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Abstract. Multivariate regression is an approach for modeling the lin-
ear relationship between several variables. This paper proposed a ridge
methodology with a kernel-based weighted absolute error target with ex-
act predictors and fuzzy responses. Some standard goodness-of-fit criteria
were also used to examine the performance of the proposed method. The
effectiveness of the proposed method was then illustrated through two
numerical examples including a simulation study. The effectiveness and
advantages of the proposed fuzzy multiple linear regression model were
also examined and compared with some well-established methods through
some common goodness-of-fit criteria. The numerical results indicated
that our prediction/estimation gives more accurate results in cases where
multicollinearity and/or outliers occur in the data set.
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1. Introduction

Multivariate regression analysis is a powerful technique for predicting the
response variable from two or more predictors. However, at the presence of
outliers and/or multicollinearity in the data set, the conventional multiple
linear regression methods may result in poor prediction and wrong signs in
estimators [12]. Fuzzy regression analysis has been introduced by [24] and
successfully employed for numerous real applications of regression analysis in
case where the observed data are fuzzy values instead of exact ones. Many
studies have been conducted on fuzzy multiple regression models. The obser-
vations of the predictors of such methods are either fuzzy (for instance, see
[1, 3, 4, 5, 7, 9, 10, 15, 20]) or real numbers (for instance, see [11, 14, 17, 19]).
In addition, at the presence of outliers, robust fuzzy linear regression analy-
sis techniques have drawn attention and a significant progress has been made
over the past decades [8, 16, 22]. Moreover, [2] proposed a semi-parametric
partial linear regression model with fuzzy predictors and fuzzy response at the
presence outliers and multicollinearity in the predictors.

Inspired by [2], this study is an attempt to improve the conventional fuzzy
multiple regression models in case where both outliers and multicollinearity
occur in data set in cases where the observed data set includes exact predictors
and fuzzy responses. Then the performance of the proposed method was com-
pared with some common fuzzy multiple regression models in terms of several
goodness-of-fit criteria via a simulated study and an applied example.

The rest of this paper is organized as follows: section 2 reviews some con-
cepts including fuzzy numbers and a distance measure. In Section 3, a fuzzy
multiple regression model is estimated using a ridge-based method adopted
with a weighted absolute error target function with exact predictors and fuzzy
responses. Section 4 illustrates two numerical examples including a simulation
study and an applied example to evaluate the effectiveness and performance
of the proposed method relative to other fuzzy multiple regression methods in
terms of some common performance measures. The main contributions of this
paper are summarized in Section 5.

2. Fuzzy numbers

This section reviews some basic definitions of fuzzy numbers based on [9]
which will be used in next sections. A fuzzy set Ã of R (the real line) is defined
by its membership function µÃ : R → [0, 1]. In addition, a fuzzy set Ã of R
is called a fuzzy number if it is normal, i.e. there is a unique x∗

Ã
∈ R so that

µÃ(x
∗
Ã
) = 1, and for every α ∈ [0, 1], the set Ã[α] = {x ∈ R : µÃ(x) ≥ α}

is a nonempty compact interval in R. A fuzzy number Ã is called a LR-fuzzy
number if there are real numbers a, la ≥ 0, ra ≥ 0 and strictly decreasing and
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continuous functions L,R : [0, 1] → [0, 1] such that:

µÃ(x) =


L(a−x

la
) a− la ≤ x ≤ a,

R(x−a
ra

) a < x ≤ a+ ra,

0 x ∈ R− [a− la, a+ ra].

In this case Ã is simply denoted by (a; la, ra)LR. The most commonly used
LR-fuzzy numbers are triangular fuzzy numbers (TFNs) which are employed
for handling the impression included in data set. The membership function of
a triangular fuzzy number, denoted by Ã = (a; la, ra)T , is given by:

µÃ(x) =


x−(a−la)

la
a− la ≤ x ≤ a,

a+ra−x
ra

a ≤ x ≤ a+ ra,

0 x ∈ R− [a− la, a+ ra].

