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some assertions which appear in [13].
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18 A. Linzi, H. Stoja lowska

1. Introduction

The theory of hyperrings and hyperfields has its origins in the paper of

Krasner [7]. More recently, several authors studied their theory from various

points of view. For instance, J. Jun, in [6], studies algebraic geometry over

hyperrings and gives the definition of hyperideals in a hyperring. The reader

may consult the reference list of this paper to gain an overview over recent

developments in the theory of hyperfields and their important applications.

M. Marshall in [11] studies the definitions of orderings and of positive cones

in hyperfields. It was already mentioned in that paper that the two concepts

are not equivalent as in the classical theory of ordered fields. In fact, we show

in Example 2.15 that the natural generalization of the construction which for

ordered fields shows this equivalence, does not work in the case of hyperfields.

In [4] B. Davvaz and A. Salasi deal with hypervaluations on a hyperring onto

an ordered abelian group, and also J. Lee in [10] works with valued hyperfields.

These two papers present different approaches in defining a hypervaluation on

a hyperfield, which both appear to be interesting and well chosen.

The interest of the authors for the concepts of hypervaluations and hyper-

fields arises mainly from the fact that there are hyperfields related to valued

fields which inherit a hypervaluation in a natural way. In [9] amc-structures

are introduced by F.-V. Kuhlmann in order to study criteria for valued fields

to be isomorphic or to be elementarily equivalent. In [5] Flenner introduced

RV-structures which are an improvement of amc-structures and are nothing

but hyperfields presented in a different language, i.e., with a ternary relation

replacing and encoding the multi-valued addition. Therefore, as can be ex-

pected, also amc and RV structures implicitly have (hyper)valuations. These

can be used to study them and the corresponding hyperfields further.

In this paper we study a possible definition of hypervaluation, introduced in

[13]. What is proposed there is a generalization of the definition of Davvaz and

Salasi where the value set is allowed to be an ordered canonical hypergroup (see

Definition 2.10). Here the domain is always assumed to be a hyperfield. We

show in our main result that even though this definition is proper, i.e., nontrivial

examples can be found, it is not of much interest since such a hypervaluation can

always be decomposed into an order preserving homomorphism of hypergroups

and a hypervaluation onto an ordered abelian group (in the sense of Davvaz

and Salasi) which, moreover, induces the same valuation hyperring.

In the paper [13], a lot of constructions are proposed without details; it turns

out that they are not always possible to carry out. In the present article we

also provide counterexamples to justify this last assertion.
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Hypervaluations on Hyperfields and Ordered Canonical Hypergroups 19

2. Ordered canonical hypergroups

Definition 2.1 ([1]). Let H be a nonempty set and P∗(H) the family of

nonempty subsets of H. A hyperoperation ∗ is a function which associates with

every pair (x, y) ∈ H ×H an element of P∗(H), denoted by x ∗ y.

A hypergroupoid is a nonempty set H with a hyperoperation ∗ : H ×H →
P∗(H). For x ∈ H, A,B ⊆ H we set

A ∗B =
⋃

a∈A,b∈B

a ∗ b,

A ∗ x = A ∗ {x} and x ∗A = {x} ∗A.

In 1934 the concept of a hypergroup was defined by F. Marty in [12] to be a

nonempty set H with an associative hyperoperation (see Definition 2.2 below)

such that x ∗ H = H ∗ x = H for all x ∈ H. A special class of hypergroups,

which will be of interest for us, is the following:

Definition 2.2 ([1]). A canonical hypergroup is a tuple (H, ∗, e), where (H, ∗)

is a hypergroupoid and e is an element of H such that the following axioms

hold:

(H1) the hyperoperation ∗ is associative, i.e., (x ∗ y) ∗ z = x ∗ (y ∗ z) for all

x, y, z ∈ H,

(H2) x ∗ y = y ∗ x for all x, y ∈ H,

(H3) for every x ∈ H there exists a unique x′ ∈ H such that e ∈ x ∗ x′ (the

element x′ will be denoted by x−1),

(H4) z ∈ x ∗ y implies y ∈ x−1 ∗ z for all x, y, z ∈ H.

