[ Downloaded from ijmsi.com on 2025-11-29 ]

[ DOI: 10.61882/ijmsi.20.2.41 ]

Iranian Journal of Mathematical Sciences and Informatics
Vol. 20, No. 2 (2025), pp 41-62
DOLI: 10.61186/ijmsi.20.2.41

Exact Solution of a Stochastic Differential Model for
Repeated Dose Pharmacokinetics

Ricardo Cano M, José A. Jiménez M®, Jorge M. Ruiz V¢

%Engineering Faculty, Universidad de La Sabana, Campus Universitario,
Puente del Comun, Chia, Cundinamarca (250001), Colombia
bStatistic Department, Universidad Nacional de Colombia, Bogotd, Avenida
Carrera 30 45-03 (111321), Colombia
“Mathematics Department, Universidad Nacional de Colombia, Bogot4,
Avenida Carrera 30 45-03 (111321), Colombia

E-mail: ricardocm@unisabana.edu.co
E-mail: josajimenezm@unal.edu.co
E-mail: jmruizv@unal.edu.co

ABSTRACT. This paper examines the dynamics of drug concentration in
the body accounting for random factors like patient and environmental
variability. We develop an explicit solution for drug concentration using
a Stochastic Differential Equation (SDE) model. We calculate formulas
for the expected value and variance, enabling statistical evaluation and
prediction of the drug’s concentration trajectory and its uncertainty. The
unknown parameters in the model are estimated using the method of mo-
ments. We apply our proposed methods to a real-world dataset, providing
useful insights analysis of drug concentration and the determination of its
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1. INTRODUCTION

In the study and planning of effective and safe therapies in drug adminis-
tration to a patient, the development of mathematical models that describe
the time evolution of the absorption, distribution, metabolism and elimination
of the drug plays a very important role. This area of knowledge is known as
pharmacokinetics (PK).

In general, these phenomena are modeled by differential equations [16] and
are based on the following assumptions:

a) The body as a whole is considered as a single compartment or a network
of compartments that represent the different organs of the body where
the drug is distributed, absorbed and degraded.

b) Drug input is instantaneous.

¢) The distribution of the drug throughout the body is uniform and ho-
mogeneous.

d) The elimination of the drug is proportional to the amount of drug
present in the body (i.e. a first-order process).

However, these models do not take into account that drug concentration levels
vary among different patients according to their weight, age, stress or genetic
factors [21] and [19].

Since these factors can not be explicitly incorporated into the models, some
authors have used stochastic differential equations by grouping all of them in
a random term. To model the concentration decay of a drug administered in
a single dose and distributed instantaneously, Ramanathann [14] used a geo-
metric Brownian motion (GBM), noting that this description gives insight into
why drugs concentration are distributed log normally. Next, in [15] the same
author proposed an in-homogeneous geometric Brownian motion (IGBM) for
the study of continuous dosing; furthermore, in order to design drug therapeu-
tic regimens, closed-form expressions for expected value and time-dependent
variance are derived by solving the auxiliary differential moment equations.

On the other hand, to model continuous dosing. In [5], the intensity fac-
tor of the noise term is considered as a constant in the stochastic differential
equations (SDE), leading to the Vasicek model [23]. Further, a maximum
likelihood procedure is given to obtain the model parameter estimators con-
structed from observations. In [12] the Ornstein-Uhlenbeck process is used
as the PK model with intravenous (IV) bolus dose for each individual and
combine the First-Order Conditional Estimation (FOCE) method and the Ex-
tended Kalman Filter for model identification. In similar line of research, more
complex compartments models in which drug elimination or absorption over
time have been considered, for example in: [3], [5], [10], [13], [17] and [22].
Most of these works do not consider a state-dependent noise term in the SDE
model and parameter estimators are obtained by maximizing the likelihood [4].
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In this paper, we propose a one compartment model based on SDE that takes
into account the variability among individuals under a multiple doses regimen,
which has not been considered in the literature. In this respect, the results
presented here complements works of [14] and [15] for a one compartment
model under a single dose regimen and a constant dose, both models will be
revisited for the sake of completeness. From a mathematical point of view,
these models correspond to an autonomous linear SDE whose solutions are
well known and are obtained by the parameter variation formula (See [9] and
[20]). However, when we analyze the case of multiple doses, the source term
in our model is a piecewise continuous function of exponential order for ¢ > 0,
so we use a combination of the Laplace transform and It6 calculus to obtain
the exact solution. Furthermore, the exact solution allows us to deduce closed-
form expressions for the expected value and variance, that are very useful in
establishing the therapeutic range of a drug, as well as, to estimate model
parameters from empirical data. The advantage of the proposed models is that
they can be statistically validated and offer the possibility not only of predicting
the realistic trajectory of the drug concentration but also the uncertainty of
prediction.

The paper is organized as follows: In Section 2, we present the exact solu-
tions of SDE model. In Section 3, we used the obtained exact general solution
to analyze the drug concentration under some specifics dosage regimens (con-
stant dosage, unique dosage and repeated doses), also, we determine expres-
sions for the expected value and variance for each regimen. The adjustment
methodology of our proposed model to real data via the method of moments
and numerical simulation are shown in Section 4. In Section 5, we present
some conclusions and finally, in the appendices we show the deduction details
of closed formulas for the expected value and variance for each case of study
instead of solving the corresponding moment equations and avoiding the use of
simulations.