Some common operations between the two triangular fuzzy numbers
Ã = (a; la, ra)T and B̃ = (b; lb, rb)T are defined as follows [18]:

1) (Addition) Ã⊕ B̃ = (a+ b; la + lb, ra + rb)T .
2) (scalar multiplication):

λ⊗ Ã =

{
(λa;λla, λra)T , if λ > 0,

(λa;−λra,−λla)T , if λ < 0.
(2.1)

In addition, a square error distance between the two FNs of Ã and B̃ was
employed in this paper; defined as:

Dp(Ã, B̃) = (

∫ 1

0

2α(
|ÃL

α − B̃L
α |1/p + |ÃU

α − B̃U
α |1/p

2
)pdα)1/p. (2.2)

Any FNs of Ã, B̃ and C̃ satisfy the following conditions:
• Dp(Ã, B̃) = 0 if and only if Ã = B̃,
• Dp(Ã, B̃) = Dp(B̃, Ã),
• Dp(Ã, C̃) ≤

(
Dp(Ã, B̃) +Dp(B̃, C̃)

)
.

3. Fuzzy multiple regression model

Consider the following fuzzy multiple linear regression model based on n

statistical units of (ỹi,xi = (x1i, x2i, . . . , xki)
T ):

ỹi = ⊕k
j=1(β̃j ⊗ xij)⊕ ϵ̃i, i = 1, 2, . . . , n, (3.1)

where
(1) ỹi = (yi; lyi

, ryi
)T denote fuzzy responses,

(2) xij are predictors,
(3) β̃j = (βj ; lβj

, rβj
)T present unknown fuzzy coefficients,

(4) ϵ̃i indicate fuzzy error terms.
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To estimate the coefficients of model (3.1), an extended ridge estimator of
β̃1, ..., β̃k was considered based on a weighted-variant of least absolute estima-
tion:

(β̂,Lβ̂,Rβ̂) = min
β∈Rk,Lβ∈(0,∞)k,Rβ∈(0,∞)k

1
n

∑n
i=1 wh(xi)D1(ỹi,⊕k

j=1(β̃j ⊗ xij))

s.t. max{β⊤β,L⊤
βLβ,R

⊤
βRβ} ≤ λ2,

(3.2)

(1) D1 is the absolute error distance between the two fuzzy numbers Ã and
B̃.

(2) wh(xi) =
∑n

j=1 K(
||xj−xi||

h )∑n
i=1

∑n
j=1 K(

||xj−xi||
h )

.

(3) K(.) is a kernel satisfying Mercer’s conditions [26] and h > 0 controls
the degree of smoothing called the bandwidth of K relevant to xi.

(4) β = (β1, . . . , βk)
T , Lβ = (lβ1 , . . . , lβk

)T and Rβ = (rβ1 , . . . , rβk
)T .

Remark 3.1. A common criterion to detect the multicollinearity in a conven-
tional multiple regression is variance inflation factor (VIF) [21]. The VIF [13] of
each variable can be computed using V IFj =

1
1−R2

j
where R2

j is the coefficient
of determination by regressing the jth predictor on the remaining predictors.
As a rule of thumb, a VIF value that exceeds 5 indicates a problematic amount
of collinearity which is equivalent to R2

j > 0.80. Moreover, an extended Cook’s
distance criterion was employed to detect the outliers [2] in this paper. For this
purpose, the potential outliers were selected using a D-chart with lower and
upper control limits of LCL = D − 3SD√

n
and UCL = D + 3SD√

n
.

Remark 3.2. To examine the performance of the proposed fuzzy robust varying
coefficient regression model, following commonly used performance measures
were employed to estimate the predicting accuracy and compare different mod-
els [9]:

(1) Root mean square error :

RMSE =

√∑n
i=1 D

2
2(ỹi,

˜̂yi)
n

. (3.3)

(2) Mean absolute relative error:

MARE =
1

n

n∑
i=1

∫ 1

0
|ỹi(x)− ˜̂yi(x)|dx∫ 1

0
ỹi(x)dx

. (3.4)

(3) Similarity measure:

MSM =
1

n

n∑
j=1

SUI(˜̂yj , ỹj), (3.5)
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where

SUI(˜̂yj , ỹj) = Card(˜̂yj ∩ ỹj)

Card(˜̃yj ∪ ŷj)
,

in which ∩, ∪ denote the intersection and union operators on the space
of fuzzy numbers, respectively; and Card(Ã) denotes the cardinal num-
ber of Ã.