Remark 2.3. A canonical hypergroup is a hypergroup in the sense of Marty.

Fix a ∈ H and take x ∈ H ∗a. Then there exist h ∈ H such that x ∈ h∗a ⊆ H,

showing that H ∗ a ⊆ H. For the other inclusion, take x ∈ H, then

x ∈ x ∗ e ⊆ x ∗ (a−1 ∗ a) = (x ∗ a−1) ∗ a,

so there exist h ∈ x ∗ a−1 ⊆ H such that x ∈ h ∗ a ⊆ H ∗ a.

Remark 2.4. In [1] the definition of a canonical hypergroup also requires ex-

plicitly that x∗e = {x} for all x ∈ H. However, we note that this axiom follows

from (H3) and (H4). Indeed, suppose that y ∈ x ∗ e for some x, y ∈ H. Then

e ∈ x−1 ∗ y by (H4). Now y = x follows from the uniqueness required in (H3).

Remark 2.5. Note that an abelian group G is not a priori a hypergroup, because

the operation on G is not a hyperoperation, as it takes values in G and not in

P∗(G). But it can be turned into a hypergroup by setting a ∗ b := {ab}. In

other words, we can turn an abelian group into a hypergroup by identifying

each element a of G with the singleton {a}.
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20 A. Linzi, H. Stoja lowska

Example 2.6. Consider the set H := {−1, 0, 1} with a hyperoperation ∗ de-

fined as follows:

(−1) ∗ (−1) = (−1) ∗ 0 = 0 ∗ (−1) = {−1}
0 ∗ 0 = {0}
1 ∗ 1 = 1 ∗ 0 = 0 ∗ 1 = {1}

1 ∗ (−1) = (−1) ∗ 1 = {−1, 0, 1}.

Then (H, ∗, 0) is a canonical hypergroup, called the sign hypergroup. As the

reader may check, we have that 1−1 = −1, (−1)−1 = 1, 0−1 = 0.

The next example can be found in [8].

Example 2.7. Let R be a ring and G a normal subgroup of its multiplicative

semigroup. Consider the following equivalence relation ∼ on R: a ∼ b if and

only if there exist g, h ∈ G s.t. ag = bh. The equivalence class of a ∈ R is

aG := {ag | g ∈ G}.

It is possible to define a hyperoperation on R/G in the following way:

aG + bG := {(ag + bh)G | g, h ∈ G}.

Then (R/G,+, {0R}) is a canonical hypergroup. Indeed, the associative law

follows from the same law in R, as well as commutativity. The unique inverse

of aG is (−a)G. Indeed,

aG + (−a)G = {(ag − ah)G | g, h ∈ G} ∋ (a− a)G = 0RG,

moreover, if

0RG ∈ aG + bG = {(ag + bh)G | g, h ∈ G},
then there exist g, h ∈ G such that 0R = ag + bh. Multiplying by g−1, we

obtain that −a = bhg−1 and so (−a)G = bG.

Assume now that cG ∈ aG + bG. We wish to show that bG ∈ (−a)G + cG.

We have

cG ∈ {(ag + bh)G | g, h ∈ G},
so there exist g, h ∈ G such that c = ag + bh. Multiplying by h−1, we obtain

b = −agh−1 + ch−1, so bG ∈ {((−a)g′ + ch′)G | g′, h′ ∈ G} = (−a)G + cG.

Remark 2.8. We note that the sign hypergroup can be obtained as a quotient

in the way described in the previous example. Take R = R and G = Ṙ2, where

Ṙ2 denotes the set of non-zero squares in R. The result follows from the fact

that every non-zero real number is either a square or the opposite of a square.

In [13] the set Z/N = {aN | a ∈ Z} is considered, with the hyperoperation

defined as follows:

aN ∗ bN = {cN | c ∈ aN + bN}.
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Hypervaluations on Hyperfields and Ordered Canonical Hypergroups 21

This construction does not give a canonical hypergroup in the sense of Def-

inition 2.2, as is shown in the next example. The reason is that N is not a

multiplicative subgroup of the multiplicative semigroup of Z.

