

2.1. Some new notions and facts. In this subsection, we introduce some

notions and prove some lemma which will be used later in the proof of our main

results. We first recall the definition of “absolute continuity” in the measure

theory. Let (M,B, µ) be a measure space of finite measure and ν be another

finite measure on (M,B). We say that ν is absolutely continuous with respect

to µ if ν(B) = 0 whenever µ(B) = 0. We introduce the following notion and

will use it in our proofs later.
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Definition 2.7. Let (M,B, µ) be a measure space of finite measure. Also

let ν be a finite measure on (M,B). For each A ∈ B with µ(A) > 0 define

r(A) =: ν(A)
µ(A) and call it the (ν, µ)-ratio of A (or simply the ratio of A). Also

if µ(A) = 0 let r(A) := 0. For a non-negative α ∈ R and any M ′ ⊆ M , we

say that M ′ is α-dominated if for each measurable subset U ⊆ M ′, we have

r(U) ⩽ α.

Let (M,B, µ) be a measure space of finite measure and ν be another finite

measure on (M,B). For each n ⩾ 2, define Un to be the family of all A ∈ B with

ratio ⩾ n. Also define Hn to be the family of the members of B with µ-positive

measure which are n-dominated. For every A1, A2 ∈ B, define A1 ∼ A2 if

µ(A1△A2) = 0. Obviously, ∼ is an equivalence relation on B (and also every

Un and Hn). For every A ∈ B, denote A/ ∼ (the class of the element A in this

equivalence relation) by Ã. Also denote the quotient space B/ ∼ by B̃. For

every A1, A2 ∈ Bn define Ã1 ⩽µ Ã2 if A1 ⊆ A2 (a.e. with respect to µ). By

Ã1 <µ Ã2 we mean Ã1 ⩽µ Ã2 but Ã1 ̸= Ã2. It is easy to see that (B̃,⩽µ) is a

poset. Let Ũn := Un/ ∼ and H̃n := Hn/ ∼ be the quotient spaces. Obviously,

Ũn and H̃n are posets too when equipped with the order defined by ⩽µ, and

in fact are sub-posets of (B̃,⩽µ).

In the proof of the Radon-Nikodym theorem we will need the following

technical statements.

Lemma 2.8. Let µ and ν are finite measures on the same space and σ-algebra

(M,B). Moreover, assume that ν is absolutely continuous with respect to µ.

Then, for every n > r(M), H̃n ̸= ∅ and has maximal element as a ⩽µ-poset.

Proof. We use the notations defined before. If Un0
is empty (for some n0 ⩾ 2),

then M would be n0-dominated and so for every n ⩾ n0, H̃n ̸= ∅ (since for

example M̃ would belong to H̃n) and also it is easily seen that M̃ itself would

be the maximal element of H̃n. So, from now on, we may assume that Un’s are

all nonempty. We first show (by Zorn’s lemma) that Ũn has maximal element

with respect to ⩽µ order. Let P = {Ãi}i<α be a ⩽µ-increasing proper chain

in Ũn where α is an ordinal, Ai ∈ Un for each i < α and by proper we mean

that the members of the chain are distinct. Since P is proper, µ(Ai+1 \Ai) > 0

for each i < α. So, we must have α < ω1 (which means that α is a countable

ordinal) since otherwise µ(M) would be infinite. Therefore, A :=
⋃

i<αAi is

measurable and one can verify that has ratio ⩾ n. So Ã ∈ Ũn and is an upper

bound for the chain P . Now, by Zorn’s lemma, Ũn has a maximal element

say Sn where Sn := B̃n for some Bn ∈ Un. We claim that µ(Bc
n) > 0. The

reason is that if µ(Bc
n) = 0, then µ(Bn) = µ(M) and by the absolute continuity

assumption, we would have ν(Bc
n) = 0 which would follow that ν(Bn) = ν(M).

Hence, we would have

r(M) =
ν(M)

µ(M)
=
ν(Bn)

µ(Bn)
= r(Bn) ⩾ n > r(M)
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180 A. Mofidi

which would be a contradiction. So µ(Bc
n) > 0. Also Bc

n is n-dominated since

otherwise there would exist C ⊆ Bc
n with µ(C) > 0 such that r(C) > n. This

would imply that T̃n ∈ Ũn where Tn := Bn ∪ C. The reason is that

r(Tn) =
ν(Tn)

µ(Tn)
=
ν(Bn) + ν(C)

µ(Bn) + µ(C)
=
r(Bn)µ(Bn) + r(C)µ(C)

µ(Bn) + µ(C)

⩾
nµ(Bn) + nµ(C)

µ(Bn) + µ(C)
= n.

