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1. Introduction

Many optimization problems containing set functions arise in situations
dealing with optimal constrained selection of measurable subsets. Some ex-
tremum problems of this type have been encountered in statistics [11], fluid
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flow [5], electrical insulator design [8], regional design (districting, facility loca-
tion, warehouse layout, urban planning) [9], earthquake engineering [29], shape
optimization [14].

General theory for optimizing n-set functions was first developed by Morris
[19] who, for fractions of a single set, obtained results that are similar to the
standard mathematical programming problem. Corley [10] developed an opti-
mization theory for mathematical programming problems with n-set functions,
established optimality conditions, and obtained Lagrangian duality results.
Zalmai [30] considered several practical applications for a class of nonlinear
mathematical programming problems involving a single objective and differen-
tiable n-set functions, and established several sufficient optimality conditions
and duality results under generalized ρ-convexity conditions. Stancu-Minasian
and Preda [28] prepared a survey on optimality conditions and duality results
for optimization problems with n-set functions.

Many publications have appeared in the last three decades dealing with op-
timality conditions and duality results for convex and various nonconvex mul-
tiobjective programming problems involving n-set functions (see, for example,
[1, 3, 4, 6, 7, 12, 13, 15, 16, 17, 20, 21, 22, 24, 25, 27, 31], and others). Mishra
et al. [17] used the concept of vector-valued generalized type-I functions in
proving optimality conditions and Mond-Weir type duality results for a multi-
objective programming problem involving n-set functions. In [1], Ahmad and
Sharma established sufficient optimality conditions for a multiobjective subset
programming problem under generalized (F, α, ρ, d)-type-I functions. Jayswal
and Minasian [12] introduced various classes of generalized univex n-set func-
tions and, moreover, they proved sufficient optimality conditions and several
Mond-Weir duality theorems for the considered multiobjective subset program-
ming problem involving such nonconvex n-set functions. Preda et al. [25] stud-
ied optimality conditions and generalized Mond-Weir duality for multiobjective
programming involving n-set functions which satisfy appropriate generalized
univexity V -type-I conditions.

In the present paper, we consider a new class of differentiable multiobjec-
tive programming problems involving n-set functions with both inequality and
equality constraints. First, motivated by Avriel [2], we define a new class
of n-set functions, called V -r-convex n-set functions, and its generalizations,
that is, classes of V -r-pseudo-convex n-set functions and V -r-quasi-convex n-
set functions. Then, we prove several sufficient optimality conditions for the
considered differentiable multicriteria optimization problem under both V -r-
convexity and/or generalized V -r-convexity hypotheses. Further, we define the
vector-valued Lagrangian-type function for the considered vector optimization
problem with n-set functions and then we introduce the definition of its vector
saddle point. Moreover, under appropriate V -r-convexity and/or generalized
V -r-convexity hypotheses, we prove saddle point criteria for the considered
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nonconvex multiobjective programming problem with n-set functions. Fur-
thermore, we define its vector mixed dual subset problem and we prove various
mixed dual theorems also under appropriate (generalized ) V -r-convexity hy-
potheses.

2. Preliminaries and problem formulation

In this section, we give a few basic definitions and auxiliary results which
will be used frequently throughout the sequel.

The following convention for equalities and inequalities will be used through-
out the paper. For any x = (x1, x2, ..., xn)

T , y = (y1, y2, ..., yn)
T in Rn, we

define:
(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;
(ii) x < y if and only if xi < yi for all i = 1, 2, ..., n;
(iii) x ≦ y if and only if xi ≦ yi for all i = 1, 2, ..., n;
(iv) x ≤ y if and only if x ≦ y and x ̸= y.
Throughout the paper, we assume that (X,A, µ) is a finite atomless measure

space with L1 (X,A, µ) separable. We also assume that S is a subset of An =

A×A× ...×A, the n-fold product of the σ-algebra A of subsets of a given set
X. Let d be the pseudometric on An (see [19]) defined by

d (S, T ) = d ((S1, ..., Sn) , (T1, ..., Tn)) =

[
n∑

k=1

µ2 (Sk ⊖ Tk)

]1/2
,

where ⊖ denotes the symmetric difference for Si and Ti, i = 1, ..., n. Thus
(An, d) is a pseudometric space which will serve as the domain for the most of
the functions used in the present paper. For h ∈ L1 (X,A, µ) and V ∈ An with
the indicator (characteristic) function χV ∈ L∞ (X,A, µ) of V , the integral∫
V
hdµ is denoted by ⟨h, χV ⟩.
We now give the following definitions along the lines of Zalmai [30].