Example 2.9. Consider the tuple (Z/N, ∗, 0N). We observe that 0N ∈ 1N∗−kN
for every k ∈ N. Hence axiom (H3) is not fulfilled.

Definition 2.10. An ordered canonical hypergroup is a tuple (H, ∗, e,≤), where

(H, ∗, e) is a canonical hypergroup and ≤ is a partial order such that

a ≤ b =⇒ a ∗ c ↗ b ∗ c (2.1)

for all a, b, c,∈ H; here, if A,B ⊆ H, then A ↗ B means that for all b ∈ B

there exists a ∈ A such that a ≤ b. If for each a, b ∈ H either a ≤ b or b ≤ a,

then we call ≤ an ordering or a linear order relation on H.

Remark 2.11. One should not use “≤” on the subsets as the relation will not

be antisymmetric. For example if H contains a smallest element b, then any

two subsets A,B, which both contain b will satisfy A ↗ B and B ↗ A without

necessarily being equal.

Remark 2.12. It should be noted that some authors (for instance see [13]) in

defining A ↗ B require that for all a ∈ A there exists b ∈ B and for all b ∈ B

there exists a ∈ A such that a ≤ b. Others (for instance see [3]) instead require

only that for all a ∈ A there exists b ∈ B such that a ≤ b. The relations

between all these definitions still have to be investigated. However, in what

follows we will just use the concept introduced in Definition 2.10.

Lemma 2.13. Let (H, ∗, e,≤) be an ordered canonical hypergroup. Take

a, b, x, y ∈ H and B ⊆ H.

1) If {a} ↗ B, then a ≤ b for all b ∈ B.

2) If x > e, then x−1 < e.

3) If x ≥ e and y ≥ e, then b ≥ e for all b ∈ x ∗ y.
4) If x > e and y ≥ e, then b > e for all b ∈ x ∗ y.

Proof. 1): This follows from the definition of “↗” and the fact that {a} con-

tains only a.

2): By condition (2.1), {x−1} = e ∗ x−1 ↗ x ∗ x−1, so x−1 ≤ b for every

b ∈ x ∗ x−1 by part 1). As e ∈ x ∗ x−1, we obtain that x−1 ≤ e. Now x−1 = e

is impossible because otherwise, e ∈ x ∗ x−1 = {x}, which implies that x = e

in contradiction to our assumption that x > e.

3): If x ≥ e and y ≥ e, then {y} = e∗y ↗ x∗y, so e ≤ y ≤ b for every b ∈ x∗y
by part 1).

4): If x > e and y ≥ e, then b ≥ e for all b ∈ x∗y by part 3). However, e /∈ x∗y
since otherwise, y = x−1 which by part 2) yields that y < e, in contradiction

to our assumption that y ≥ e. Hence b ̸= e and consequently, b > e. □
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22 A. Linzi, H. Stoja lowska

In [11] the definition of a positive cone is given for hyperfields. Let us now

define this concept for canonical hypergroups.

Definition 2.14 ([13]). A subset P of a canonical hypergroup (H, ∗, e) is called

a positive cone if the following axioms hold:

(P1) P ∩ −P = {e},

(P2) P ∗ P ⊆ P ,

(P3) P ∪ −P = H.

In the theory of ordered abelian groups, the existence of a positive cone is

equivalent to the existence of an ordering and there is a one to one correspon-

dence between them. It was already mentioned in [11] that this, in general, is

no more true in the case of hyperfields, and the argument holds for hypergroups

as well. In [13] it is claimed that one can always construct an ordering from a

positive cone by setting:

x ≤ y ⇐⇒ (y ∗ x−1) ∩ P ̸= ∅. (2.2)

In the following example we show that this construction is not always possible.

