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ABSTRACT. In this paper, first, we modify the recently introduced MCE-
product to include the property of shape-preserving. This product has
attractive properties. For example, it is distributive with respect to the
addition and it doesn’t depend on the signs of multiplied fuzzy numbers.
Then, the effectiveness and applicability of the modified MCE-product are
investigated in treating differential equations with fuzzy multiplications.
Due to the complexity of fuzzy multiplication, differential equations with
fuzzy coefficients are one of the most challenging topics in the field of fuzzy
differential equations. In this paper, as an example of these equations,
the first-order linear differential equation with fuzzy variable coefficients
is solved by using the modified MCE-product. This equation was chosen
because it has been recently solved by Zadeh extension principle-based
product and cross-product and we can compare our results with them.
The results show the priority of the MCE-product over the mentioned
methods.
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1. INTRODUCTION

Nowadays, fuzzy mathematics and fuzzy logic have many applications in
various fields of science and technology [13, 15, 18, 29]. Fuzzy differential equa-
tions (FDE) are used to model uncertain engineering problems [31, 33]. There
are various approaches to interpret an FDE [23]. These approaches are di-
vided into several main categories: The Zadeh extension principle approach
[12], fuzzy differential inclusion [5, 27], the fuzzy bunches of function approach
[21, 22], and the approaches based on fuzzy derivatives including the Hukuhara
derivative [28] and its generalizations [7, 9], granular derivative [26], and in-
teractive derivative [17, 30]. In recent decades, FDEs have developed from
different areas such as numerical solution methods [1, 16, 35], existence and
uniqueness results [3, 32, 34], analytical solutions [21, 22], etc. However, in the
literature associated with FDE, equations involving fuzzy multiplication have
been less studied. This is due to the complexities and difficulties of the fuzzy
multiplication operator.

Among the proposed methods for fuzzy multiplication, the Zadeh extension
based product is one of the oldest which despite its comprehensiveness, has
some disadvantages limiting its use. For instance, it is not distributive with
respect to the addition and doesn’t preserve the shape of multiplied fuzzy num-
bers, it depends on the signs of multiplied fuzzy numbers and it is computation-
ally expensive and practically difficult to use. For all these reasons, researchers
in this field made a lot of effort to find alternatives to this multiplication. Re-
cently, a new fuzzy product has been introduced which uses middle-core-ecart
representation (MCE-representation, for short) and it is called MCE-product.
MCE-product is distributive, easy to use and it doesn’t depend on the signs
of the multiplied fuzzy numbers. But it is not shape-preserving. In this work,
a slight modification is done in MCE-product to take advantage of the shape-
preserving property. Hereafter we use the term MMCE-product as the modified
MCE-product.

The interesting features of the MMCE-product make it efficient to solve
differential equations involving fuzzy products. This class of FDEs has been
rarely investigated. We can mention [2, 3, 4, 14] as a few relevant work.

In this paper, the first order FDE

{u’(m) + p(z) ® u(x) = q(z),

0

(1.1)

is solved analytically in fully fuzzy form (i.e. p,q¢ : R = Rx and up € Rx).
The symbol “®” stands for the MMCE-product. Although various works have
been done in the first order fuzzy differential equations [8, 25], most of them
are about nonlinear differential equations. It is well-known that the non-fuzzy
form of the equation (1.1) has an analytical solution. However, obtaining this
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analytical solution in fuzzy form is complicated. In [8, 25], the equation 1.1
has been studied for crisp p(x). Also, this equation in fully fuzzy form has
been solved with some conditions on the signs of p(z) and ¢(z) in [4] and [14]
using the cross product and the Zadeh extension based product, respectively.
In the present work, we propose a solution method independent of the signs of
p(x) and g(x). This is done based on the MMCE-product. Furthermore, we
show that, in contrast to the mentioned works, the equation would have (i)-
and (ii)-solutions under the same conditions.

The crisp form of the under-study differential equation has important appli-
cations in various engineering fields, such as

e Cooling of a solid body by convective heat transfer ([10]).
e Distribution of the average temperature of a fluid flowing in a tube

([10]).

e Dynamics of a particle moving in a viscous medium ([19, 20]).

It is worthy to note that in all these applications, there are inherently uncertain
parameters such as geometric dimensions, thermo-physical properties of mate-
rials, and initial conditions. Basically, these uncertainties might be modeled
by fuzzy numbers and functions resulting in the fuzzy form of the differential
equation under study.