2. MATHEMATICAL MODEL AND GENERAL SOLUTION

Based on the assumptions described in the introduction, we consider the
following stochastic differential equation (SDE)

{dX(t) = (=rX(t) + f(t)) dt + cX(t) dW (t)

st X(0) = X, 21)

where X (t) represents the drug concentration in the body at time ¢, r the
mean rate at which the drug is removed from the body, W (¢) is the Brownian
motion, ¢X (t) dW (¢t)/dt random fluctuations of the concentration due to the
environmental variation, the positive constant c is the diffusion coefficient, X
is the initial dose of drug which depends of the body mass index (BMI) and f(t)
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the dosage regimen of the drug per unit of time, we will consider the following
three cases:

C1. Single dose: f(t)

0.
C2. Constant dosage: f(t) = rX,, with X, positive constant.

n

f
C3. Repeated dose: f(t) = X026(t — k7), where the drug is provided
k=1
every 7 hours and §(-) is the Dirac’s delta “function”.

Since the source function f(t) is continuous or piecewise continuous for ¢ > 0
and of exponential order v, we employ Laplace transform to solve in general
way the equation (2.1). Another approach to solve the SDE (2.1) can be found
in [9].

Theorem 2.1. Let be the SDE (2.1) for some f(t) continuous and of expo-
nential order. The solution to this SDE that satisfies the initial condition is
given by

X(t) = X, e—(r+%c2)t+cW(t)

1
S+

+ ez tHeW () £ { / e (573U gmeW(w) p(yy) du} , (2.2)
0

where L7 is the inverse Laplace transform operator and s is the Laplace trans-
form parameter.

Proof. To determine the solution to problem (2.1), we use the integration factor
method (see [7]) as follows:

(1) We solve the non-deterministic part of equation (2.1). That is,

dX(t) = cX(t) dW(t) (2.3)
dX(t)
X1 cdW(t)

Applying Itd formula [11] with F(X,t) = In(X) it follows that

dF(X,t) = Fydt + Fx dX + %FXX (dX)?, (2.4)
where
F*OF*LF S (2.5)
t — Y, XﬁX(t)’ XX — X(t)2 .
By substituting (2.5) into (2.4), we get
1 1 1 2
dF = 0 (cX(t)dW(t)) + 3 (_)(2(15)) (cX(t)dW (t))
=cdW(t) — %cZ dt. (2.6)
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Integrating (2.6) with respect to ¢, results
1
F(X,t)=A— §c2t + W (t).
Thus,
X(t) = Ke 2 tHeW (@), (2.7)
(2) Applying the method of variation of parameters, we make the constant

K of the non-deterministic solution (2.7) vary as a function of time, so
X(t) is of the form

X(t) = K(t)e 20 = K(1G(1), (2.8)
where G(t) satisfies equation (2.3). Then,
dX(t) = d[K(t)G(t)]
(=rX(t) + f(t)) dt + cX (t) dW (t) = G(t) dK (t) + K(t) dG(t).

By substituting (2.8) in the above equation, we have

(—rK(t)G(t) + f(t)) dt + cK(t)G(t) dW (t) = G(t)[dK () + cK (t) dW (1)].

In this way, we get the following initial value problem

dK (1) _f®)
7t +rK(t) = =~

G(1) (2.9)

Therefore, to solve the initial value problem (2.9) we use the Laplace
transform, then

E{df;t(t)} +rL{K(t)} =L {é;((?)}

sK(s) — K(0) +rK(s) = / O e 0 f(t)dt

0
(s+7)K(s) = Xo + / e~ (73Nt WO £(¢) dt
0
X 1~
Ko = S0+ gy [ e e sy
0

Applying Laplace inverse transform,

> —(s—2cH)t ,—cW (1) 21
s+r/0 e~ (het f(t)dt}. (2.10)

By substituting (2.10) into (2.8), finally we obtain the general solution
of equation (2.1)

K(t)=Xoe ™ + E‘l{

X(t) = X, e—(r+%02)t+cW(t)

_ 1 >
n e—%czt-&-CW(t) L 1 {S—’_T /(; e—(s—%@)u e_cW(U)f(’u,) du} 5
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where u is a dummy variable. That’s what we wanted to prove. (|

Remark 2.2. Observe that the integral (2.2) can not be computed explicitly
due to the Brownian Motion in some cases. For example, when f(t) = rX, we
need to evaluate X (t) numerically, as we can see in section 4.1.

3. DOSAGE REGIMENS

In this section, we analyze the behavior of the drug concentration in the
body under the three different dosage regimens presented in the introduction.

3.1. Constant dosage of the drug. Some chronic diseases treatments re-
quire the administration of a drug for extended periods of time, for this, a
constant amount of the drug is supplied continuously. Examples of this type
of administration are: intravenous infusion, certain oral formulations based on
the phenomenon of osmosis and certain transdermal patches.