Example 2.15. Take H := Q/Q̇2, where Q̇2 denotes the set of nonzero squares

in Q. We see that H is a canonical hypergroup with the hyperoperation defined

as:

aQ̇2 ∗ bQ̇2 = {cQ̇2 | c ∈ aQ̇2 + bQ̇2}
(see also Example 2.7). Observe that the set P = {aQ̇2 | a ∈ Q+} ∪ {0} fulfils

the conditions of the definition of a positive cone. However, the relation defined

in (2.2) is not an ordering on H. Indeed, observe that 5Q̇2 ∈ (2Q̇2∗(3Q̇2)−1)∩P ,

so, in particular, (2Q̇∗2 ∗ (3Q̇2)−1) ∩ P ̸= ∅, which means that 3Q̇2 ≤ 2Q̇2. On

the other hand, 1Q̇2 ∈ (3Q̇2 ∗ (2Q̇2)−1) ∩ P , so (3Q̇2 ∗ (2Q̇2)−1) ∩ P ̸= ∅,

which means that 2Q̇2 ≤ 3Q̇2. Clearly, 2Q̇2 ̸= 3Q̇2, so the relation ≤ is not

antisymmetric.

However, there exist hypergroups in which positive cone and orderings be-

have as in the classical case. The simplest example is the sign hypergroup:

Example 2.16. Consider the sign hypergroup H = {−1, 0, 1} with positive

cone P = {0, 1}. We define an order relation ≤ on H as follows: −1 ≤ 0 ≤ 1.

We leave it to the reader to show that ≤ is a linear order on H as in Definition

2.10. This ordering corresponds to P in the way described in (2.2). Indeed,

(1∗0−1)∩P = {1}, (0∗ (−1)−1)∩P = {1}, (1∗ (−1)−1)∩P = {1}, so in every

case we obtain a nonempty intersection.

3. Hyperrings and hyperfields

Definition 3.1 ([1], [2]). A hyperring is a tuple (R,+, ·, 0, 1) which satisfies

the following axioms:
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Hypervaluations on Hyperfields and Ordered Canonical Hypergroups 23

(R1) (R,+, 0) is a canonical hypergroup,

(R2) (R, ·, 1) is a commutaive monoid such that x · 0 = 0 for all x ∈ R,

(R3) the operation · is distributive with respect to the hyperoperation +.

That is, for all x, y, z ∈ R,

x(y + z) = xy + xz

as sets. Here for x ∈ H and A ⊆ H we have set

xA := {xa | a ∈ A}.

If (R \ {0}, ·, 1) is an abelian group, then (R,+, ·, 0, 1) is called hyperfield.

The following example is the original example of a quotient hyperring (see [8]).

Example 3.2. Let R be a commutative ring with 1, G a normal subgroup

of its multiplicative semigroup and recall the notations introduced in Exam-

ple 2.7. One may define multiplication in R/G as aG · bG := (ab)G. Then

(R/G,+, ·, {0}, 1RG) is a hyperring and if R is a field, then it is a hyperfield.

We have to show that (R3) holds. Take a, b, c ∈ R and suppose that xG ∈
aG · (bG+cG). Then there exist g, h ∈ G such that x = a(bg+ch) = abg+ach,

where we have used the distributivity law in R. We obtain

xG ∈ {(abg + ach)G | g, h ∈ G} = abG + acG = aGbG + aGcG.

This shows that aG·(bG+cG) ⊆ aGbG+aGcG. To show the converse inclusion

we note that

xG ∈ aGbG + aGcG = (ab)G + (ac)G.

Hence there exist g, h ∈ G such that x = (ab)g + (ac)h = a(bg + ch), where we

used the distributivity law in R. We obtain

xG ∈ {a(bg + ch)G | g, h ∈ G} = {aG(bg + ch)G | g, h ∈ G} = aG · (bG + cG).

If R is a field, then for every a ∈ R we have that a−1G = (aG)−1. Indeed, by

definition aG · a−1G = (a · a−1)G = 1RG.

Example 3.3. As we have already noted in Remark 2.8 that the sign hyper-

group H can be seen as a quotient R/Ṙ2. Since R is a field, we obtain that

(H,+, ·, 0, 1) is a hyperfield, where we now denote ∗ by + and · behaves as

follows:

−1 · 1 = 1 · −1 = −1,

0 · 0 = 0 · 1 = 1 · 0 = 0 · −1 = −1 · 0 = 0,

1 · 1 = −1 · −1 = 1.