But it would contradict the maximality of B̃n in Ũn since B̃n <µ T̃n. So,

we conclude that Bc
n is n-dominated and also as was shown above µ(Bc

n) > 0.

Thus, Bc
n ∈ Hn and Hn ̸= ∅. It follows that H̃n ̸= ∅.

Now we will show (again, by using Zorn’s lemma) that H̃n has maximal

element. Let P = {Ãi}i<α be a ⩽µ-increasing proper chain in H̃n where α is

an ordinal and Ai ∈ Hn for each i < α. Similar to above, we have α < ω1 and

A :=
⋃

i<αAi is measurable. We show that A is n-dominated. Assume not.

So there is L ⊆ A such that ν(L)
µ(L) > n. Choose ϵ > 0 small enough such that

ν(L)−ϵ
µ(L) > n. Since A =

⋃
i<αAi, there is index i0 < α such that ν(A△Ai0) < ϵ.

Let L′ := L ∩Ai0 . So ν(L△L′) < ϵ. Thus,

ν(L)− ν(L′) < ϵ.

Hence,

r(L′) =
ν(L′)

µ(L′)
⩾
ν(L)− ϵ

µ(L)
> n

which contradicts the fact that Ai0 ∈ Hn. It follows that A is n-dominated or

equivalently speaking, A ∈ Hn. So, Ã is an upper bound for the chain P in

H̃n. Now, by Zorn’s lemma, (H̃n,⩽µ) has maximal element. □

Lemma 2.9. Let (M,B, µ) be a measure space of finite measure and ν be

another finite measure on (M,B). Also assume that ν is absolutely continuous

with respect to µ. Then, there is a countable measurable partition {Mn}n of M

such that each Mn is αn-dominated for some αn ∈ R.

Proof. We use the notations defined before. If Un is empty (for some n ⩾ 2),

then M would be n-dominated and we would be done. So, from now on, we

may assume that Un’s are all nonempty. Let n0 be an integer larger than r(M).

By Lemma 2.8, for every integer n ⩾ n0, H̃n has a maximal element say D̃n

for some Dn ∈ Hn. One can observe that Dn ⊆ Dn+1 (a.e. with respect to

µ) for each n ⩾ n0 since otherwise, if we let O := Dn ∪ Dn+1, then, using

the (n + 1)-domination, it would not be very hard to verify that O ∈ Hn+1,

Õ ∈ H̃n+1 and D̃n+1 <µ Õ which contradicts the maximality of D̃n+1 in H̃n+1.

Now define Mn := Dn \ Dn−1 for each n > n0 and Mn0
:= Dn0

. Also define

N :=M \
⋃

n⩾n0
Mn. Note that eachMn is n-dominated sinceMn ⊆ Dn. If we
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are able to show that µ(N) = 0, then {N} ∪ {Mn}n⩾n0
would be a countable

partitioning of M as desired and we would be done.

Assume for contradiction that µ(N) > 0. Let m be an integer larger than

both r(N) and n0. Applying Lemma 2.8 on the measure space (N,B′, µ′) and

measure ν′, one can find a m-dominated subset E of N with µ(E) > 0 where

B′, µ′ and ν′ are the restrictions of B, µ and ν on N . Note that E ∩ Dm = ∅
since E ⊆ N and N ∩ Dm = ∅. Now V := Dm ∪ E is m-dominated and

D̃m <µ Ṽ . But this contradicts the maximality of D̃m in H̃m. It follows that

µ(N) = 0. Now the proof is complete. □

3. Main results

In this section, we give new proofs for two celebrated classical theorems

in analysis, namely, Radon-Nikodym theorem and the Stone representation

theorem for measure algebras, both by using ideas from logic and by application

of an important theorem namely the logical compactness theorem in the setting

of the integration logic. These proofs can be viewed as some instances of

how the logical techniques, in particular logical compactness theorem, can be

employed in measure theory in a systematic way for proving certain measure

theoretic results.