(4) Coefficient of determination (COD):

COD =

∑n
i=1 D

2
2(ỹi,

˜̂yi)∑n
i=1 D

2
2(ỹi,

˜̂y) . (3.6)

It should be noted that 0 ≤ COD ≤ 1. A COD value of 0 indicates
that the regression model dose not fit the set of data points while the
value of 1 indicates that the regression model perfectly fits the set of
data points.

(5) Cross validation [25]:

CV =
1

n

n∑
j=1

D2
2

(
ỹj , ˜̂y(j)), (3.7)

where ˜̂y(j), j = 1, 2, . . . , n denotes the estimated value of fuzzy response
related to the smoothing parameter h based on the data (ỹi,x

T
i ) in

which i ̸= j.

3.1. Algorithm for estimating model’s components. Assume that both
outliers and multicollinearity occur in data set. To estimate the unknown com-
ponents of model (3.1), the vector of fuzzy parameters of β̃ = (β̃1, β̃2, . . . , β̃k)

T

and bandwidth h > 0 should be simultaneously estimated based on fuzzy ob-
servations (ỹ1,x

⊤
1 ), ..., (ỹn,x⊤

n ) and a specified kernel function K. Note that
gaussian and triweight kernels were utilized in this paper as two popular ones.
Since all the above target functions are connected to each other, a hybrid
optimization algorithm is required for their estimation. However, since the
smoothing parameter h often strongly influences the degree of β̃ estimation,
one of the main objectives of kernel curve fitting approach is to choose the
optimal value for the smoothing parameter h. For this purpose, a common
criterion called “generalized cross validation” (GCV) [25] was employed. The
optimal vector of bandwidth h can be then evaluated as:

hopt = argmin
h

∑n
i=1 d(ỹi,

˜̂yi)
n(1− tr(Wp))2

, (3.8)

where

Wp =

w11 . . . w1n

... . . . ...
wn1 . . . wnn

 ; wij =

K

(
ti − tj

h

)
∑n

j=1 K

(
ti − tj

h

) ,
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and tr(A) denotes the trace of an n× n square matrix A. Now , the following
algorithm can be suggested in this paper to find the fuzzy coefficient β̃, optimal
values for bandwidth h and tuning parameter λ:
Step 1: Let λ(0) be the optimal value of tuning parameter λ using the training
Cross-validation method based on the ordinary multiple regression model yi =
⊕k

j=1(βj ⊗ xij) + ϵi, i = 1, 2, . . . , n.
Step 2 Let h(0) = n−0.2 be an initial value for the bandwidth.

Step 3: According to initial values of h(0) and λ(0), the optimal value ˜̂
β
(0)

can
be evaluated by Eq. (3.2).

Step 4: Using the initial values of λ(0) and optimal value of ˜̂
β
(0)

, the optimal
value of h(1) can be selected by minimizing GV C criterion given in Eq. (3.8).

Step 5: Using the optimal values of ĥ(1) and initial value of ˜̂
β
(0)

, the optimal
value λ̂(1) can be selected by maximizing MSM criterion.

Step 6: Using the optimal value of ĥ(1) and λ̂(1), the optimal value of ˜̂
β
(1)

can
be evaluated by Eq. (3.2).
Step 7: For every ε > 0, if

d∗(
˜̂
β
(1)

,
˜̂
β
(0)

) < ε,

then ĥ(1), λ̂(1) and β̃
(1)

are the optimal solutions, otherwise, return to Step 4
and repeat the algorithm until

d∗(
˜̂
β
(i+1)

,
˜̂
β
(i)

) < ε,

where

d∗(
˜̂
β
(i+1)

,
˜̂
β
(i)

) = max{||β̂
(i+1)

− β̂
(i)
||, ||L

β̂
(i+1) −L

β̂
(i) ||, ||R

β̂
(i+1) −R

β̂
(i) ||}.