This paper is organized as follows: Section 2 presents some basic concepts re-
lated to the MCE-representation and MCE-product. At the end of this section,
the MMCE-product is introduced. Section 3 is devoted to the derivative and
integral of fuzzy number-valued functions based on the MCE-representation.
The main results are given in Section 4. In the last section, several examples
are presented and compared with the previous studies to show the efficiency
and advantages of the proposed method.

2. PRELIMINARIES

Throughout this paper, the space of fuzzy numbers and the space of trian-
gular fuzzy numbers are denoted by Rr and R, respectively. The notation
u, = [u,;,u]]| stands for the r-cut of the fuzzy number u.

Definition 2.1. (MCE-representation [11]) For u € Rz, consider the functions
0,,0F :[0,1] — R, defined by

0, (r) =my —u,
05 (r)

u — my,.

-t

Where m,, = % Then, u = (my; 0, ,0,") is MCE-representation of u. Note
that the semicolon symbol makes this different from the well-known notation of
a typical triangular fuzzy number denoted by (a, b, ¢). Hereafter, fuzzy numbers

are assumed to be in the form of MCE-representation.
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(mu; 0, ,0.) represents a fuzzy number if and only if 6, , 6, are bounded,
positive, non-increasing, left-continuous on (0, 1] and right-continuous at 0.

Definition 2.2. Let u = (my;0,,60;) and v = (m,; 0, ,0."). MCE-product of
u and v is defined as

u®uv = (mymy;0,0,,0501).

u-vru v
The r-cuts of u ® v is (u ® v), = [w;,w;], where

W, =MyMy — 0,0

I
wl =mym, + 0707
for u,v € Rr and a € R, the sum and scalar multiplication are defined as

u+v=(my +my; 0, +0,,0F +67),

vIru

{(amu;aﬁu,a@f), a >0,
au =

(amy; —abf, —ab, ), a <0.

Theorem 2.3. Let u= (my;0,,0}), v=(my;0,,0) and w = (my;0,,,0})
are three fuzzy numbers. Also assume 0 = (0;0,0) and 1 = (1;1,1). Then we
have the following properties:
(i) Commutativity: uOv=vOu

(i) Associativity: (u @ V) QW =u® (vO w)

(iii) Distributivity: (u+v) Ow = (u O w) + (v O w)

(iv) Neutral member: u®1=u

(v) u©u=0iffu=0.

For more details about the MCE-product, see [11].

In addition to the properties provided in this theorem, the MCE-product is
easy to use and independent of the signs of multiplied fuzzy numbers. These
properties make it useful to solve a class of differential equations that includes
fuzzy multiplication. Despite the interesting properties of the MCE-product,
it does not preserve the shape of the multiplied fuzzy numbers. To remove this
shortcoming, we define the modified form of the MCE-product as follows.

Let u = (a, b, ¢) be a typical triangular fuzzy number. The MCE-representation
of u is

u= (b; (b—a)(1—7),(c=b)(1 —r)).
which is in the form of (my;ky (1 —r), k(1 — 7)), where k; k7 € RT, k; =
b—a, kf =c—band m, =b.

Definition 2.4. (MMCE-product) Let u,v € R,. The MMCE-product is
defined as follows

u®v = (mumy; ky ky (1—7),kf k(1 —7)).

»u Yo

Clearly u ®v € R
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In Fig. 1, the MCE- and MMCE-products are shown for u = (0; 1—72(1—
r)) and v = (41 —7r,2(1 —r)).

0.50§ | \

FI1GURE 1. MCE-product (dash line) and MMCE-product (solid
line) of u = (0;1 —7,2(1 —7)) and v = (41 —r,2(1 —r)).

The r-cuts of u ® v is (u ® v), = [w; ", w; ]|, where

w, =mymy —k k(1 —1)

T
w =mymy, + kIR — 7).
The standard representation of u ® v as a triangular fuzzy number is

Udv= (mumv - kiki My My, My My + kj/jk’j)

Under MMCE-product, the inverse of u = (my;ky (1—7),kf(1—7r))isu™t =
(s (= 1), 21— 7).
Theorem 2.5. Letu = (my; k; (1-7), kT (1—71)), v = (my; k; (1—7), kF (1—7))
and w = (M ky (1 — 1), k5 (1 — 1)) are three fuzzy numbers, 0 = (0;0,0) and
1= (1;1—=7r,1—7). Then we have the following properties:
(1) Commutativity: u®v=v®u

(ii) Associativity: (u@v) ®wW =u® (v ® w)

(iii) Distributivity: (u+v) @ w = (L@ w) + (v A w)

(iv) Neutral member: u® 1 =u

(v) u®u=0 iff u=0.

