Iranian Journal of Mathematical Sciences and Informatics Vol. 20, No. 2 (2025), pp 123-128

DOI: 10.61186/ijmsi.20.2.123

Zero Divisors of Support Size 3 in Complex Group Algebras of Finite Groups

Alireza Abdollahi a,b* , Mahdi Ebrahimi b

^aDepartment of Pure Mathematics, Faculty of Mathematics and Statistics,
 University of Isfahan, Isfahan 81746-73441, Iran
 ^bInstitute for Research in Fundamental Sciences, School of Mathematics,
 Tehran, Iran

E-mail: a.abdollahi@math.ui.ac.ir
E-mail: m.ebrahimi.math@ipm.ir

ABSTRACT. It is proved that if 1+x+y or 1+x-y cannot occur as a zero divisor of the complex group algebra of a finite group G for any two distinct $x,y\in G\setminus\{1\}$, then G is solvable. We also characterize all finite abelian groups with the latter property. The motivation of studying such property for finite groups is to settle the existence of zero divisors with support size 3 in the integral group algebra of torsion free residually finite groups.

Keywords: Zero divisors, Complex group algebras, Finite groups.

2000 Mathematics subject classification: 20C07, 16S34.

1. Introduction

Let $\mathbb{C}[G]$ be the complex group algebra of a finite group G. In this paper we study finite groups G for which $\mathbb{C}[G]$ does not contain zero divisors of the form 1+x+y or 1+x-y for some distinct non-trivial elements $x,y\in G$. The motivation of studying such finite groups G is the following. There is a

Received 03 January 2021; Accepted 27 February 2022 © 2025 Academic Center for Education, Culture and Research TMU

^{*}Corresponding Author

famous conjecture due to Kaplansky [7] saying that group algebras of torsion-free groups have no zero divisor. It is known that there is no zero divisor of support size 2 in the latter group algebras (see [8, Theorem 2.1]). The conjecture is still open and one of the important open cases is the validity of the conjecture for the integral group algebras (see e.g., Problem 1.3 of [9]). By [2, Theorem 1.1], every possible zero divisor of support size 3 in an integral group algebra of a torsion-free group Γ is a scaler multiple of elements of the form 1+x+y or 1+x-y for some distinct and non-trivial elements $x,y\in\Gamma$. On the other hand, the conjecture is even open for the group algebras of torsion-free residually finite groups (see e.g. [1] and [6, Question 7.2.6 and (C.29) of p. 60]). Note that the image of a zero divisor $\mathbb{C}[\Gamma]$ is still a zero divisor with the same support size in $\mathbb{C}[G]$ for arbitrary "sufficiently large" finite quotients G of a torsion-free residually finite group Γ .

Our main results are as follows.

Theorem 1.1. Let G be a finite non-solvable group. Then

- (a) $\mathbb{C}[G]$ has a zero divisor of the form 1+a+b, for some non-trivial distinct elements $a, b \in G$.
- (b) $\mathbb{C}[G]$ has a zero divisor of the form 1+x-y for some non-trivial distinct elements $x, y \in G$.

Theorem 1.2. Let G be a finite abelian group. Then

- (a) $\mathbb{C}[G]$ has a zero divisor of the form 1+a+b for some non-trivial distinct elements $a, b \in G$ if and only if $3 \mid |G|$.
- (b) $\mathbb{C}[G]$ has a zero divisor of the form 1+x-y for some non-trivial distinct elements $x, y \in G$ if and only if $6 \mid |G|$.

In Section 2 we prove some preliminary results. In Section 3 we prove Theorem 1.1 and in Section 4 we prove Theorem 1.2.

2. Preliminaries

Lemma 2.1. Let G be a finite group. An element $z \in \mathbb{C}[G]$ is a zero divisor if and only if there exists a $\mathbb{C}[G]$ -module V and a non-zero element $v \in V$ such that zv = 0.

Proof. Suppose that $z \in \mathbb{C}[G]$ is a zero divisor so that zw = 0 for some non-zero $w \in \mathbb{C}[G]$. Then as $\mathbb{C}[G]$ is a $\mathbb{C}[G]$ -module, we have done.

Now suppose that there exists a $\mathbb{C}[G]$ -module V and a non-zero element $v \in V$ such that zv = 0. Since V is completely reducible, V is a direct sum of some irreducible $\mathbb{C}[G]$ -modules. It follows that there exists an irreducible $\mathbb{C}[G]$ -module W and a non-zero element $w \in W$ such that zw = 0. Since G is finite, there exists an irreducible $\mathbb{C}[G]$ -submodule M of $\mathbb{C}[G]$ such that W is

isomorphic to M as $\mathbb{C}[G]$ -modules. It follows that zm=0 for some non-zero $m\in M$. This completes the proof.