Therefore, ˜̂β(i+1)

, λ̂(i+1) and ĥ(i) are the optimal estimators.

4. Numerical examples

is examined via some numerical examples in data set possessing outliers and
multicollinearity. Moreover, the proposed regression model is also examined
with three well-established fuzzy multiple regression models introduced by [6],
[23] and [27]. They showed the superiority of their method over other fuzzy
multiple linear regression models. We compared our fuzzy regression model
with them to investigate the effectiveness of the proposed method under both
outliers and multicollinearity. For this purpose, the performance measures
given in Remark 3.2 were applied.
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Example 4.1. (A simulation study) Here, a set of m = 10 simulated data
set with size of n = 200 was generated according to the following fuzzy multiple
linear regression model:

ỹi = ⊕5
j=0(β̃j ⊗ xij)⊕ ϵ̃i, (4.1)

where β̃0 = (0; 0.5, 0.5)T , β̃1 = (1; 0.1, 0.2)T , β̃2 = (2; 0.2, 0.4)T , β̃3 = (3; 0.3, 0.6)T ,
β̃4 = (4; 0.4, 0.8)T and β̃5 = (5; 0.5, 1)T . For this purpose, in each simulation pro-
cess, a random sample (ỹi, (xi1, xi2, ..., xi5)

T ) with size of n = 500 is generated
by the following steps:
Step 1:

(1) Generate a random sample with size of n = 200 of exact predictors
(xi1, . . . , xi5) ∼ N5(0,Σ) in which [Σlk] = Cov(xil, xik) = 0.5|l−k|.

(2) Let z̃i = ⊕5
j=0(β̃j ⊗ xij).

Step 2:
(1) For a randomly selected I1 = {i11, i12, . . . , i115} ⊆ {1, 2, 3, . . . , 200}, let

ỹi = z̃i ⊕ (90;ui
1, u

i
2)T where i ∈ I1.

(2) For a randomly selected I2 = {i21, i22, . . . , i215} ⊆ {1, 2, 3, . . . , 200} − I1,
let ỹi = z̃i⊕(130;ui

1, u
i
2)T where i ∈ I2 and ui

1, ui
2 are observed random

variables from U(2, 4) and U(3, 5), respectively.

Performance measures MSM MARE RMSE CV COD

Proposed (Triweight kernel) 0.71 16.50 18.31 14.89 0.72
Proposed (Normal kernel) 0.69 16.80 18.96 15.83 0.70

Choi and Yoon 0.55 21.66 23.52 21.01 0.61
Zeng, Feng and Li 0.58 22.17 21.38 19.10 0.62

Kelkinnama and Taheri 0.45 26.37 25.47 27.28 0.56
Table 1. Mean performance measure values of 10 simulated
data set with size of n = 100 along with some common fuzzy
regression models in Example 4.1.

Step 3: Let ỹi = z̃i for i ∈ {1, 2, 3, . . . , 200} − (I1 ∪ I2).
Using the above simulation process, one could imagine 1- a set of potential out-
liers in each simulation data set and 2- multicollinearity between predictors. In
this regard, the mean values of performance measures along with some common
fuzzy multivariate regression models are summarized in Table 1 and 2. Com-
paring the various methods, in terms of the applied goodness-of-fit criteria it is
seen that 1- the proposed method gives more accurate results compared to the
other methods according to both Gaussian and triweight kernels, and 2) the
proposed method adopted with triweight kernel provides a better result than
gaussian kernel for this simulated data set. Specifically, consider such compari-
son based on the 5th simulated data and triweight kernel. For this purpose, the
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Method Coefficients MSM MARE RMSE CV COD

Proposed
˜̂
β0 = (3.554; 0, 8.896)T , ˜̂β1 = (0.829; 0, 2.623)T

(Triweight kernel) ˜̂
β2 = (0.720; 0.0003, 1.613)T , ˜̂β3 = (0.390; 0, 0)T 0.76 15.24 16.50 13.52 0.79