Proof. The proof is trivial and very similar to the Theorem 3.2 of [11] and thus
we omit it here. O

3. CALCULUS OF FUZZY NUMBER-VALUED FUNCTIONS USING
MCE-REPRESENTATION

In this section, we obtain the GH-derivative and integral of a fuzzy number-
valued function based on the MCE-representation. Let us denote the MCE-
representation of an arbitrary fuzzy function f: R — Rz with
f(@) = (mg(z); 05 (x,r),@}'(x,r)). In the following theorem, we obtain MCE-
representation of (i)- and (ii)-GH-derivative of a fuzzy function.
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Theorem 3.1. Let f: R — Ryr.
(i) If f is (i)-GH-differentiable, then f'(x) = (m/;(z); (07) (z,7), (0;{)’(:5,7“)).
(ii) If f is (i)-GH-differentiable, then
F'(@) = (mly(@); =(0F) (2,7), = (05 ) (2, 7))
Here, the symbol “’ 7 denotes derivative with respect to x.
Proof. 1f f is (i)-GH-differentiable, then [f'(x)] = [(f;)(z), (f;)(z)]. Thus,
we can write
) (z Y (z ) (x Y (z
Fl) = ((f1)( );(fl)( ). )« );r(fl)( )
) (x N (x
I RNT TR trw (EXO w2
= (m(2); (65) (z,7), (6F) (2, 7).
If fis (ii)-GH-differentiable, then [f'(z)] = [(f;)(x), (f7) (x)]. Thus, the
MCE-representation of f/(x) is

Y +y/ —\/ +\/ ’ 47
= ((fl ) ;’(f1 ) ; (fi) ;_(fl ) _ (fj)/a(f_)/_ M)
- +y -y + ’ +
— (M._((fﬂ/_ (f1 ) ‘;‘(f1 )’ ), — ((fl ) ;(fl )/ _ (fr_)/))
= (m}( ) (9+) ( )7—(9;)/(:6,7’)).
([l

The following results can be deduced from Theorem 3.1, immediately.

Corollary 3.2. If f is (i)- or (ii)-GH-differentiable at xz, then we have
(a) f(x) = (m}(m);max{—(‘)j{’(%r),0;’(m7r)},max{9}"(x,r),—0]7’(35,7')}),
(b) 0}"(x,r)0;’(m,r) > 0.
Theorem 3.3. Let f : (a,b) = R,, f(z) = (mf(:n),k']?(x)(lfr),k}'(az)(lfr))
and my,ky , k+ € C(a,b).

o If (k7 ()" >0 and (kf ()" > 0, then f is (i)-GH-differentiable and
F'(@) = ((my(2)), (ky (2))'(1 =), (kF) (2)(1 = 7).
o If (k7 ()" <0 and (kf(x))' <0, then f is (ii)-GH-differentiable and
f’(w) = ((mg (@), = (kf (2))' (L =), = (k) (2)(1 = 1)).

Proof. Let = € (a,b) be given. If (k'; (a:)) > 0 and (k}'(m))/ > 0. By using the
Mean Value Theorem, for sufficiently small A > 0, there exist £1,&2 € (z, 2+ h)
such that (k;(fl))l, (k}r(fg))/ > 0 and

ki (x+h) = ky (z) + h(k; (3.1)
k(x4 h) = kf (z) + h(kf (&))" (3.2)
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On the other hand,
my(x +h) = my(x) + h(ms(€s)), & € (a,b). (3.3)
From (3.1)-(3.3), one can conclude
(myp(x +h); kY (x +R)(1 =) kf (x +h)(1 = 1)) = (my(2); k7 (2)(1 =), kf (@)(1 1))
+h((ms(€)'s (k7 (€)' (1 = 1), (K (€2))'(1 = 7))
which means
F@+h) on f@)=h((ms(€)s (k7 (€)' 0 =), (kF (&) (1 =7)).
Thus,

The proof of the second part is very similar to the first one. Thus we skip
it. O

In the following, the integral of a fuzzy function is given by using the MCE
representation. Throughout this paper, we will use the fuzzy Riemann integral
for the concept of integral [6].