For those readers who are not familiar with logic, we give a general picture

of how logic and the logical compactness theorem comes to the picture and

plays role in our proofs and also roughly explain the steps of the proofs. In

the first step, we express (by suitable logical expressions in the integration

logic) some properties of a measure structure which will help to prove the

existence of the object we are looking for. These expressions are close to the

ordinary ways in mathematics to express the properties of a measure space or

a measurable function and form a possibly infinite list of expressions which,

as usual, is called a theory T . Then, in the second step, we prove the finitely

satisfiability of T . It means that for every finite subset of T , say T ′, we find

a model of T ′, where by a model, as defined in preliminaries section, we mean

a measure structure satisfying all expression in T ′. In the third step, we use

the logical compactness theorem in integration logic to conclude (from finitely

satisfiability) that T itself has a model. It means that there exists a measure

structure satisfying all expressions in T . Finally, this model helps us to quickly

find the object (function or measure) we were looking for at the beginning.

3.1. Radon-Nikodym theorem. In this part, we give a new logical proof for

the Radon-Nikodym theorem which is an important classical result in analysis.

Assume that (X,B, P ) is a probability space and A a sub-σ-algebra of B.
We remind that the conditional expectation of a random variable f : X → R
with respect to A is the unique A-measurable random variable E(f |A) such
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that ∫
A

f dP =

∫
A

E(f |A) dP

for every A ∈ A.

Theorem 3.1. (Radon-Nikodym theorem) Let (M,B, µ) be a measure space of

finite measure and ν be a finite measure on (M,B) which is absolutely contin-

uous with respect to µ. Then, there exists a measurable function h ⩾ 0, called

the Radon-Nikodym derivative, such that for every B ∈ B, ν(B) =
∫
B
h dµ.

Proof. We may assume µ(M) = ν(M) = 1. First, suppose there is an α such

that M is α-dominated (see Definition 2.7).

Step 1: Choosing a suitable language and formalizing the properties

of the required space and function

Let L be the language (see definitions of Section 2) consisting of a unary

relation symbol f , a constant symbol ca for each a ∈ M and a unary relation

symbol RA for each A ∈ B. We let ♭f = α and ♭RA
= 1 for each A. Let T

be a L-theory consisting of the following expressions (axioms) which can be

carefully written as some closed statements in integration logic in the language

L (one can get help from Remark 2.6 for stating them).

(1) For every distinct a, b ∈ M , add the closed statement “e(ca, cb) = 0”

to T .

(2) For each a ∈ M and A ∈ B, write the expression RA(ca) = χA(a) in

the form of a closed statement and add it to T .

(3) For each A ∈ B, write the expression RA(x) = 0 or 1 (a.e.) in the form

of a closed statement and add it to T .

(4) For each A,B ∈ B, write the expression RA∩B = RA ∧RB (a.e.) in the

form of a closed statement and add it to T .

(5) For each A ∈ B, write the expression RAc = 1−RA (a.e.) in the form

of a closed statement and add it to T .

(6) For each A ∈ B write the expression
∫
RA dx = µ(A) in the form of a

closed statement and add it to T .

(7) Write the expression f(x) ⩾ 0 a.e. in the form of a closed statement

and add it to T .

(8) For each A ∈ B, write the expression
∫
f · RA dx = ν(A) in the form

of a closed statement and add it to T .

We first briefly talk about the intuition behind the above axioms. Assume

that a L-structure (with a domain set, say N) satisfies all the above axioms.

Then, for example axiom (1) above intuitively states that the interpretations of

ca’s will be distinct elements of N . So, by using that, M can be seen a subset

of N by identifying every a ∈M with the interpretation of ca in N . Also axiom

(2) says that the interpretation of every relation symbol RA (which would be
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a function on N) will be the characteristic function of A when we restrict it to

M . Similarly, axiom (3) guaranties that the interpretation of every RA would

be a {0, 1}-valued function almost everywhere with respect to the measure on

our L-structure. Axiom (8) guaranties that the interpretation of the function

symbol f will have a property close to the Radon-Nikodym derivative. But

that interpretation would be a function on N not M (and indeed, some part of

the rest of the proof will be for finding the Radon-Nikodym derivative on M

by restricting that interpretation of f from N to M).