In [13] it is argued that the set X of order preserving mappings f : H → K

such that the support of f is finite, where H is a ordered canonical hypergroup
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and K an ordered hyperfield, is a hyperdomain, i.e., a hyperring without zero

divisors, with the operations defined as follows:

(f + g)(x) := f(x) +K g(x),

and

(fg)(x) :=
∑

x∈x1∗x2

f(x1)g(x2). (3.1)

This seems to be an attempt to generalize the construction of formal power

series. However, we first of all note that X is not even a hyperring since if

f is non-constant and order preserving, then −f is not order preserving. In

addition, if K is a hyperfield which is not a field, then the multiplication (fg)(x)

defined in (3.1) is a subset of K and not an element of K as the definition of

hyperring would require. Hence, we do not obtain a hyperring. Finally, even

if we do not restrict to order preserving mappings and assume K to be a field,

we show, in the next example, that the multiplication defined in (3.1) is not

associative.

Example 3.4. Let H = {−1, 0, 1} denote the sign hypergroup and K an or-

dered field. We define the maps f, g, h : H → K as follows f(−1) = f(0) =

f(1) = 1K , g(−1) = g(0) = g(1) = −1K , and h(1) = 1K , h(0) = −1K ,

h(−1) = 0K . By direct computations we obtain

((fg)h)(1) = 5 · (−1K) + 5 · 1K + 3 · (−1K) + 5 · (−1K) = 8 · (−1K)

and

(f(gh))(1) = 2 · (−1K) + 2 · (−1K) + 2 · (−1K) = 6 · (−1K)

where we used the fact that

1 ∈ 1 ∗ 1, 1 ∗ 0, 0 ∗ 1, 1 ∗ −1,−1 ∗ 1,

that

−1 ∈ −1 ∗ −1,−1 ∗ 0, 0 ∗ −1, 1 ∗ −1,−1 ∗ 1

and that

0 ∈ 0 ∗ 0, 1 ∗ −1,−1 ∗ 1.

Here ∗ denotes the operation of H. We conclude that f(gh) ̸= (fg)h, hence

the associativity law does not hold.

4. Hypervaluations

As it was mentioned before, there are several approaches to the definition of

a hypervaluation on a hyperfield. We now wish to investigate the following.

Definition 4.1 ([13]). Let (F,+, ·, 0, 1) be a hyperfield and (H, ∗, e,≤) be an

ordered canonical hypergroup. A surjective map w : F → H ∪ {∞} is called a

hypervaluation on the hyperfield F if the following properties are satisfied:

(V1) w(x) = ∞ ⇐⇒ x = 0,
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(V2) w(−x) = w(x),

(V3) w(x · y) ∈ w(x) ∗ w(y),

(V4) z ∈ x + y =⇒ w(z) ≥ min{w(x), w(y)}.

The following is a nontrivial example of a hypervaluation onto an ordered

canonical hypergroup.

Example 4.2. Let K be a field and Γ an ordered abelian group. Assume that

a classical valuation

v : K → Γ ∪ {∞}

is given. We now define a hypervaluation w from K onto the sign hypergroup

{−1, 0, 1}.

w(x) =


1 if ∞ ≠ v(x) > 0Γ

0 if v(x) = 0Γ

−1 if v(x) < 0Γ

∞ otherwise

Let us show that w is a hypervaluation on the field K, as in Definition 4.1.