Let f :[a,b] = Rz be a fuzzy Riemann integrable, then

[/abf (IWL = | / I (@), / b £ ()de]

using MCE-representation, it is

/ab f(x)dz = (/ab my(z)dr; /ab 0; (w,r)dz, /ab Hf(x,r)dx),

4. THE LINEAR FIRST ORDER FUZZY DIFFERENTIAL EQUATION

Here, we study the following fuzzy initial value problem

{u’(m) +p(a) ® u(z) = q(z),

0

Let
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Definition 4.1. We say that v : R — R, is a solution for the problem (4.1) if
it is GH-differentiable and satisfies the problem (4.1) for all € R. According
to the type of GH-differentiability, two types of solution can be considered:

o A fuzzy solution w is called (i)-solution, if w is (i)-GH-differentiable.
o A fuzzy solution u is called (ii)-solution, if w is (ii)-GH-differentiable.

Theorem 4.2. ((i)-solution) Let
F(J}) — (efmp(x)dx7efk;(z)d$(1 _ r),efk;r(r)dx(l _ ’I“))

F(xg) = (mFO, kpo(1—1), k}o(l — 7“)),
Ug = (mu07k1:0<1 - T)vkio(l - 7“))

)

If

kg (2) — kpokuoky (x)e™ JFr D _ o (g)e= [ hy ()de / kg (t)el B> Wdtat > o
(4.2)

Zo

kF(x) = kbokiohkt (z)e™ Jhr (0o _ ()= [ 17 (@)da / K} (t)el B Wdtar > o,
(4.3)

then

xT

u(z) = F(z)™' @ F(x) ® ug + F(z) ™" @/ F(t)®q(t)dt  (4.4)

Zo

is (i)-solution of (4.1).

Proof. Suppose that

x

u(z) = F(z) "' @ F(xo) ® ug + F(z)! @/ F(t) ® q(t)dt.

Zo

By substituting F'(z), F(xo), u(zg) and ¢(t) in u, we have

u(@) = (mu(@); Ky, (@)1 = 7).k} (2)(1 - 7)) (4.5)

where

x
my(z) =e~ J mr(@)d [mpomuo +/ el me Ot (t)dt]
o
ky (z) =e~ / Fp @[ o+ / el B Ot g (1)dt ]
To
ki () = Jhy (@de [t gt / el b Wdtpt (1yat].

Zo
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Since
d - - - =7 _ _
ook () =kg (2) = Kpokyoky (2)e [ by (@)da
— &, (x)e S Fe () / ’ ko (t)el ke gy (16)
To
%ki(m) =ky () - k,ﬂfokjok;(x)e—fk;u)dx
_ k;‘(ac)e— [k} (x)dz /’C k;(t)ef k:(t)dtdt. (47
o

From these equalities, (4.2), (4.3) and Theorem 3.3, u is (i)-Gh-differentiable.
Now, we show that u satisfies the problem 4.1. Clearly u(xg) = wuo and
moreover, since u is (i)-Gh-differentiable,

W) = (Coma(e) Sk @)1= r), k@)1 -r)  (48)

where

4
dx

m () = my(a) — mpomuomy(z)el ~me@4d

— my(z)el ~mr(@)de / el meWdty (1)dt. (4.9)
zo

By replacing «'(x) and w(z) in «/(z) + p(x)u(z) with the right have sides of
(4.8) and (4.5), respectively, we have

u'(z) + p(z)u(z) = (%mu(x) + my (z)my, (x); (%k;(m) +ky k) (1 =),
d

(k@) + k) (1 =) (4.10)

where
M (x) + mp(2)mu () =mg(z) — mpomuomyp(z)el ~mr(@)ds

dz
. z
— mp(z)e) *mp(Z)dw/ el mp(Ddty, (1)t

0

+ myp(z)e” [mp(z)dz [mpomuo + / I el mP(t)dtmq(t)dt]
Qo

=mgq(x) (4.11)
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d - .= L.— - o (z)dz
kg (@) + kyy (2)ky () =k (2) — kpokooky (x)e™f Fr (94

dx
—ky (z)e” sz?(”dl/ ky (t)el ko (Dt gy

zo

+ ky (z)e” I e @ [ g +/ el B Wt g (1)dt]
£
=k (z) (4.12)
d — + xT T
R AORYMOIMOEIOR khokdokt (z)e™ [k ()4

kit (w)e S @ /T ki (t)el 1 (Dt gy
£
+ ke (@)e S e @dr gt gt / el B Otk (1) d)
o

=k (). (4.13)