Step 2: Proving the finitely satisfiability of T

Let’s show that T is finitely satisfiable. Obviously,M is itself an L-structure
satisfying the first six axioms of T (with interpreting RA (for each A ∈ B) in

M with the characteristic function of A). So, the satisfiability of any finite part

of T reduces to the satisfiability of any finite number of the statements of the

form

f(x) ⩾ 0 a.e,

∫
f ·RAi

dµ = ν(Ai) i = 1, ..., k

in M where we may assume (by using the axioms) that Ai’s are pairwise dis-

joint. So we need to interpret the function symbol f in M in a suitable way.

In this situation, for each x ∈M set

fM (x) :=

{
ν(Ai)
µ(Ai)

x ∈ Ai & µ(Ai) ̸= 0;

0 otherwise.

Then, with this interpretation of f on M , the above mentioned finite number

of statements are satisfied in M . Also due to our assumption in the beginning

of the proof that M is α-dominated, we have ν(A)
µ(A) ⩽ α for every A ∈ B which

follows that fM is bounded by α(= ♭f ). So with this way of defining and

interpreting symbols in M , M itself would be a model for every finite subset

of the set of the axioms T . It follows that T is finitely satisfiable.

Step 3: Applying logical compactness theorem, constructing a suit-

able measure structure and pushing down the interpretation of f to

find the Radon-Nikodym derivative

Since T was proven in previous step to be finitely satisfiable, by applying

the logical compactness theorem (Theorem 2.5) which is the main logical tool

we use in our proof, we conclude that T is satisfiable and has model. Let

(N, C0, ρ0) be a model of T . Let C ⊆ C0 be the minimal σ-algebra that makes

the interpretations of all formulas measurable. Also let ρ be the restriction of

ρ0 on C. Notice that (N, C, ρ) is also a model of T and from now on, we work

with this model. By identifying every a ∈M with cNa (the interpretation of ca
in N) and also using axiom (1), we can view M as a subset of N . Using this

identification and also by using axiom (2), one can see that for every A ∈ B,
the equality RN

A |M = χA holds where we remind that RN
A is the interpretations
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of the relation symbol RA on N and χA is the characteristic function of A in

M respectively. For each A ∈ B define

AN := {x ∈ N : RN
A (x) = 1}.

So, AN ∩M = A. By using the axioms, specially axiom (5), for every A ∈ B,
we have (AN )c = (Ac)N (ρ-a.e.) where by ρ-a.e. we mean almost everywhere

with respect to the measure ρ. Also by the axioms (3) and (6), it is easy to

see that µ(A) =
∫
N
RN

A dρ = ρ(AN ). Moreover, if A,B ∈ B and A ⊆ B,

then AN ⊆ BN (ρ-a.e.) where the reason is that by using axiom (4), we have

RN
A = RN

A∩B = RN
A ∧ RN

B (ρ-a.e.) which follows that AN ⊆ BN (ρ-a.e.).

If {An}n is a countable family of pairwise disjoint members of B, then for

each index n0 we have An0
⊆

⋃
nAn and so by what just above mentioned,

AN
n0

⊆ (
⋃

nAn)
N (ρ-a.e.). Therefore,

⋃
nA

N
n ⊆ (

⋃
nAn)

N (ρ-a.e.). Also, again

by using some axioms in particular axiom (4), every two of such AN
n ’s are

almost disjoint (which means that the ρ-measure of their intersection is zero).

So we have

ρ(
⋃
n

AN
n ) =

∑
n

ρ(AN
n ) =

∑
n

µ(An) = µ(
⋃
n

An) = ρ((
⋃
n

An)
N ).

Putting the above facts together, we have
⋃

nA
N
n = (

⋃
nAn)

N (ρ-a.e.). By

some more efforts and using the axioms, if An’s in above are not necessarily

disjoint, then still
⋃

nA
N
n = (

⋃
nAn)

N (ρ-a.e.) holds.

Now using the above facts, the family of the sets of the form AN ∪E where

A ∈ B, E ∈ C and ρ(E) = 0 forms a sub-σ-algebra of C which we denote by G.
We can assume that this sub-σ-algebra G is equal to C itself since otherwise,

we can replace C with this G in N and also replace fN with the conditional

expectation of fN with respect to G, and then by these changes, it would be

easy to observe that we can obtain a new model of T with G as its σ-algebra

and we can work with that model instead of (N, C, ρ) since then.