Theorem 3.1. Let the source function f(t) = rX, be such that X, is a positive
constant and represents the concentration of the drug that is administered at
all time t > 0. Then the concentration of the drug is given by

t
X(t) = a(t) e ® + / kit — u) ecWO=-W) gy (3.1)
0
where
a(t) == Xge (T3, (3.2)
and
K(t —u) =1X, e (rtze)(t-u), (3.3)

Proof. Replacing f(¢) in (2.2) we get

X(t) =X e~ T+ w(®) 4 L*{LXP [T et e ettt du}
s+ Jo

=X, e*(r+%62)t+cW(t) + £_1 { TXP /oo e—su 67%62(t7u) ec(W(t)—W(u)) du},
s+rJo

applying theorem of convolution, we get

X(t) =X e~ (rHE W () | X, {e—rt g () ec(W(t)—W(u))}

t
=X, e—(r+%c2)t+cW(t) + TXp/ e—r(t—u) e—%c2(t—u) ec(W(t)—W(u)) du
0

t
—X, o~ (r+ 5tV (t) +7‘Xp/ e~ (rH5c?)(t—u) ce(W(H)-W(w) g,
0

t
—X, o~ (r+Ee)t+eW (1) Jr/ rX, e~ (r+3¢*)(t—u) (W () =W (W) g,,
0

Finally, we obtain

t
X(t) = a(t) e ® + / kot — u) ecWO=-W) gy
0
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where a(t —u) and k(t — u) are given in (3.2) and (3.3). O
If X, = 0 in equation (3.3), we obtain the following result.

Corollary 3.2. Single dose administration If X, =0, i.e, f(t) =0 and
the dose is supplied at the initial time (t = 0). From equation (3.1) the con-
centration is given by

X(t) = Xoe (rtae)ieeW(n), (3.4)
Proof. The corollary is an immediate consequence of the theorem. O

3.1.1. Expected value and variance. In this section we determine the mean and
variance of the process given by (3.1).

Proposition 3.3. The expected value and variance of the stochastic process
X(t) are defined as

E[X ()] = X, - (X, - Xo) e, (3.5)
and
Var [X(t)] _ (Xp B X0)2€—2rt (ec2t _ 1) + %(e(ﬁ—w)t _ 1)
22X,

(X, Xo)e (e~ —1). (3.6)

Proof. To determine the expected value of (3.1), is it necessary to determine
first a(t) e by using the fact that E[ecw(t)] is the moment-generating
function My (4)(c) of the random variable W (t). By doing that we get

Ela(t) eV ] = X, e~ (rtz)g [ecw(t)] = Xo e’(”%g)tMW(t)(c)
= Xpe (2t eac™ = X et (3.7)
Similarly, the variance of X (t), is given by
Var[a(t) eV ®] = E[a*(t) 2V V)] — (E[a(t) eV ®)])*

) [XOQ 672(r+%62)t+20W(t)} — X2t
_ Xg 672(r+§c2)t]E [ech(t)} _ Xg o2t
= X2 e 20+ 3 My ) (20) — XZ e
_ Xg e—2(r+%c2)t6202t _ Xg e—2rt
= XZe 2t (e~ 1). (3.8)

It is well-known that, if S ~ N(0,t), then its moment-generating function is
E [e*5] = 2"t Therefore, since W (t) — W (u) ~ N(0,t—u) and ecW(1O=W(w)
is a log-normal distribution, it follows that

E[ecW (=W ()] — ezc’(t—u)
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Var [ec(W(t)—W(u))] _ ecz(t—u) (eCQ(t—’u,) . 1).

Then, the expected value of X (¢) in (3.1) is given by

t
E[X(1)] = a(t) E[e"®] + / Kt — u) E[e" VO] gy
0
t
= a(t) ezt 4 / K(t —u) e3¢’ (=) gy
0

u=t
u=0

=Xoe "+ X,(1-e") =X, — (X, — Xo)e ",

—r(t—u)

= Xpe " + rXp <e -

and the variance is given by
2rX (X —XO) 2r X2 12 X2
Var[X(t)] =( X2 PP — I —2(r—zc)t P
ar[X(t)] ( o+ p— 5 o2 )€ +
2¢2 rX,

r or—c?

— 2
2r —c (3.9)

(X, — Xo)e ™ — (X, — Xo) e 2.

We obtain the formula (3.9) from the mathematical definition of the variance,
in contrast to the method of differential equations of moments employed in [14].
Details of our calculation of Vaar[X(t)] can be seen in appendix A. g

Remark 3.4. Note that expression (3.7) coincides with the solution of (2.1) in
the absence of the stochastic term and f(¢) = 0. In addition, the uncertain
measure that the drug can produce a desired pharmacological effect in most
patients with the minimum effective concentration Xy, at any given time ¢ is

P(Xt > XO) :P(Xo e*(T+%c2)teCW(t) > XO) — P(eCW(t) > e(r+%62)t)

—p (CW(t) > (r+ ;&) t) _p <Wf/(;) . g (T n ;&))

- (3494

where ®(.) is the cumulative distribution function of the standard normal dis-
tribution.