From (4.10), (4.11), (4.12) and (4.12),

W/ (@) + p(e)u(a) = (mq(@)iky (@)(1=1), kf (@)1 =7)) = q(a).
Consequently, u satisfy problem (4.1). O

(ii)-solution: We assume u is (ii)-GH-differentiable. In this case, there is
not any integrating factor but the equation is still solvable. Since w is (ii)-GH-
differentiable, u/(z) = (m/,(z); — (k) (x)(1 — ), —(k;) (z)(1 — r)). From the

u u

definition of the MMCE-product, we obtain
(mls =) (1 =), = (k) (1= 1) + (mps by (1= 7), kf (1= 7)) © (mas by (1= ), k(1= 7))
=(mgq; kg (L—r), k;(l —7))

(M, +mpmas =) +ky ky (L=r), —(k) + kT kb (=) = (mgiky (1—r),kf (1 —1).

Thus, we have the following three crisp initial value problems

ml, + mpm, = my, m., (0) = my
—(ki) +hyky =kgy kg (0) = kg
() kR =k k() = K

After solving this system of differential equations, if k,, , k" > 0 and

(k;)/, (kj)/ < 0, the equation has a (ii)-solution, otherwse it doesn’t have a
(ii)-solution.
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Remark 4.3. Tt is worth noting that in the field of fuzzy mathematics the
following initial value problems are different [8]:

{u<x> p(z) ® u(z) = q(),
(0) Uo

{ /()
(o)
{u( )+ (—q(2)) = (—p(z) ® u(x)),

u(zo) = up.

IS

( p(x) ® u(z)) + q(x),

In the current work, we explain how to calculate the solution to the first prob-
lem. The other two cases are similarly solvable (see Examples 5.2 and 5.3).

5. EXAMPLES

In this section, we provide three examples. The first example is solved using
the procedure presented in Section 4. For comparing the results of the present
method with the previous studies, two other examples are given from [4] and
[14].

ExaMmpLE 5.1. Consider the following fuzzy differential equation with initial
condition

{ (1, x—_i_l(l -r), ac+1(1 - T)) ®u = (O;x(l —r),z(l— r))7 for z € [1,1.8),
u(l) = (e’l 11(1 -r), 12(1 — r))

(5.1)
(i)-solution. By the method described in Theorem 4.2, the (i)-solution is
3 2 3 2
z_ + z_ +1 z_ + z_ +1
_(,-=.3 2 1— 3 2 1— )
u@) = (e A1), (1)
(ii)-solution. Corresponding system is:
my, +my =0, my (1) = —1
—) gkl = () =g
—(kF) + ixk; =z, k(1) =11,
(

By solving the above system, the (ii)-solution of (5.1) is obtained as follows

u@) = (7% (1+2) (5 —a+In(FEE) (1=r), (14+2) (50— +In(+

@+ In( = ) (-n):
Both of the solutions are illustrated in Figure 2.

EXAMPLE 5.2. ([4, 14]) Consider the following initial value problem

{u'm = 2eia(1 - r),a(l— 1) ®u(@) + (2 5(L ), (1 - 1)),

5.2
u(0) = (—1; 1, 1), (52)
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(i)-solution (ii)-solution
2 — ~
///// 12 \\\
—_ >
______ 1 ~
— ~
1 S
0.81 ~
~N
0.61 SO
- AN
0 0.44 N
AN
..... 0.24 \’
T LR 0+ , , , , , , EM,
L1 12 13 14 15 16717 18
-0.2 L
1 12 1.4 1.6 1.8 2 s I
X et

""" Lower endpoint of 0-cut 1-cut 1-cut

— — Upper endpoint of 0-cut

""" Lower endpoint of 0-cut
— — Upper endpoint of 0-cut

FIGURE 2. The (i)- and (ii)-solutions of Example 5.1.