Definition 2.1. A set function F : A → R is differentiable at S∗ ∈ A if
there exists DF (S∗) ∈ L1 (X,A, µ), called the derivative of F at S∗, and
VF : A× A → R, such that

F (S) = F (S∗) + ⟨DF (S∗) , χS − χS∗⟩+ VF (S∗, S) , (2.1)

where VF (S∗, S) is o (d (S∗, S)), i.e. lim
d(S∗,S)→0

VF (S∗,S)
d(S∗,S) = 0, and d is a pseudo-

metric on A.

We now give the definition of the partial derivatives of n-set functions.

Definition 2.2. A function F : An → R is said to have a partial derivative at
S∗ = (S∗

1 , ..., S
∗
n) ∈ A with respect to its kth argument, 1 ≦ k ≦ n, if the set

function H (Sk) = F
(
S∗
1 , ..., S

∗
k−1Sk, S

∗
k+1, ..., S

∗
n

)
has derivative DH (S∗

k) at
S∗
k . In that case, we define kth partial derivative of F at S∗ to be DkF (S∗) =
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DH (S∗
k), 1 ≦ k ≦ n. If DkF (S

∗), 1 ≦ k ≦ n, all exist, then we put DF (S∗) =

(D1F (S
∗), ..., DnF (S

∗)).

Using the partial derivatives of the n-set function, we can define the deriv-
ative of the vector-valued n-set function.

Definition 2.3. Let F : An → Rp and S∗ ∈ An. Then F is said to be
differentiable at S∗ if the partial derivatives DkFi (S

∗), k = 1, ..., n, of Fi exist
for each i = 1, ..., p and satisfy

F (S) = F (S∗)+

(
n∑

k=1

〈
DkF1 (S

∗) , χSk
− χS∗

k

〉
, ...,

n∑
k=1

〈
DkFp (S

∗) , χSk
− χS∗

k

〉)
+VF (S∗, S) for all S ∈ An,

where VF (S∗, S) is o (d (S∗, S)) for all S ∈ An, i.e. lim
d(S∗,S)→0

VF (S∗,S)
d(S∗,S) = 0.

If F is differentiable at each S∗ ∈ An, we say that F is differentiable on An.
In this section, we introduce new classes of generalized convex differentiable

vector-valued n-set functions. Firstly, we give the definition of a differentiable
V -r-convex (strictly V -r-convex) n-set function.

Definition 2.4. Let F = (F1, ..., Fp) : An → Rp be a differentiable set function
and S∗ ∈ An be given. If there exist αi : An × An → R+\ {0}, i = 1, ..., p, and
a real number r such that, for any i = 1, ..., p, the inequalities

1
r e

rFi(S) ≧ 1
r e

rFi(S
∗)
[
1 + rαi (S, S

∗)
〈∑n

k=1DkFi (S
∗) , χSk

− χS∗
k

〉]
(>)r ̸= 0,

Fi(S)− Fi(S
∗) ≧ αi (S, S

∗)
〈∑n

k=1DkFi (S
∗) , χSk

− χS∗
k

〉
(>)r = 0

(2.2)

hold for each S ∈ An, (S ̸= S∗), then F is said to be a V -r-convex (strictly
V -r-convex) n-set function at S∗ on An. If inequalities (2.2) are satisfied at any
point S∗, then F is said to be a V -r-convex (strictly V -r-convex) function on
An. Each function Fi, i = 1, ..., p, satisfying (2.2) is said to be an αi-r-convex
n-set function at S∗ on An.

Definition 2.5. Let F : An → Rp be a differentiable set function and S∗ ∈ An.
If there exist αi : An × An → R+\ {0}, i = 1, ..., p, and a real number r such
that, for any i = 1, ..., p, the inequalities

1
r e

rFi(S) ≦ 1
r e

rFi(S
∗)
[
1 + rαi (S, S

∗)
〈∑n

k=1DkFi (S
∗) , χSk

− χS∗
k

〉]
(<)r ̸= 0,

Fi(S)− Fi(S
∗) ≦ αi (S, S

∗)
〈∑n

k=1DkFi (S
∗) , χSk

− χS∗
k

〉
(<)r = 0

(2.3)
hold for each S ∈ An, (S ̸= S∗), then F is said to be a V -r-concave (strictly V -
r-concave) n-set function at S∗ on An. If inequalities (2.3) are satisfied at any
point S∗, then F is said to be a V -r-concave (strictly V -r-concave) function on
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An. Each function Fi, i = 1, ..., p, satisfying (2.3) is said to be an αi-r-concave
n-set function at S∗ on An.