Clearly, w(x) = ∞ if and only if x = 0K and w(x) = w(−x) because that is

true for v. In order to show that w(xy) ∈ w(x) ∗ w(y), where ∗ denotes the

operation in the sign hypergroup, we observe that if v(x) and v(y) have the

same sign there is nothing to show, since v(xy) = v(x) + v(y) will have the

same sign as v(x) and v(y). If v(x) = 0, then w(x) = 0 and v(xy) = v(y)

and w(xy) = w(y) = 0 ∗ w(y); the same holds if v(y) = 0. If x = 0 or

y = 0, then the situation is clear. If, say, v(x) < 0Γ and v(y) > 0Γ, then

w(xy) ∈ {−1, 0, 1} = −1 ∗ 1 = w(x) ∗ w(y), and similarly in the case where

v(x) > 0Γ and v(y) < 0Γ. This shows that the third axiom of a hypervaluation

holds for w. The fourth and last axiom states:

z ∈ x + y =⇒ w(z) ⪰ min{w(x), w(y)}

where ⪯ denotes the ordering in the sign hypergroup. Since K is a field we

have to check that w(x + y) ⪰ min{w(x), w(y)}. If w(x) ̸= w(y), then clearly

v(x) ̸= v(y), so we have v(x + y) = min{v(x), v(y)}. Hence w(x + y) =

min{w(x), w(y)}. If x = y = 0 there is nothing to show. If w(x) = w(y) = 0,

then v(x) = v(y) = 0Γ, so v(x + y) ≥ 0Γ. Then w(x + y) ∈ {0, 1,∞} and

w(x + y) ⪰ 0 = min{w(x), w(y)}. If w(x) = w(y) = 1, then v(x), v(y) >

0Γ, so v(x + y) > 0Γ. We obtain w(x + y) ∈ {1,∞} and w(x + y) ⪰ 1 =

min{w(x), w(y)}. Finally, if w(x) = w(y) = −1, then w(x+ y) ∈ {−1, 0, 1,∞},

but min{w(x), w(y)} = −1, so the fourth axiom also holds for w.

Lemma 4.3. Let w : F → H ∪{∞} be a hypervaluation. Then w(1F ) = e and

w(x−1) = (w(x))−1.
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Proof. Let x ∈ F be such that w(x) = e. Then e = w(x · 1F ) ∈ w(x) ∗
w(1F ) = {w(1F )}, hence e = w(1F ). To prove the second assertion observe

that, since xx−1 = 1F , we have that w(xx−1) = w(1F ) = e. By axiom (V3)

we obtain that e = w(xx−1) ∈ w(x) ∗ w(x−1), then axiom (H3) implies that

w(x−1) = (w(x))−1. □

Definition 4.4. Let (R,+, ·, 0, 1) be a hyperring. An element x ∈ R is called

a unit of R if there exists y ∈ R such that x · y = 1.

Definition 4.5. Let F be a hyperfield and R ⊆ F a hyperring with respect to

the hyperaddition and multiplication of F . If for every x ∈ F either x ∈ R or

x−1 ∈ R, then R is called a valuation hyperring.

Definition 4.6 ([6], [2]). Let R be a hyperring.

(1) A nonempty subset I ⊆ R is a hyperideal if for all a, b ∈ I and for all

r ∈ R we have a + b ⊆ I, −a ∈ I and ar ∈ I.

(2) A hyperideal I ⊊ R is maximal if I satisfies the following property: if

J ⊆ R is a hyperideal of R such that I ⊊ J , then J = R.

In [13] one can find the first three statements of the following proposition.

For the sake of completeness we rewrite the proof and complete it with details

where needed. For our purposes, we also add a fourth statement.

Proposition 4.7. Let (F,+, ·, 0, 1) be a hyperfield, (H, ∗, e,≤) an ordered

canonical hypergroup and w : F → H ∪ {∞} a hypervaluation.

1) The set Ow = {x ∈ F | w(x) ≥ e} is a valuation hyperring.

2) The set Uw = {x ∈ F | w(x) = e} is a group under the multiplication

of the hyperfield F and consists of all units of Ow.

3) The set mw = {x ∈ F | w(x) > e} is the unique maximal hyperideal of

Ow.

4) The quotient G := (F \{0})/Uw is an ordered abelian group with respect

to the operation xUw · yUw = xyUw and the ordering xUw ≤ yUw ⇔
yx−1 ∈ Ow.