It is worth to mention that the existence of the conditional expectation can

be itself deduced from the Radon-Nikodym theorem. Also it can be directly

proved without using this theorem, for example in [9](page 136) which is ob-

tained without using Radon-Nikodym theorem. If one wants to not use the

assumption of the existence of the conditional expectation here in our proof, it

would be enough to embed the argument of [9] for that existence in this part

of the proof. So, from now on, we may assume that C is the σ-algebra of the

sets of the form AN ∪ E mentioned above and also fN is C-measurable.

Now, every set in C with positive ρ-measure have nonempty intersection

with M since such set should be of the form AN ∪E for some AN with positive

measure and, as mentioned above, we have AN ∩M = A. It follows that every

member of C containing M has full ρ-measure. By the definition of the outer

measure, it implies that our initial measure µ on M is exactly the same as the

subspace measure induced by ρ from N and that M has full outer measure in
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N (which means that ρ∗(M) = ρ(N)) where recall that we are viewing M as

a subset of N . Let h be the restriction of fN to M . Then, by axiom (8) and

Proposition 2.1, for each A we have that

ν(A) =

∫
N

fN ·RN
A dρ =

∫
M

(fN ·RN
A )|Mdµ =

∫
M

h · χAdµ =

∫
A

h dµ.

It proves the result of the theorem but with assuming the extra assumption

we added in the beginning, namely, that there is an α such that M is α-

dominated. Now we give an argument for general case without that extra

assumption. If such α in the assumption does not exist, then still by Lemma

2.9, there exists a countable measurable partitioning {Mn}n<ω of M such that

each Mn is αn-dominated for some αn ∈ R. Then, it is sufficient to apply the

whole above argument for each Mn and find a Radon-Nikodym derivative hn
on that Mn. Then, the union of hn’s on those disjoint domains Mn’s gives rise

to a Radon-Nikodym derivative h on whole M . It completes the proof. □

3.2. Stone representation theorem for measure algebras. In this part,

we give a new logical proof for the Stone representation theorem for measure

algebras which is an important classical result in analysis. We use the frame-

work of the integration logic and the logical compactness theorem (Theorem

2.5) holding in it to prove this theorem.

We first review some notions from the theory of measure algebras in analysis.

Recall that a Boolean algebra is σ-complete if every countable nonempty subset

a1, a2, . . . of it has a least upper bound ∨iai (or supi<ω ai) and a greatest lower

bound ∧iai (or infi<ω ai). A measure algebra is a σ-complete Boolean algebra

(B,∧,∨, ′,0,1) equipped with a map µ : B → [0,∞] such that (i) µ(a) = 0 if

and only if a = 0, and (ii) if a1, a2, . . . are pairwise disjoint (i.e. ai ∧ aj = 0 for

every distinct i and j), then µ(∨iai) =
∑

i µ(ai). Note that the notations ∧, ∨
and ′ in here stand for their corresponding operations in the Boolean algebra

B and shouldn’t be confused with the ∧ and ∨ defined above which stood for

the “max” and “min” of two functions. If µ(1) = 1, the measure algebra is

called a probability algebra. A σ-order-continuous isomorphism (or sequentially

order-continuous isomorphism) between measure algebras B1, B2 is a measure

preserving Boolean isomorphism ϕ : B1 → B2 such that ϕ(∨iai) = ∨iϕ(ai)

for every increasing sequence a1, a2, ... in B1. We recall that in any Boolean

algebra, a partial order relation ⩽ is naturally defined by a ⩽ b if and only if

a ∧ b = a.

To every measure space (M,A, µ̄), a measure algebra is associated as follows.

SayX1, X2 ∈ A are equivalent if their symmetric difference is measure zero with

the respected measure. The equivalence class of X is denoted by [X]. Then

the set of equivalence classes forms a Boolean algebra in the natural way and

µ([X]) = µ̄(X) makes of it a measure algebra.
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Theorem 3.2. (The Stone representation theorem for measure algebras) Let

(B,µ) be a measure algebra such that µ is a bounded function. Then, there

is a measure space (M,B, µ̄) whose associated measure algebra is σ-order-

continuous isomorphic to (B,µ).