Remark 3.5. In pharmacology is very important to determine the therapeutic
range of a drug, which is the range in which the drug can be used without
causing toxic or lethal effects on the individual. From equations (3.5) and
(3.6) we obtain that in the stationary state (¢ — o00), the minimum effective
concentration X,;, and the concentration maximum admissible X,,x must be
such that

Xmin < Xp - 20X(t) < X(t) < Xp + 2O—X(t) < Xmax,
cX,
V2r —¢?

where o x ;) = when t — oo.
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3.2. Repeated doses administration. We consider the case when the drug
is administered periodically. That is, the first dose is made at time ¢ = 0, the
drug is taken repeatedly every 7 units of time. Then, if ¢ = n7 there have
been provided n + 1 drug doses. The following results state what is the drug
concentration at time ¢.

Theorem 3.6. Let define the source function in (2.1) as follows

n

ft) =Xo > 6t — kr), (3.10)

k=1

where n is the number of periods and 6(+) is the Dirac’s delta “function”. Then
the concentration is given by

X(t) = Xo <e(r+%c2)t+cW(t) + Z e—(T’—i—%c2)(t—k‘r)+c(W(t)—W(k‘r)) U]g-,—(t)>
k=1
(3.11)

where U is the step function (U (t) =1 fort > k1 and Ug.(t) =0 fort < k7).

Proof. Substituting (3.10) into (2.10), we get

K(t) = Xoe " + L7 { Eﬂfi } , (3.12)

where
H(s):/ e*St(XOZ(i(tfkT))ﬁgt*CW(t) dt
0 k=1
:XOZ/ e CTENG(t — fr) e WO gt
— /0
_one (s—3c*)kT— cW(kT) (313)

Substituting (3.13) into (3.12), we have

n

7rt 5c 2kr—cW (kT) e kT
K(t) = ( Ze L {HT})

k=1

Therefore, from (2.2) and (3.14), we obtain that the concentration of the drug
after n 4+ 1 doses is

X(t) = Xo (e—(r+;c2)t+cwu) n Ze—(r+§c2)(t—kr)+c<W(t)—W(kT>) Uh@)).
k=1
O
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3.2.1. Expected value and variance. Now, we find the mean and variance for
the stochastic process given in (3.11).

Proposition 3.7. The expected value and variance of the stochastic process
X(t) in (3.11) are defined as

E[X(t)] = Xoe " + Xoe ™ Y " e Uy, (1), (3.15)
k=1

and its variance
Var[X(t)] = Xg{e_m (et — 1)

n 6—2(T—%62)t <Z (2€(r—cz)k7— + 62(T_%02)k7. _ 6_52,5 (26rk7— + e2rk‘r)) Uk,,_(t)
k=1

n (r=c)(-1)7 _ r(l-1)7 _
e 1 2, | e 1
9 rlt et 2 - U . 1
+ ZZ:Q € ( 1 _eG-r € [ 1—erm D lT(t))} (316)

Proof. In this case, the expected value turns out to be
E[X(t)] = E[Xo (e—(r+%c2)z+cw(t) + Z e~ (r+ 5D (t—kT)+c(W (1) =W (k7)) ka(t))}
k=1

= Xo (e—(r+%c2)tE|:ecW(t)] + Z e—(r+%cz)(t—k7)E|:6c(W(t)7W(k‘r)):| Uk'T(t)>
k=1

— X (67(r+%c2)t6%62t s e—(r+ 1) (t—kr) g ke (t—hr) U/w(t))

k=1
= Xo (e—rt + Z e—r(t—kf) UkT(t)) _ Xoe—rt +Xoe—'rt Z erkT U}m—(t).
k=1 k=1
Derivation details of the variance (3.16) can be found in appendix B. O

Remark 3.8. Note that the first term in (3.15) shows the transient effect of the
first dose and the second term indicates the persistent behaviour of the drug
concentration.

3.3. Long-term drug concentration. Now, we consider the case when the
patient receive m doses of the drug and we are interested to determine the
long-term drug concentration in the body.

Proposition 3.9. Let X (t) be a stochastic process defined by (3.11) andt = nr

with n € N, then
X
lim E[X(n7)] = ——— (3.17)

n— o0 1—e 7’
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and
1 14+ e
. o 2 _
Jin Var|[X (n7)] = X5 1_e 2017 (1—e ™) (1—e27)
. (3.18)
+ (1 —e—(r=e)7)(1 — g=2(r=3¢%)7)

Proof. To determine the concentration of the drug in the body when the num-
ber of doses is large enough, we first assume that nt < ¢ < (n + 1)7. From
(3.15) and (3.16) we get

n ™mT _q
E[X(t)] = Xope "t <1 + Z(BTT)k) = Xpe " (1 + f—e‘”)
k=1

and substituting ¢ = n7 and making n — oo in this expression we obtain (3.17).
Now

(r—c®*)nt _ 1
2 —2rt ( ,c*t -2 rffc2 t €
Var[X(1)] =Xo{e (7" = 1) + 723D (2 L_e—w}

2(7‘7752)717' -1 R ernT _ 1 len‘r -1
_ ,—Cct 2
e = )
( 2" ) |: 2(7’——62)(71 7T _ 1 er(n—l)T _ 1:|