λ̂2 = 15 and ĥ = 5
˜̂
β4 = (0.406; 0, 0.0003)T , ˜̂β5 = (4.838; 0, 0)T

Proposed
˜̂
β0 = (3.468; 0, 4.233)T , ˜̂β1 = (0.755; 0, 0.855)T

(Normal kernel) ˜̂
β2 = (0.634; 0.024, 0.681)T , ˜̂β3 = (0.393; 0, 0.373)T 0.72 17.28 17.28 15.02 0.72

λ̂2 = 20 and ĥ = 4
˜̂
β4 = (0.436; 0.006, 0.423)T , ˜̂β5 = (6.653; 0, 0.566)T

Choi and Yoon

˜̂
β0 = (5.299; 0.010, 3.102)T , ˜̂β1 = (1.104; 0.0079, 0.839)T˜̂

β2 = (0.536; 0, 0.839)T , ˜̂β3 = (0.400; 0, 0.017)T 0.58 21.66 23.52 21.07 0.60˜̂
β4 = (1.207; 0.200, 0.008)T , ˜̂β5 = (2.627; 0, 0)T

Zeng, Feng and Li

˜̂
β0 = (4.034; 0.1, 0.830)T , ˜̂β1 = (1.036; 0, 0.829)T˜̂
β2 = (0.903; 0.058, 2.882)T , ˜̂β3 = (1.603; 0, 0.207)T 0.57 22.17 21.38 19.10 0.61˜̂

β4 = (1.202; 0, 0)T , ˜̂β5 = (4.902; 0.034, 0)T

Kelkinnama and Taheri

˜̂
β0 = (15.023; 0.935, 10.66)T , ˜̂β1 = (3.539; 1.842, 1.628)T˜̂

β2 = (1.723; 0, 0.623)T , ˜̂β3 = (−1.935; 0.005, 0)T 0.49 33.55 24.01 25.60 0.59˜̂
β4 = (1.0452; 1.526, 0.016)T , ˜̂β5 = (3.772; 0, 0)T

Table 2. Performance measures corresponding to 5th simu-
lated sample in Example 4.1.

variance inflation factors (VIF) of the predictors x1 − x5 are VIFx1
= 3.623,

VIFx2
= 7.164, VIFx3

= 7.264, VIFx4
= 6.526 and VIFx5

= 4.224. This
indicates a very strong multicollinearity between the predictors. In addition,
according to D-chart in Fig. 1, it can be seen that the data set contains some
potential outliers. Comparing the various methods, in terms of the goodness-
of-fit criteria MSM , MARE and RMSE, it is also observed that the proposed
method performs well compared to the other methods.

Figure 1. D-chart for detecting the outliers in Example 4.1.

Example 4.2. Suppose that the data set given in Table 3 denotes the house
prices in Japan [6]. We wish to estimate the fuzzy regression model for house
prices ỹ based on x1: materials, x2: the lot of first, x3: second floor, x4:
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Observation ỹ x1 x2 x3 x4 x5

1 (6060; 550)T 1 38.09 36.43 5 1
2 (7100; 50)T 1 6210 26.50 6 1
3 (8080; 400)T 1 63.70 44.71 7 1
4 (8260; 150)T 1 74.52 38.09 8 1
5 (8650; 750)T 1 75.38 41.40 7 2
6 (8520; 450)T 2 52.99 26.49 4 2
7 (9170; 700)T 2 62.93 26.49 5 2
8 (10310; 200)T 2 72.04 33.12 6 3
9 (10920; 600)T 2 76.12 43.06 6 2
10 (12030; 100)T 2 90.26 42.64 7 2
11 (13940; 350)T 3 85.70 31.33 7 3
12 (14200; 250)T 3 95.27 27.64 6 3
13 (16010; 300)T 3 105.98 27.64 6 3
14 (16320; 500)T 3 79.25 66.81 6 3
15 (16990; 650)T 3 120.5 32.25 6 3

Table 3. Data set in Example 4.1.