Now, we introduce the definitions of generalized V -r-convex functions.

Definition 2.6. Let F : An → Rp be a differentiable set function and S∗ ∈ An.
If there exist αi : An×An → R+\ {0} and a real number r such that the relation

1
r

∑p
i=1 αi (S, S

∗) erFi(S) < (≦) 1
r

∑p
i=1 αi (S, S

∗) erFi(S
∗) =⇒∑p

i=1

〈∑n
k=1DkFi (S

∗) , χSk
− χS∗

k

〉
< 0 for r ̸= 0,∑p

i=1 αi (S, S
∗)Fi(S) < (≦)

∑p
i=1 αi (S, S

∗)Fi(S
∗) =⇒∑p

i=1

〈∑n
k=1DkFi (S

∗) , χSk
− χS∗

k

〉
< 0 for r = 0

(2.4)

holds for each S ∈ An, (S ̸= S∗), then F is said to be a V -r-pseudo-convex
(strictly r-pseudo-convex) n-set function at S∗ on An. If the relation (2.4) is
satisfied at any point S∗, then F is said to be a V -r-pseudo-convex (strictly
V -r-pseudo-convex) function on An. Each function Fi, i = 1, ..., p, satisfying
(2.4) is said to be an αi-r-pseudo-convex n-set function at S∗ on An.

Definition 2.7. Let F : An → Rp be a differentiable set function and S∗ ∈ An.
If there exist αi : An×An → R+\ {0} and a real number r such that the relation

1
r

∑p
i=1 αi (S, S

∗) erFi(S) ≦ 1
r

∑p
i=1 αi (S, S

∗) erFi(S
∗) =⇒∑p

i=1

〈∑n
k=1DkFi (S

∗) , χSk
− χS∗

k

〉
≦ 0 for r ̸= 0,∑p

i=1 αi (S, S
∗)Fi(S) ≧

∑p
i=1 αi (S, S

∗)Fi(S
∗) =⇒∑p

i=1

〈∑n
k=1DkFi (S

∗) , χSk
− χS∗

k

〉
≦ 0 for r = 0

(2.5)

holds for each S ∈ An, then F is said to be a V -r-quasi-convex n-set function
at S∗ on An.
If the relation (2.5) is satisfied at any point S∗, then F is said to be a V -r-
quasi-convex function on An.
Each function Fi, i = 1, ..., p, satisfying (2.5) is said to be an αi-r-quasi-convex
n-set function at S∗ on An.

Remark 2.8. All the results in the paper will be proved only in the case when
r ̸= 0 (the case r = 0 can be dealt with likewise since the only changes arise
from the form of inequality defining the introduced classes of generalized convex
functions).
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In the paper, we consider the following constrained multiobjective program-
ming problem with n-set functions:

V -minimize F (S) = (F1(S), ..., Fp(S))

subject to Qj(S) ≦ 0, j ∈ J = {1, ...m} ,

Ht(S) = 0, t ∈ T = {1, ...w} ,

S = (S1, ..., Sn) ∈ An,

(MP)

where An is the n-fold product of the σ-algebra A, Fi, i ∈ I = {1, ..., p}, Qj ,
j ∈ J , and Ht, t ∈ T , are differentiable real-valued n-set functions defined on
An. The term “V -minimize” being used in the problem (MP) is for finding its
weakly efficient, efficient and properly efficient solutions.

For the purpose of simplifying our presentation, we will next introduce some
notation which will be used frequently throughout this paper. Let Ω (assumed
to be nonempty) defined as follows

Ω := {S ∈ An : Qj(S) ≤ 0, j ∈ J , Ht(S) = 0, t ∈ T}

be the set of all feasible solutions of (MP). Further, we denote by J (S∗) the
set of inequality constraint indexes active at S∗ ∈ Ω, that is,

J (S∗) = {j ∈ J : Qj(S
∗) = 0} .

Definition 2.9. A feasible solution S∗ is said to be a weakly efficient solution
of (MP) if there is no other S ∈ Ω such that

F (S) < F (S∗) .

Definition 2.10. A feasible solution S∗ is said to be an efficient solution of
(MP) if there is no other S ∈ Ω such that

F (S) ≤ F (S∗) .