Proof. 1) If x, y ∈ Ow, then w(x), w(y) ≥ e, so by part 3) of Lemma 2.13 we

obtain that for all b ∈ w(x) ∗ w(y) we have b ≥ e. Since w(xy) ∈ w(x) ∗ w(y),

in particular w(xy) ≥ e, hence xy ∈ Ow. The inclusion x + y ⊆ Ow follows

from (V4) and from the fact that min{w(x), w(y)} ≥ e. Indeed by (V4),

z ∈ x + y =⇒ w(z) ≥ min{w(x), w(y)} ≥ e.

To see that Ow is a valuation hyperring, take x ∈ F \Ow. Then w(x) < e, which

implies that w(x−1) = (w(x))−1 > e by Lemma 4.3 and part 2) of Lemma 2.13.

Thus, x−1 ∈ Ow.
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2) If x ∈ Uw, then x−1 ∈ Uw too. Indeed, w(x−1) = (w(x))−1 = e. Hence

the elements of Uw are units of Ow. To show the other inclusion, assume that

x ∈ Ow \Uw. Then w(x) > e, so w(x−1) < e by part 2) of Lemma 2.13, which

means that x−1 /∈ Ow.

3) Let x, y ∈ mw. Then by (V4) we obtain that

z ∈ x + y =⇒ w(z) ≥ min{w(x), w(y)} > e.

Thus, x+y ⊆ mw. From w(−x) = w(x) it follows that −x ∈ mw. If x ∈ mw and

y ∈ Ow, then w(x) > e and w(y) ≥ e, so by part 4) of Lemma 2.13 we obtain

that for every b ∈ w(x)∗w(y) we have b > e. Since by (V3) w(xy) ∈ w(x)∗w(y),

we conclude that xy ∈ mw. We have proved that mw is a hyperideal. It follows

from part 2) and from the fact that if a hyperideal contains a unit, then is not

proper, that mw is the unique maximal hyperideal of Ow.

4) By part 2) Uw is a subgroup of the abelian group (F \ {0}, ·, 1). So G is

the quotient group with respect to this (normal) subgroup. The proof that ≤
is a linear order on G is exactly the same as in the classical case. □

Definition 4.8 ([6]). Let (H1, ∗1, e1) and (H2, ∗2, e2) be canonical hyper-

groups.

(1) A homomorphism of hypergroups is a function f : H1 → H2 such that

f(e1) = e2 and f(a ∗1 b) ⊆ f(a) ∗2 f(b).

(2) A strict homomorphism of hypergroups is a function f : H1 → H2 such

that f(e1) = e2 and f(a ∗1 b) = f(a) ∗2 f(b) as sets.

(3) An isomorphism of hypergroups is a strict homomorphism of hyper-

groups which is bijective.

In [13] it is claimed that two hypervaluations v : F → Hv ∪ {∞} and w :

F → Hw ∪{∞} induce the same valuation hyperring if and only if there exists

an order preserving isomorphism f between the value hypergroups Hv, Hw such

that w = f ◦ v. Although this statement is true in classical valuation theory,

this is no longer true for hypervaluations.

Example 4.9. Consider the hypervaluations v, w from Example 4.2. We ob-

serve that the valuation ring Ov of v coincides with the valuation (hyper)ring

of w. Indeed, if v(x) ≥ 0Γ, then w(x) ∈ {0, 1}, so w(x) ⪰ 0 which means that

Ov ⊆ Ow. On the other hand, if w(x) ⪰ 0, then, by definition, v(x) ≥ 0, so

x ∈ Ow implies x ∈ Ov. Note that there is no order preserving isomorphism

between the ordered abelian group Γ and the sign hypergroup. But in the

present case, as shown above, they define the same valuation (hyper)ring in K.

The next theorem states that any hypervaluation from a hyperfield onto an

ordered canonical hypergroup is the composition of a hypervaluation onto an
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ordered abelian group (which induces the same valuation hyperring) and an

order preserving homomorphism of hypergroups.