Proof. We may assume that µ(1) = 1. It is easy to see that if we prove

the theorem with this assumption, then the general case also would be easily

concluded. We present the proof in the following steps.

Step 1: Choosing a suitable language and formalizing the properties

of the required space

We start by introducng a suitable language (see defnitions of Section 2) to

work with. Let L be a language consisting of a unary relation symbol Ra

with universal bound 1 for each a ∈ B. Let T be a L-theory consisting of the

following expressions (axioms) which can be carefully written as some closed

statements in integration logic in the language L (one can get help from Remark

2.6 for stating them).

(1) For each a ∈ B, write the expression “Ra(x) = 0 or 1 (a.e.)” in the

form of a closed statement and add it to T .

(2) For each a ∈ B, write the expression “
∫
Ra(x)dx = µ(a)” in the form

of a closed statement and add it to T .

(3) For each a, b ∈ B, write the expression “Ra∨b(x) = Ra(x) ∨ Rb(x)

(a.e.)” in the form of a closed statement and add it to T .

(4) For each a ∈ B, write the expression “Ra′(x) = 1 − Ra(x) (a.e.)” in

the form of a closed statement and add it to T .

Note that in axiom (3) above, the notation ∨ in the left side of the equality

addresses the Boolean algebra operation while in the right side refers to the

logical connective “max” between two formulas (as defined after Definition 2.3).

Step 2: Proving the finitely satisfiability of T

We will show that T is finitely satisfiable. Let T0 be a finite subset of axioms

of T . We must show that T0 is satisfiable and for that we need to show it has

a model. Let B0 be a finite sub measure algebra of B containing every a ∈ B

for which Ra appears in axioms in T0. Also let M := {a1, ..., ak} be the atomic

elements of B0, where a ∈ B0 is called an atom of B0 if given any b ∈ B0 such

that b ⩽ a, either b = 0 or b = a. Then, µ naturally induces a probability

measure ν on the finite space (M,P (M)) (indeed, µ induces a weighting on

ai’s and by that easily forms the probability measure ν on P (M)).

Now to prove the satisfiability of T0, we make a model of it over the under-

lying finite measure space M = (M,P (M), ν) by interpreting relation symbols

Ra’s (a ∈ B) in M. For each a ∈ B0, interpret Ra with the function RM
a
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defined by

RM
a (ai) :=

{
1 ai ⩽ a;

0 otherwise

for any ai ∈M . Also for any a ∈ B \B0, interpret Ra by any arbitrary {0, 1}-
valued function on M . Then, the resulting L-structure is a model of T0. This

shows that T is finitely satisfiable.

Step 3: Applying logical compactness theorem and finding a measure

space satisfying all required properties

Now in here we use the essential tool from logic, namely, the logical com-

pactness theorem (Theorem 2.5). By this theorem and since T was proven in

previous step to be finitely satisfiable, T has a model, say (M, C, µ̄; {RM
a }a∈B),

where each RM
a is the interpretation of the relation symbol Ra in this model.

Note that by definition of a model, µ̄(M) = 1. Also each RM
a is a measurable

function on M with respect to the σ-algebra C.
Let B ⊆ C be the smallest σ-algebra making every RM

a measurable. Also

restrict µ̄ to B and still denote the restricted measure by µ̄. We claim that

(M,B, µ̄) is the desired measure space whose associated measure algebra is

σ-order-continuous isomorphic to the initial measure algebra B.

Notice that by axiom (1), each RM
a is a characteristic function (up to a null

set). Let Xa := {x ∈ M : RM
a (x) = 1} for every a ∈ B. Obviously, every Xa

belongs to B. For every A ∈ B, let [A] to be the equivalence class of A in D,

where we define D to be the associated measure algebra to the measure space

(M,B, µ̄).
Define ϕ : B → D by ϕ(a) := [Xa]. We claim that ϕ is a measure algebra

σ-order-continuous isomorphism. We first check the injectivity of ϕ. Assume

that ϕ(a) = ϕ(b) for some a, b ∈ B. So [Xa] = [Xb] which follows that Xa
a.e
= Xb

with respect to the measure µ̄. Then Xa△Xb is null. One can use the axioms

to show that Xa△Xb
a.e
= Xa△b where by a△b in B we mean the element

(a ∧ b′) ∨ (a′ ∧ b). So µ̄(Xa△b) = 0. Hence, by axiom (2), we have µ(a△b) =∫
RM

a△b = µ̄(Xa△b) = 0. Now, by definition of a measure algebra, we have

a△b = 0 which follows that a = b. Therefore, ϕ is injective.