This is Example 5.1 of [4] and Example 5.2 of [14].
(i)-solution. Corresponding system is:

ml, = 2xm, + x, my,(0) = —1

(ky) =ahky +5, kg (0) =3

(Y = okt +5, KO =1,

By solving the above systems, the (i)-solution of (5.3) is
22

o= (e ) - D= e ~Yo—)

with the r-cuts

-1

up () = [2(1 L) - (e - %)(1 —, ‘71(1 b ) 4 (e - %)(1 - r)].

(ii)-solution. Corresponding system is:

m,=my,+z , my(0)=-1
-V = gt T =1
T +0) = L

By solving the above system, the (ii)-solution reads
1 22 z?2 z? 1 z2 z2 1
y(z) = ( — 5(1 re)i (- sinh(—-) + cosh(—-) — 5)(1 -, (- sinh(—-) + cosh(—-) — 5)(1 - r))A

In Figure 3, both of the (i)- and (ii)-solutions of this example are illustrated.
The (i)-solution is compared with the corresponding solutions presented in [4]
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(i)-solution (ii)-solution
x

0 0.2 0.4 0.6 0.8 1

----- Zadeh extension product [12]
— - — Crisp solution

Cross product(3] | [ Lowe end point O-cut  ——— Crisp solution
—— MMCE-product (present method) — - = Upper end point of 0-cut

FIGURE 3. The (i)- and (ii)-solutions of Example 5.2.

and [14]. As can be seen, the growth of uncertainty in the present method is
significantly less than the two other methods. Also, in contrast to the methods
presented in [4] and [14], our method provides a (ii)-solution, as well.

EXAMPLE 5.3. ([4, 14]) Consider the following initial value problem

u'(z) = (2x;2(1 —7),2(1 —7)) ®u(z) + (; 5(1 — 1), (1 =),
L1 (5.3)
u(0) = (=1; 3, 3)-
This is Example 5.2 of [4] and Example 5.3 of [14].
(i)-solution. Corresponding system is:
ml, = —2xm, + x, mu(O) =-1
(ky) =xk, + % ky (0) =3
(kY fzkf[Jrf, kf(0) = 1.
By solving the above system, (i)-solution of (5.3) is
1 3 2,22 1 22 1
y(x):(§—§ex;(e2—5)1—7“,(62 5)1—7“)).
(ii)-solution. Corresponding system is:
m,, = —2xm, + x, my,(0) = —1
1
kD) = —aki— 2. k;(0) ==
(k7Y = ~aki =2, k7 (0) =
T 1
ky ky — = ki (0) = <.
By solving the above system, (ii)-solution is
1 3 .2 A z2 z? 1 . z2 z2 1
y(z) = (775 ;(7slnh(7)+cosh(?)f5)(177),(7slnh(?)+cosh(?)f5)(177‘)).
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(i)-solution (ii)-solution

0 0.2 0.4 0.6 0.8 1
x

----- Lowe end point 0-cut == Crisp solution — MMCE-product (present work) =+ = Crisp solution
== Upperend pointofO-cut | e Zadeh extension product [12] Cross product [3]

FIGURE 4. The (i)- and (ii)-solutions of Example 5.3.

In Figure 4, (i)- and (ii)-solutions are illustrated. The (ii)-solution is compared
with the results of [4] and [14] (see Figure 4-right). It is clearly observed that,
for the present method, the uncertainty vanishes at a slower rate than the
other two methods. This makes the (ii)-solution valid over a larger interval.
As seen, the validity interval of the solution in our method is [0, 1.17] while, it is
[0,0.816], and [0,0.707] for the methods presented in [4], and [14], respectively.
Also, in contrast to the previous works, our method provides a (i)-solution (see
Figure 4-left).

CONCLUSION AND FUTURE RESEARCH

The linear first order differential equation with fuzzy variable coefficients
and fuzzy initial value was solved analytically. We modified the MCE-product
and used it for the concept of fuzzy multiplication appeared in the equation.
Depending on the type of GH-differentiability, two types of solution called (i)-
and (ii)-solutions were proposed. Some examples were given that show the
efficiency of the proposed method compared to the previous methods available
in the literature (see examples 5.2 and 5.3). For the future work, we suggest to
use modified MCE-product for obtaining the analytical solution of the higher
order fuzzy differential equations.
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