+

+

1—e—(r=c)r 1— 6—2(7'—5(:2)7- - 1—e 7T
2erT—ct 27“(77, 7T _ 1 er(n—l)T -1
1—e— 7'T>|: 1 —e2r7 - 1—e 7 :| :

Again substituting t = nT we take n — oo to obtain (3.18). (]

Remark 3.10. If the duration of treatment with multiple doses is prolonged,
from expressions (3.17) and (3.18), it follows that the therapeutic range of the
drug must satisfy

Xmin < lim (E[X(n7)] = 20x (nr)) < X(8) < lim (E[X(n7)] +20x(nr)) < Xmax

n—o00

where o x -y = \/Var[X(nT)].
4. FITTING AN EXPERIMENTAL DATA AND SIMULATIONS

In this section, we consider several empirical real data of drug concentrations
to identify the parameters of the model for different drug regimens. Once we
found them, we use these to perform some simulations to demonstrate the
usefulness of our approach.

For each regimen of drug administration, the identification problem is solved
by the method of moments. First, we compute the average mean m(t) and
variance v(t) over all individuals from the real drug concentration data. Then,
we estimate r and ¢ by solving the following minimization problems

omin [|m(t) —EX(®)]ll,  and  min Jlot) = Var[X@®)],.  (41)


http://dx.doi.org/10.61882/ijmsi.20.2.41
http://ijmsi.com/article-1-2096-en.html

[ Downloaded from ijmsi.com on 2025-11-29 ]

[ DOI: 10.61882/ijmsi.20.2.41 ]

52 R. Cano, J. A. Jiménez, J. M. Ruiz

Where, E[X ()] is the expected value and Var[X (t)] is the variance of the drug
concentration obtained in section 3. We solve the minimization problems using
an optimization MATLAB Isqnonlin routine.

4.1. Numerical approximation. Due to the Brownian motion in formula
(3.1), it can not be computed explicitly, then we approximate this solution
numerically. Let us denote by o := r + 3¢2, g(t) := Xoe~ <) and h(t) :=
rX,e~tew® then the solution (3.1) can be written as follows:

X (t) = g(t) + h(t) /Ot et gy, (4.2)

In order to evaluate X (t), we divide the interval [0, tmax] into N sub-intervals
of equal length At := t,,4,,/N. This defines a set of discrete times t; = iAt, i =
0,...,N. Next, we discretize the Brownian process with a time step At and
interpolate linearly the term e~°®(*) on the interval (t;_1,%;]. Then, an ap-
proximation of X(t;) for k=1,... N is

i=1 ti—1

X(tg) = g(tx) + hg:) Z [ecw(til) /ti e (t; — u)du

ti—1

tq
+e_cw(“)/ e (u— til)du} (4.3)

where X (to) = X(0) = 0 and the integrals are computed exactly. This formula
has the same order that the composite trapezoidal rule O(At?).

4.2. Single dosage administration. We consider the experimental data of
Theophylline concentrations (in mg/L) for 12 subjects following a single oral
dose of 320 mg. The data is reported in [1] and its time series graphs are
shown in Figure la. Since the one compartment model (2.1) assumes that the
drug distribution is instantaneous and its elimination is of first-order, we only
consider the data on the elimination phase to identify the parameters r and c
(see fig. la). We found that elimination rate and coefficient of variation are
r = 0.0776 and ¢ = 0.1004 respectively. Figure 1b shows a simulation of the
drug concentration decay. As we can observe, computational simulations are
consistent with the experimental measurements.

4.3. Constant dosage of the drug. We will now study the Propofol con-
centration behavior during 60 minutes infusion dose administration with an
infusion rate of 25 ug kg™! 1| Experimental data are taken from [18].
By solving the corresponding minimization problems given in (4.1), we find
that r» = 0.3975 and ¢ = 0.2609. From figure 2a we see that the average mean
of data (red curve) almost coincides with the expected value (blue curve). Fur-
thermore, the experimental data lie within a band around the expected value

min—
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®  Sample mean EIX(1)]

Expected value of X(t) — — —Concentration of five individuals
— EIXW) £ 20

EIX(0] £ 20,

X(t) (mg/L)

25 0 5 10 15 20 25
time (h)

(b)

FIGURE 1. (a) Experimental data of the Theophylline concentrations
(b) Simulation of the decay of the Theophylline concentration after the
administration of a single dose. Five sample paths, expected value of
the process (2.1) and the graphs of E[X (t)] £+ 20x (1) Xo = 9.5788,r =
0.0776, ¢ = 0.1004, f(t) =

with a width of two standard deviations. Figure 2b illustrates a simulation of

the drug concentration in five individuals when the dosage is constant. Here,
solution of the differential equation (2.1) with f(¢) = rX,, was evaluated by
the numerical approximation (4.3).