Lemma 2.2. Let G be a finite group, H a subgroup of G and $z \in \mathbb{C}[H]$. Then z is a zero divisor of $\mathbb{C}[G]$ if and only if z is a zero divisor of $\mathbb{C}[H]$.

Proof. Let z be a zero divisor of $\mathbb{C}[G]$ so that zw=0 for some non-zero $w\in\mathbb{C}[G]$. Suppose that $w'=\sum_{x\in G}w'_xx\in\mathbb{C}[G]$ is an element with minimum support size with respect to the properties: zw'=0 and $1\in supp(w'):=\{x\in G\mid w'_x\neq 0\}$. It follows from [3, Lemma 2.5] that $supp(w')\subseteq\langle supp(z)\rangle\leq H$. Hence $w'\in\mathbb{C}[H]$ and so z is a zero divisor of $\mathbb{C}[H]$.

Lemma 2.3. Let G be a finite group, N a normal subgroup of G and $z \in \mathbb{C}[G]$. Suppose that $\bar{z} \in \mathbb{C}[G] \to \mathbb{C}[\frac{G}{N}]$ is the induced ring homomorphism by the natural group homomorphism from G to $\frac{G}{N}$ sending x to xN. If $\bar{z} \in \mathbb{C}[\frac{G}{N}]$ is a zero divisor, then z is a zero divisor of $\mathbb{C}[G]$.

Proof. Note that $\mathbb{C}[\frac{G}{N}]$ is a $\mathbb{C}[G]$ -module with the action $\alpha \cdot v = \bar{\alpha}v$ for all $\alpha \in \mathbb{C}[G]$ and $v \in \mathbb{C}[\frac{G}{N}]$. Now Lemma 2.1 completes the proof.

Theorem 2.4. Let $p \ge 3$ be a prime and $G := \langle a, b \mid a^p = b^{p-1} = 1, b^{-1}ab = a^k \rangle$, where k is a primitive root of p. Then $1 + a \pm b$ is a zero divisor of G.

Proof. Let $H := \langle a \rangle = G'$ and $\alpha = e^{\frac{2\pi i}{p}}$. Now $\mathbb{C}[G]$ acts on $\mathbb{C}[\frac{G}{H}]$ as follows $a \star b^m H = o^{k^m} b^m H$, $b \star b^m H = b^{m+1} H$.

where $0 \leq m \leq p-2$ is an integer. It is easy to see tath $(\mathbb{C}[\frac{G}{H}], \star)$ is a $\mathbb{C}[G]$ -module. Now it follows from Lemma 2.1 that $1+a\pm b$ is a zero divisor of $\mathbb{C}[G]$ if and only if there exist $c_0, c_1, \ldots, c_{p-2} \in \mathbb{C}$ not all of them zero such that $(1+a\pm b)\star(\sum_{m=0}^{p-2}c_mb^mH)=0$. The latter is equivalent to $(1+\alpha)(1+\alpha^k)(1+\alpha^{k^2})\cdots(1+\alpha^{k^{p-2}})=1$. Since k is a primitive root of p, $\{1,\alpha,\alpha^k,\ldots,\alpha^{k^{p-2}}\}$ is the set of all roots of $x^p-1=0$. Hence $\{1+1,1+\alpha,1+\alpha^k,\ldots,1+\alpha^{k^{p-2}}\}$ is the set of roots of $(x-1)^p-1=0$. Thus $(1+1)(1+\alpha)\cdots(1+\alpha^{k^{p-2}})$ is the product of all roots of $(x-1)^p-1=0$. Therefore $(1+1)(1+\alpha)\cdots(1+\alpha^{k^{p-2}})=2$. This completes the proof.

Lemma 2.5. The complex group algebra of the alternating group A_4 of degree 4 has a zero divisor of the form 1+a-b for some non-trivial distinct elements $a, b \in A_4$.

Proof. Let $G := A_4$, H := G', a := (3, 2, 1) and b := (4, 2, 1). Then $G := \langle a, b \rangle$ and $\mathbb{C}[G]$ acts on $\mathbb{C}[\frac{G}{H}]$ as follows

$$a\star H:=aH, a\star aH:=-bH, a\star bH:=-H,$$

$$b\star H:=bH, b\star aH:=-H, b\star bH:=-aH.$$

It is easy to see that $(\mathbb{C}[\frac{G}{H}], \star)$ is a $\mathbb{C}[G]$ -module. Since $(1+a-b)\star(H-aH)=0$, Lemma 2.1 completes the proof.