Claim. Let (bi)i<ω be a sequence of elements of B. Then, ϕ(
∨

i<ω bi) =∨
i<ω ϕ(bi) and ϕ(

∧
i<ω bi) =

∧
i<ω ϕ(bi).

Proof of Claim. First assume that (bi)i<ω is an increasing sequence of

elements of B and let b := supi<ω bi. It is easy to see that Xbi

a.e
⊆ Xbi+1

for

each i and also Xbi

a.e
⊆ Xb. So,

⋃
i<ωXbi

a.e
⊆ Xb. On the other hand, again

by axioms, we have µ̄(Xb) =
∫
RM

b = µ(b) and similarly, µ̄(Xbi) = µ(bi) for

each i. Since (bi)i<ω is an increasing sequence in the measure algebra B, by a

known fact we have µ(supi<ω(bi)) = limi→∞ µ(bi) = supi<ω µ(bi). So we have
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µ̄(
⋃
i<ω

Xbi) = sup
i<ω

µ̄(Xbi) = sup
i<ω

µ(bi) = µ(sup
i<ω

(bi)) = µ(b) = µ̄(Xb).

Combination of the above facts follows that Xb
a.e
=

⋃
i<ωXbi . Thus, [Xb] =

[
⋃

i<ωXbi ]. Moreover, we have

ϕ(
∨
i<ω

bi) = ϕ(b) = [Xb] = [
⋃
i<ω

Xbi ] =
∨
i<ω

[Xbi ] =
∨
i<ω

ϕ(bi). (1)

It is easy to see that ϕ(a′) = ϕ(a)′ for every a ∈ B. Now assume that (bi)i<ω

is an arbitrary (not necessarily increasing) sequence of elements of B and let

b := supi<ω bi. Let ci :=
∨i

j=1 bj . Now (ci)i<ω is an increasing sequence and

by (1), ϕ(
∨

i<ω ci) =
∨

i<ω[Xci ]. So

ϕ(
∨
i<ω

bi) = ϕ(
∨
i<ω

ci) =
∨
i<ω

[Xci ] =
∨
i<ω

[X∨i
j=1 bj

]

=
∨
i<ω

(

i∨
j=1

[Xbj ]) =
∨
i<ω

[Xbi ] =
∨
i<ω

ϕ(bi).

Moreover, by using this, we also have

ϕ(
∧
i<ω

bi) = ϕ((
∨
i<ω

b′i)
′) = (ϕ(

∨
i<ω

b′i))
′ = (

∨
i<ω

ϕ(b′i))
′ = (

∧
i<ω

(ϕ(b′i))
′) =

∧
i<ω

ϕ(bi).

It completes the proof of the claim. □

Now we prove the surjectivity of ϕ. Note that since each RM
a is a char-

acteristic function (up to a null set) of the subset Xa, it is easy to see that

the measure algebra D is the same as the measure algebra associated to the

measure space (M,B′, µ̄|B′), where B′ is the sub σ-algebra generated by Xa’s.

But by the definition of a generated σ-algebra, B′ is the closure of the family

of basic sets Xa’s under the operations “countable unions”, “countable in-

tersections” and “complement”. So, notice that in order to show that ϕ is

surjective, it would be enough to prove that for any sequence (bi)i<ω of el-

ements of B,
∨

i<ω[Xbi ] and
∧

i<ω[Xbi ] are in the image of ϕ. But by the

above claim, we have
∨

i<ω[Xbi ] =
∨

i<ω ϕ(bi) = ϕ(
∨

i<ω bi) ∈ ϕ(B) and∧
i<ω[Xbi ] =

∧
i<ω ϕ(bi) = ϕ(

∧
i<ω bi) ∈ ϕ(B). It follows that ϕ is surjective.

Similarly, using the above claim and arguments, ϕ is a σ-order-continuous and

measure-preserving Boolean isomorphism. □
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