X(t) pg/ml

0.05
—e— Sample mean — el
Expected value of X(t) 0.045 EIX(] £ 20,
EIX(t)] = 20,
() 0.04 \ ‘\\ |l\
ol
0035 :) 1 ‘l|L |
S F Jolybanad
— —— £ e g ' u, ke
3 0.03 S /'“H ll‘l\/k ! W ,/b{
 — 20057 &AL ‘;I 4"\\ 4 “ | I ,/”4»\‘!1 A
] = oA )'w FAny ‘l’” 3
g oer g .U’l M \I\ ;
g 1 N
J:’l / V\ u‘*? ('““ "\l
1
0015 - 3/} \I\ M /I y‘?) \F /, v, \ R
A2 /
Sl S ”w‘
[l
0.005 '
0
10 20 30 40 50 60 0 10 20 30 40 50 60
time (h) time (h)
(a) (b)

FIGURE 2. (a) Experimental data of the Propofol concentrations (b)
Simulation of the drug concentration under a constant dosage regimen.
Samples of five paths, expected value of the process (2.1) and the graphs
of E[X(t)] +20x4), Xo = 0, Xp = 0.02,7 = 0.3975, c = 0.2609.

4.4. Repeated doses administration. We will consider the concentration

X(t) in

(3.11) for multiple dosage. We use experimental data of Meclizine

hydrochloride [8], here a 25 mg tablet is administered orally to 6 subjects twice
a day every 10 hours. Recall that in (3.11), we assume that the elimination
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rate r and the coefficient of variation ¢ are the same every time the drug
is administrated, then, to estimate Xy, 7 and ¢, we only use the given data
for the first dosage period and the expectation value (3.15) and the variance
(3.16). The parameters values obtained were Xy = 173.4344,r = 0.2686 and
c = 0.2443.

E[X(t)]

weeeeen EX(U) & 20y
_ Concentration of

five individuals

time (h) time (h)

(a) (b)

FIGURE 3. (a) Experimental data of the Meclizine concentrations (b)
Accumulation of the drug concentration after administration of 2 doses
every 10 hours. Five sample paths, expected value of the process (2.1)
and the graphs of E[X(t)] + 20x(;), Xo = 173.4344,r = 0.2686,c =

0.2443.

We observe that the concentration curves of our model (fig. 3b) have similar
behavior to the concentration curves representing real data (fig. 3a). The shift
to the left (about 4 hours) of simulated curves is due to the assumption that
the drug is distributed instantly throughout the body at the time the dose is
administrated (i.e every 10 hours). However, equation (3.11) may be used to
ensure an exposure to the drug within the therapeutic range over a prolonged
time.

5. CONCLUSIONS

e We propose a SDE model for the concentration of a drug under a
multiple dosage regimens not previously considered in the literature.
e We studied three models based on SDE that describe three dosage
regimens and that consider the variability of both the patient and the
environment that are generally ignored in deterministic models.
e We obtained explicit formulas for the concentration of the drug, its
expected value and the variance. They allow to:
i) Predict the realistic path of the solution and the uncertainty of
the prediction.
ii) Formulate the therapeutic range of the drug in each dosage regi-
men.
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iii) Easily calculate the parameters of the models from observed data.

e From the real study cases, we observe that the concentration curves
of our model have similar behavior to the concentration curves repre-
senting real data. Moreover the experimental data lie within a band
around the expected value with a width of two standard deviations,
which is very important to establish an effective and safe treatment of
the drug administration. It is noteworthy that the model presented
here assumes that the drug is rapidly mixes with the blood supply and
produces a high concentration of the drug every where in the blood.
However, the absorption phenomena in the tissues was not considered,
the inclusion of such phenomena implies to pose a system of SDE that
will be study in a future work.
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APPENDIX A. CALCULATION OF VARIANCE FOR A CONSTANT DOSE
From the equation (3.1) we get
E[X2(t)] = E[I?(t)]+2E[a(t) eV DI ()] + E[a?(t) >V ®)],
where

t
I(t) = / Kt —u) e“WO=W) gy,
0

and a(t), k(t—u) are given by the equations (3.2) and (3.3) respectively. Using
the identity (see [2])

n/ot h(w) </Ou h(v) dv)nldu </0th(v) dv) , (A1)

with n = 2, we obtain

¢ 2
E[I%(t)] EK/ K(t — u) eC(W(t)W(“))du> }
0
t u
E {2/ Kt — u)ecW =W w) (/ Kt — v) ed W O=W (@) dv) du}
0

0

t u
5 / / Kt — ) K(t — U)E[ecm(W(t)—W(u)H(W(u)—W(vm} dvdu
0 0

2/0 /0 K(t —u) k(t —v) MW(u)(2C) M'W’(”)(C) dvdu
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t “ 1 2 1.2
= 2/ / Kt —u) k(t —v) e2 ()W) gz (u=v) gy, gy
o Jo
t u R Lo
= 2/ / Kt —u) k(t —v) e2¢ (=t g2 (=) gy qyy,
o Jo

Substituting (3.3) in the above expression results

t u
E[1*(t)] =2(rX,)* / / er2umt o=l ==t gy gy
0 JO

t u
—2(TXP)2/ / 672(7‘775 )t (7‘ c )u ™ do du
0 JO
2 t 2 “
—2(rX ) —2(r—ge )t/ elr—cu </ e dv) du
0 0

t ro [V=U
—2(7"X ) (Tf—c )t/ e(7“7c2)u <€ > du
0 v=0

r

2 t
-9 (TXP) e—2(r—fc )t/ e(r—cz)u (eru _ 1) du
r 0
2 (rX,)? rX;
= lrm (62(r7%c2)t B 1) i (e(r At 1)‘| 672(r7%62)t

_2(rX,)? (1 B e-zo-ﬁ)t) A (1 _ e—(v-—c2>t) . (A2)

r2r —c? r—c?