3. Solvablility of finite groups whose complex group algebras not containing zero divisors of the form 1+x+y or 1+x-y

Proof of Theorem 1.1 (a). Since G is non-solvable, there exist normal subgroups M and N of G such that $M/N \cong S \times \cdots \times S$, where $k \geq 1$ is an integer and S is a non-abelian finite simple group. From Lemmas 2.2 and 2.3, it is enough to show that S has a zero divisor of the form 1+a+b. If $3 \mid |S|$, we have done. Thus we assume that $3 \nmid |S|$. Hence by [5, Remarks 3.7, p. 188] $S \cong \operatorname{Sz}(q)$ is the Suzuki simple group, where $q = 2^{2m+1}$ for some $m \in \mathbb{N}$. Since $\operatorname{Sz}(2)$ is the Frobenious group of order 20 and $\operatorname{Sz}(q)$ has $\operatorname{Sz}(2)$ as a subgroup, Theorem 2.4 and Lemma 2.2 imply that S has a zero divisor of the form 1+a+b. This completes the proof.

Proof of Theorem 1.1 (b). Similar to Theorem 1.1, it is enough to show that a simple non-abelian group S has a zero divisor of the form 1 + a - b. If there exists a section H of S such that $H \cong S_3$, then by Theorem 2.4 and Lemmas 2.2 and 2.3, we have done. Hence we may assume that S is non-abelian finite simple S_3 -free group. It follows from [4, Corollary 3] one of the following cases occurs:

Case 1. S is a simple Suzuki group. Then similar to Theorem 1.1, there exists a subgroup K of S which is a Frobenious group of order 20, and so Theorem 2.4 completes the proof.

Case 2. $S \cong \mathrm{PSL}_2(3^{2m+1})$ the projective special linear group of dimension 2 over field with 3^{2m+1} for some $m \in \mathbb{N}$. Since $A_4 \cong \mathrm{PSL}_2(3)$, S contains a subgroup isomorphic to A_4 and so Lemma 2.5 completes the proof.

4. Finite abelian groups whose complex group algebras containing zero divisors of the form 1 + x + y or 1 + x - y

Lemma 4.1. Let G be a finite group, $z \in \mathbb{C}[G]$, λ a linear complex character of G and $e_{\lambda} = \frac{1}{|G|} \sum_{g \in G} \lambda(g^{-1})g$ be the idempotent element of $\mathbb{C}[G]$ defined by λ . Then $ze_{\lambda} = 0$ if and only if $\lambda(z) = 0$.

Proof. Now let h be an arbitrary element of G. Then

$$he_{\lambda} = h\left(\frac{1}{|G|} \sum_{g \in G} \lambda(g^{-1})g\right) =$$

$$\frac{1}{|G|} \sum_{g \in G} \lambda(g^{-1})hg = \frac{\lambda(h)}{|G|} \sum_{g \in G} \lambda(h^{-1}g^{-1})hg =$$

$$\frac{\lambda(h)}{|G|} \sum_{g \in G} \lambda((hg)^{-1})hg = \lambda(h)e_{\lambda}.$$

It follows that $ze_{\lambda} = 0$ if and only if $\lambda(z) = 0$.

Proof of Theorem 1.2 (a). Suppose that $3 \mid |G|$. Then there exists $a \in G$ of order 3. Hence $(1+a+a^2)(1-a)=0$. Thus $1+a+a^2$ is a zero divisor of G. Now suppose that $a, b \in G \setminus \{1\}$, $a \neq b$ and 1+a+b is a zero divisor of G. Thus using Lemma 2.1, there exist an irreducible $\mathbb{C}[G]$ -module V and $0 \neq v \in V$ suth that (1+a+b)v=0. Therefore for some $\lambda \in \operatorname{Irr}(G)=\operatorname{Lin}(G), \ V=V_{\lambda}=0$ $e_{\lambda}\mathbb{C}[G]$ where V_{λ} is an irreducible $\mathbb{C}[G]$ -module and $\dim_{\mathbb{C}} V_{\lambda} = \lambda(1) = 1$. Hence $V_{\lambda} = \mathbb{C}e_{\lambda}$. Thus by Lemma 4.1, $1 + \lambda(a) + \lambda(b) = 0$. Now assume that o(a) = mand o(b) = n. Thus for some $s \in \{1, \dots, m-1\}$ and some $t \in \{1, \dots, n-1\}$, $1 + e^{\frac{2\pi s \mathbf{i}}{m}} + e^{\frac{2\pi t \mathbf{i}}{n}} = 0, \text{ where } \mathbf{i}^2 = -1. \text{ Hence } \begin{cases} \sin \frac{2\pi s}{m} = -\sin \frac{2\pi t}{n} \\ \cos \frac{2\pi s}{m} + \cos \frac{2\pi t}{n} = -1 \end{cases}. \text{ It}$