Figure 2. D-chart for detecting the outliers in Example 4.2.

number of general rooms and x5: Japanese style rooms. The house prices are
reported in symmetric TFNs. For this data set, D-chart was plotted in Fig.
2 to detect the outliers. As it is observed, the data set contains an outlier. In
addition, VIF values for predictors of x1−x5 were evaluated as VIFx1 = 8.111,
VIFx2

= 4.28, VIFx3
= 1.278, VIFx4

= 2.459 and VIFx5
= 6.109. It can be

concluded that there exists a very strong multicollinearity between x1 − x5.
Therefore, we face a situation in which data set involves both multicollinearity
and outliers. In this regard, the results of the proposed method (with triweight
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and gaussian kernels) along with some common fuzzy multivariate regression
models were summarized in Table 4. Comparing the various methods, it can
be seen that the proposed method based on both kernels gives more accurate
results compared to the other methods. In addition, triweight kernel leads to
a better performances than gaussian kernel.

Method Coefficients MSM MARE RMSE CV COD

Proposed
˜̂
β0 = (−497.565; 31.386, 136.417)T , ˜̂β1 = (2132.017; 45.957, 136.417)T

(Gaussian kernel) ˜̂
β2 = (94.628; 0.188, 0)T , ˜̂β3 = (76.656; 0.718, 0)T 0.76 6.74 5.10 4.20 0.85

λ̂2 = 350 and ĥ = 0.01
˜̂
β4 = (−436.907; 4.7860, 0)T , ˜̂β5 = (−34.816; 76.631, 200.419)T

Proposed
˜̂
β0 = (−497.565; 31.386, 136.417)T , ˜̂β1 = (2132.17; 45.975, 136.417)T

(Triweight kernel) ˜̂
β2 = (94.628; 0.1888, 0)T , ˜̂β3 = (76.656; 0.718, 0)T 0.85 5.03 4.23 3.47 0.90

λ̂2 = 450 and ĥ = 0.005
˜̂
β4 = (−436.907; 4.786, 0)T , ˜̂β5 = (−34.816; 76.631; 200.419)T

Choi and Yoon

˜̂
β0 = (−8.571; 0, 0)T , ˜̂β1 = (94.372; 0, 179.470)T˜̂
β2 = (130.104; 0, 179.470)T , ˜̂β3 = (44.877; 0, 0)T 0.65 8.89 7.35 6.63 0.65˜̂

β4 = (−127.101; 143.616, 0)T , ˜̂β5 = (76.970; 0, 133.380)T

Zeng, Feng and Li

˜̂
β0 = (−1828.256; 40.637, 0)T , ˜̂β1 = (2635.497; 14.626, 2752.240)T˜̂
β2 = (82.0876; 0.0229, 57.069)T , ˜̂β3 = (72.474; 1.750, 46.180)T 0.69 7.006 6.53 5.16 0.74˜̂

β4 = (−155.228; 0.143, 0)T , ˜̂β5 = (−158.613; 28.484, 0)T

Kelkinnama and Taheri

˜̂
β0 = (−26.446; 0, 0)T , ˜̂β1 = (427.191; 0, 549.855)T˜̂

β2 = (126.445; 0, 0)T , ˜̂β3 = (68.766; 0, 0)T 0.67 7.39 6.47 5.32 0.72˜̂
β4 = (−456.136; 68.395, 0)T , ˜̂β5 = (296.697; 0, 327.512)T

Table 4. Coefficients of model and performance measures
corresponding to some fuzzy regression techniques in Exam-
ple 4.2.

5. Conclusion

This study improved the conventional fuzzy multiple linear regression model
at the presence of outliers and/or multicollinearity in data set. For this pur-
pose, having a set of fuzzy responses and exact predictors, unknown fuzzy
coefficients were estimated based on an optimization algorithm via a weighted
absolute error distance measure adopted with a ridge estimation in the fuzzy
environment. The proposed regression model was also examined and com-
pared with several existing fuzzy multiple regression models in terms of some
common goodness-of-fit criteria used in the fuzzy environment. The numeri-
cal results clearly indicated higher efficiency of our fuzzy multiple regression
model compared to the other fuzzy multiple regression models in cases where
outliers and/or multicollinearity occur in data set. The proposed method was
examined for two popular kernels (Gaussian and triweight). However, the best
results were obtained when triweight kernel was used. Future researches should
be focused on extending the proposed model for other types of imprecision such
as intuitionistic fuzzy numbers.
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