In addition,
2E[a(t) eV W I(t)] = 2a(t) E[e® t)I(t)]

_ [ WO [t — ) eV O-Ww) du}

0
= 2a(t)E {/ K(t — u) e2eW (1) g—=cW (u) du]
0
t
= 2a(t) [ wlt — ) B[HOUO D W O] g
0
t
t
= 2a(t) / li(t — u) e%(20)2(t—u) e%czu du.
0

Again substituting (3.2) and (3.3) in the above expression results

t
2, [a,(t) eCW(t)I(t)] — QTXOXP 672(T+%C2)t/ e(rfcz)u 62c2t du
0

r — c2

—c?
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2rXoX
B ) (A3)
r—=c

Finally, we get
E[GQ(t) chW(t)] _ a2(t)E[€2cW(t)]

= a*(t) My 1) (2¢)

_ Xg e—2(r+%02)t 6%(20)%

= X2 e 2r—3), (A.4)
Thus, from (3.5), (A.2), (A.3) and (A.4) we obtain

2
Var[X(t)] =E[X*(t)] — (E[X(1)])

2 2
Var[X(8)] = - (1 - e*2<"*%c2>t) _ X (1 - e*<"*c2>f) et

Tor—¢2 r—c?
n 2:Xoj§p (efrt _ 672(r—%c2)t> + X2 e—2r—eMt
— (X + (X0 — Xp)e™™)?
:22TX§2 . ;TXZQ 672(7'7%52# . i;z et
r—c r—c r—c
rX) o1y 2rXoXp [ a2
+ﬁe 2r—3ehe | T_Oczp (e rt _ g=2(r—je )t)

+ X223 (X, 4 (X0 — Xp)e ™)’

:e*2<“%c2>f<xg+ rX;  2rXoX, @ 2rX; >

r—c2 r—c2 2r — c2

2rX; rX, et 2rXoXp

2r—c2  r—c? r—c?
2
~ X2 42X, (X,, - Xo)e—” - (Xp - Xo) e2rt

Co(p_12 wX 2rX?2
- b (x4 250 (- x,) - )

_ 2Xp< rXp _ rXo (x5 - XO))e*”

r—cz2 r—c?

2rX? 2 o
T oo X (X = Xo) e
_(x2 4 2rX, (X, — Xo) (@2 A+ )X} o203t | X}
0 r—c? 2r — c? 2r — ¢?
2¢° X,

(Xp - Xo)eirt - (XP - X0)2672T't

2 v2 2 v 2
C XP )e—Q(r—%cz)t_F C XP

r—c2

—(x8+ 22 (x, - x0) - X2

r—c 2r — c2 2r — c2
2
_ icfig (Xp — Xo)e " — (X, — Xo) e
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2)(2 2X2
:(2’"XP (X, — Xo) — (X2 - X2) - — = )e*g“*%cg)hr e

r—c? 2r — c2 2r — c2
262X et 2 _ort
2 (X Xo) — (Xp — Xo) e
_ QTXP C2X12) 7(27‘762)t CQX;%
_<(XP7XO) (r—ch(XerXo))i%”—cz ¢ +21"—(:2
262X et 2 —ort
2 (X X()) — (Xp — X()) e
_ Z(T — 02 + 02)XP C2XI27 7(2r7c2)t
_<(XP—XO)( X (x4 x0)) - o2 e
2 v2 2
c X, 2c” X, 2 e 2rt
— X, — X X, — X
U — 2 r— 2 ( 0) ( 0)
262X, X2 (op_ o2 2Xx2
=( (X, — Xo) [ (X, — X ) - L )emGrment L
(( P O)(( P O)Jrr—cQ) 27"—(:2) +2r—02
202X 2 __ort
— 2 (Xp—Xo)e " — (X, — Xo) e
2 2% X, EXY N\ ey X))
- ((Xp N XO) r— (X — Xo) - 2r —c2 ¢ + 2r — 2
ic Xp (X Xo) et (Xp _ X0)2e—2rt
2 2 v2
_ 2 —(2r—c?)t 2c Xp C Xp —(2r—c?)t
— (X, - Xo)%e +<T_CQ(Xp7Xo)72T_CQ ¢
chg 2¢° X,

2 (X, — Xo)e ™ — (X, — Xo) e

2r—c?2 r—c?

2 v2
=T 0 g )Tt (e e )

AXZ 28X,

—rt
2r—c2  r—c2 2 (Xp = Xo)e™™.

After some calculations and simplifying we have

Var[X(t)] =(Xp — XO)26—27't (652’5 _1) - is Xp b (X, - Xo)e ot (6(627T>t )
X2 2_on
+7c2_gr(e( ).