follows that $\frac{s}{m} - \frac{t}{n} \in \{2k \pm \frac{1}{3}, 2k \pm \frac{2}{3} \mid k \in \mathbb{Z}\}$. Thus $3 \mid mn$ and so $3 \mid |G|$. \square

Proof of Theorem 1.2 (b). We first assume that $6 \mid |G|$. Since G is abelian, there exists $a \in G$ of order 6. Thus $(1-a+a^2)(1+a)(1-a^3)=0$. Hence $1-a+a^2$ is a zero divisor of $\mathbb{C}[G]$.

Now suppose that there exist $a, b \in G \setminus \{1\}, a \neq b \text{ and } 1 + a - b \text{ is a zero divisor}$ of $\mathbb{C}[G]$. Thus using Lemma 2.1, there exist an irreducible $\mathbb{C}[G]$ -module V and $0 \neq v \in V$ suth that (1+a-b)v = 0. Therefore for some $\lambda \in Irr(G) = Lin(G)$, $V = V_{\lambda} = e_{\lambda} \mathbb{C}[G]$ where V_{λ} is an irreducible $\mathbb{C}[G]$ -module and $\dim_{\mathbb{C}} V_{\lambda} = V_{\lambda}$ $\lambda(1) = 1$. Hence $V_{\lambda} = \mathbb{C}e_{\lambda}$. Thus by Lemma 4.1, $1 + \lambda(a) - \lambda(b) = 0$. Now let o(a) = m and o(b) = n. Thus there exists $s \in \{1, \ldots, m-1\}$ and $t \in \{1,\ldots,n-1\}$ such that $1+e^{\frac{2\pi s\mathbf{i}}{m}}-e^{\frac{2\pi t\mathbf{i}}{n}}=0$, where $\mathbf{i}^2=-1$. Therefore $\begin{cases} \sin\frac{2\pi s}{m} = \sin\frac{2\pi t}{n} \\ \cos\frac{2\pi s}{m} - \cos\frac{2\pi t}{n} = -1 \end{cases}$ It follows that $\frac{s}{m} + \frac{t}{n} \in \{2k \pm \frac{1}{6}, 2k + 1 \pm \frac{1}{6} \mid k \in \mathbb{Z}\}$. Therefore $6 \mid mn$ and so

6 | |G|.

ACKNOWLEDGMENTS

This research was supported in part by a grant from School of Mathematics, Institute for Research in Fundamental Sciences (IPM).

References

- 1. A. Abdollahi, Does Kaplansky's Zero Divisor Conjecture Hold Valid for (Torsion-free) Residually Finite Groups? Mathoverflow.
- 2. A. Abdollahi, Z. Taheri, Zero Divisors of Support Size 3 in Group Algebras and Trinomials Divided by Irreducible Polynomials Over GF(2), Rendiconti del Seminario Matematico della Università di Padova, 145, (2021), 191-203.
- 3. A. Abdollahi, Z. Taheri, Zero Divisors and Units with Small Supports in Group Algebras of Torsion-free Groups, Comm. Algebra, 46(2), (2018), 887-925.
- 4. M. Aschbacher, S₃-Free 2-fusion Systems, Proc. Edinburgh Math. Soc., 56, (2013), 27-48.
- 5. B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982.
- 6. M. Aschenbrenner, S. Friedl, H. Wilton, 3-Manifold Groups, EMS Series of Lectures in Mathematics, 2015.

[Downloaded from ijmsi.com on 2025-11-29]

- I. Kaplansky, Problems in the Theory of Rings (Revisited), Amer. Math. Monthly, 77, (1970), 445-454.
 P. Schweitzer, On Zero Divisors with Small Support in Group Rings of Torsion-free Groups, J. Group Theory, 16(5), (2013), 667-693.
 Unsalved Problems in Group Theory, The Kourovka Notebook, Edited by E. I. Khukhro.
- 9. Unsolved Problems in Group Theory. The Kourovka Notebook, Edited by E. I. Khukhro, V. D. Mazurov, No. 19, Russian Academy of Sciences, Siberian Branch, 2018.