Theorem 4.10. Let F be a hyperfield, (H, ∗, e,≤) an ordered canonical hy-

pergroup and w : F → H ∪ {∞} a hypervaluation. Then there exists a hy-

pervaluation v : F → G ∪ {∞}, where G is an ordered abelian group, and an

order preserving homomorphism h : G → H of hypergroups from G to H s.t.

w = h ◦ v and Ov = Ow.

Proof. By part 4) of Proposition 4.7 we can consider the ordered abelian group

G = (F \ {0})/Uw. Let h : G → H be the map

h(xUw) = w(x).

We first show that h is well defined. Suppose that xUw = yUw. This is

equivalent to xy−1 ∈ Uw, which holds if and only if w(xy−1) = e. From (V3)

and Lemma 4.3 we obtain that e ∈ w(x) ∗ w(y−1) = w(x) ∗ (w(y))−1 and this

means that w(x) = w(y) by the uniqueness required in axiom (H3). This proves

that h is well defined. To show that h is a homomorphism of hypergroups, note

that h(1Uw) = w(1) = e by Lemma 4.3. Take xUw, yUw ∈ G. According to

Remark 2.5 we obtain that

h(xUw · yUw) = {h(xyUw)} = {w(xy)} ⊆ w(x) ∗ w(y) = h(xUw) ∗ h(yUw),

which proves that h is a homomorphism of hypergroups. Moreover, assume

that xUw ≤ yUw, which by definition is equivalent to e ≤ w(yx−1). From

the latter it follows by condition (2.1) of Definition 2.10 that {w(x)} = e ∗
w(x) ↗ w(yx−1) ∗ w(x). Hence by part 1) of Lemma 2.13, w(x) ≤ b for every

b ∈ w(yx−1) ∗ w(x). As w(y) = w(yx−1x) ∈ w(yx−1) ∗ w(x), we obtain that

w(x) ≤ w(y). This proves that h is order preserving.

We now define v : F → G ∪ {∞} as follows:

v(x) =

{
xUw, if x ̸= 0

∞, if x = 0.

The map v is a hypervaluation onto the ordered abelian group G (again, modulo

the provision of Remark 2.5). The only axiom which needs justification is the

fourth: if z ∈ x + y for some x, y ∈ F , then we wish to show that v(z) ≥
min{v(x), v(y)}. Assume, without loss of generality, that v(x) ≤ v(y), so that

yx−1 ∈ Ow. From z ∈ x + y it follows that

yx−1 ∈ (x− z)x−1 = 1 − zx−1.

This means that zx−1 ∈ yx−1 − 1 ⊆ Ow, which proves that v(z) ≥ v(x).

Finally, one can see that w = h ◦ v. Indeed, if x ∈ F , then if x ̸= 0, we have

that h(v(x)) = h(xUw) = w(x) by definition. If x = 0, the situation is clear

once we set h(∞) := ∞. It is left to show that Ov = Ow. We observe that
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x ∈ Ow if and only if 1Uw ≤ xUw, which happens if and only if x ∈ Ov. This

completes the proof. □

Acknowledgments

The authors would like to thank prof. F.-V. Kuhlmann and K. Kuhlmann

for their careful reading and their many extremely useful remarks which helped

to improve this paper significantly.

References

1. P. Corsini, V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Advances in

Mathematics, 5, Kluwer Academic Publishers, Dordrecht, 2003.

2. B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Aca-

demic Press, Palm Harbor, USA, 2007.

3. S. Omidi, B. Davvaz, Ordered Krasner Hyperrings, Iranian Journal of Mathematical

Sciences and Informatics, 12(2), (2017), 35-49.

4. B. Davvaz, A. Salasi, A Realization of Hyperrings, Communications in Algebra, 34(12),

(2006), 4389-4400.

5. J. Flenner, Relative Decidability and Definability in Henselian Valued Fields, Journal of

Symbolic Logic, 76(4), (2011), 1240-1260.

6. J. Jun, Algebraic Geometry Over Hyperrings, Advances in Mathematics, 323, (2018),

142-192.

7. M. Krasner, Approximation Des Corps Valués Complets de Caractéristique p ̸= 0 Par
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