APPENDIX B. VARIANCE CALCULATION FOR m + 1 DOSES

From equation (3.11) and applying the formula of the square of the sum of N real
numbers

N 2
(Do) ~3ate2X 3 o
k=1 Jj=11=3+1
We obtain
XQ(t) :Xg |:e—2at+2cW(t) + (

n

2
e—a(t—kT)+c(W(t)—w(kT)) Uk, (t))

k=1
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n
+ 2e—at+cW(t) Ze—a(t—kf)+c(W(t)+W(k7)) Uk-r(t)

k=1
:Xg |:672o¢t+25W(t) +2 Z 672at+o¢k7+20W(t)7cW(kT) U~ (t)
k=1
n
+ Z e—2a(t—k7‘)+2c(W(t)—W(k‘r)) Ukr(t)
k=1
n—1 n
+2 Z Z e—a(2t—(l+k)7')+2cW(t)—c(W(lT)+W(k‘r)) Ulr(t) Ukr(t) ,
1=1 k=I+1

and the expected value is

]E[XQ(t)} :X02 [672005]}5 [€2CW(t)] +2 i efa(thk'r)]E[eQC(W(t)7W(k7'))+c(W(k‘r)7W(0))} Ukr(t)
k=1

+ i 672a(t7kT)IE[BQC(W(t)7W(kT))} UkT(t)

k=1
n—1 n
42 Z Z efa(Qtf(H»k)T)]E[GQC(W(t)7W(k‘r))+c(W(kT)7W(lT))] Ukr (t) UlT(t):|
k=11=k+1

=X3 [672atMW(t)(20) +2) e R My - ery (26) My (1o () Uper ()
k=1

+> e 2R My w (o) (2¢) Uger ()
=1

n—1 n

+QZ Z 67a<2t7(Hk)T)MW(t)fW(kT)(20)MW(kr)fwur)(C) Uk~ (t) Ui (1)
k=11=kt1

n
2 2 1.2
:Xg |:€72o¢t62z, t 42 E :efa(2t7k-r)62c (tfkr)ezc kT Uk-r(t)
k=1

+ Z 672a(t7k‘r)e2c2(t7k7') Uk'r(t)

k=1
n—1 n
+2 Z Z 6704(2157(l+k)ﬂ')e2c2(t7k‘r)6%02(k7—l7) Upr (t):| .
k=1l=k+1

Replacing oo = r + %cz, we get

E[X?(t)] =X2 [6*2“*%62” +2e 205N R (1)
k=1

n
2 2
+ 6—2(7‘—%0 )tz :62(7‘—%0 kT Ukv—(t)
k=1

n—1 n
n 26—2(r—%c2)t Z Z er(H—k)f—c%f UzT(t)}

k=1Il=k+1

n
:Xge‘Q(’“‘%CZ” |:1 n Z (2e(r—c2)kq— n 62(7‘—%62)}@7') User (1)

k=1
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n—1 n
+2 Z Z er(l+k)7762k-r Ul‘r(t):| . (B.1)

k=11=k+1
Thus, from (3.15) and (B.1) we have

Var[X ()] =E[X?(t)] — (E[X(¢)])?

:Xge*Z(T*%CZ)‘ [1 +>
k=1

2

n—1 n Lk 2k:
v2 Y 3 ety )

k=11l=k+1

n n 2
_ xZe~2rt [1 +23 e UL, () + (Z erkr Uk.,.(t)> ]
k=1 k=1

:Xgef27't(ec2t 1)+ 2X§6’2(’"’%C2)t[2 Z 67-<L+k)7(67c2k7 B efc%) Upe ()
k=1l=k+1

1.2 "
+Xge—2(7‘—§c )t {Z

o2
<2€(7 c )k-r 62(7‘—%62)k? _ efczt(QerkT e?rkr)) Ukr<t)}:|
k=1

n—1 n
—x2 |:€—2'r~t(ec2t —n+23 S ev-(l+k)7(€—c2kf _ efczt) Uzq—(t))
k=1 1=k+1
n 5
+6—2(T—%c2)t(z <26(7'—c Yer +62(7‘—%c2)k1— _ 67521,(267%7' +627‘k‘7’)> U,”(t)]‘
k=1

Exchanging sums results in
) 2 not-1ooo 2, B
Var[X(t)] =x§{e*2”(eL fon 42> S ertrettTem Tk et Uh.(t))
1=2k=1

2 n 2
+e—2r—ke )t<2 <2€<r7¢2):ﬁ B e +emf)> Uh(t)}
k=1

2
n e(,,,,c Y(i—1)T _ 1 2 em(l—l)-r _1
—x2le 2t e’t _ 1y 12 e”f(i —e 7t [7]) Upr (t
0{ ( )+ l=22 P e 17 ()

n
n e—2(r—%c?)t (Z <2e(r7c2)k‘r i e2(r—%c?)kr _ e—c2t(2erkr L eZ'rk:T)) Ukr(t>}'

k=1
If nT <t < (n+ 1)7 and using the sum of the first n terms of a geometric series, it
results

(r—c®)nr
w2 —2rt (3t —2(r—Lc?)t € —1
Var [X(t)} =X, {6 (e - 1) +e 2 (2 [71 e

Q(T—g(‘z)n‘r _ 5 rnT _ 2rnT _
e NS = =)
9erT Q(T—%cz)(n—l)r 1 ertn=DT _q

9Tt [g2r(n—1)7 _ 1 er(nq)f _1
(1—6 TT)[ l—e27  1—erT ])}
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