Definition 2.11. An efficient solution S∗ ∈ Ω is said to be a properly efficient
solution of (MP) if there exists M > 0 such that, for each i and S ∈ Ω satisfying
Fi (S) < F (S∗), we have that the inequality

Fi (S
∗)− Fi (S)

Fq (S)− Fq (S∗)
≦M

holds for at least one q ∈ I for which Fq (S
∗) < Fq (S).

Now, for the considered vector optimization subset problem (MP), we prove
sufficient optimality conditions for its weakly efficient solution, efficient solu-
tion and properly efficient solution under the introduced generalized convexity
notions.
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Theorem 2.12. Let S∗ be a feasible solution of the considered multiobjective
programming problem (MP) and, moreover, there exist ξ∗ ∈ Rp, ζ∗ ∈ Rm and
ϑ∗ ∈ Rw such that the following optimality conditions

p∑
i=1

ξ∗i

〈
n∑

k=1

DkFi (S
∗) , χSk

− χS∗
k

〉
+

m∑
j=1

ζ∗j

n∑
k=1

〈
DkQj (S

∗) , χSk
− χS∗

k

〉
+

w∑
t=1

ϑ∗t

n∑
k=1

〈
DkHt (S

∗) , χSk
− χS∗

k

〉
≧ 0, ∀S ∈ An, (2.6)

ζ∗jQj (S
∗) = 0, j ∈ J , (2.7)

ξ∗ ≥ 0,
p∑

i=1

ξ∗i = 1, ζ∗ ≧ 0 (2.8)

be satisfied at S∗. Further, we assume that one of the following sets of hypothe-
ses is fulfilled:

A) each objective function Fi, i ∈ I, is αi-r-convex at S∗ on Ω, each
inequality constraint Qj, j ∈ J (S∗),is βj-r-convex at S∗ on Ω, each
equality constraint Ht, t ∈ T+ (S∗) = {t ∈ T : ϑ∗t > 0} is γt-r-convex at
S∗ on Ω, each equality constraint Ht, t ∈ T− (S∗) = {t ∈ T : ϑ∗t < 0}
is γt-r-concave at S∗ on Ω,

B) ξ∗i Fi, i ∈ I, is an αi-r-pseudo-convex function at S∗ on Ω, ζ∗jQj, j ∈ J ,
is βj-r-quasi-convex at S∗ on Ω, ϑ∗tHt, t ∈ T , is γt-r-quasi-convex at
S∗ on Ω.

Then S∗ is a weakly efficient solution of (MP).

Proof. Let S∗ be a feasible solution solution in the considered multiobjective
programming problem (MP) and the optimality conditions (2.6)-(2.8) be sat-
isfied at S∗. Using hypothesis A), by Definitions 2.4 and 2.5, the inequalities

1

r
erFi(S) ≧ 1

r
erFi(S

∗)

[
1 + rαi (S, S

∗)

n∑
k=1

〈
DkFi (S

∗) , χSk
− χS∗

k

〉]
, i ∈ I,

(2.9)
1

r
erQj(S) ≧ 1

r
erQj(S

∗)

[
1 + rβj (S, S

∗)

n∑
k=1

〈
DkQj (S

∗) , χSk
− χS∗

k

〉]
, j ∈ J (S∗) ,

(2.10)
1

r
erHt(S) ≧ 1

r
erHt(S

∗)

[
1 + rγt (S, S

∗)

n∑
k=1

〈
DkHt (S

∗) , χSk
− χS∗

k

〉]
, t ∈ T+ (S∗) ,

(2.11)
1

r
erHt(S) ≦ 1

r
erHt(S

∗)

[
1 + rγt (S, S

∗)

n∑
k=1

⟨DkHt (S
∗) , χS − χS∗⟩

]
, t ∈ T− (S∗)

(2.12)
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hold for all S ∈ Ω. We proceed by contradiction. Suppose, contrary to the
result, that there exists other S̃ ∈ Ω such that

F
(
S̃
)
< F (S∗) .

Then, (2.9) gives

αi

(
S̃, S∗

) n∑
k=1

〈
DkFi (S

∗) , χS̃k
− χS∗

k

〉
< 0, i ∈ I.

Since αi

(
S̃, S∗

)
> 0, i = 1, ..., p, the foregoing inequalities yield

n∑
k=1

〈
DkFi (S

∗) , χS̃k
− χS∗

k

〉
< 0, i ∈ I. (2.13)

Hence, by (2.8), (2.13) implies
p∑

i=1

ξ∗i

n∑
k=1

〈
DkFi (S

∗) , χS̃k
− χS∗

k

〉
< 0. (2.14)

Multiplying the inequalities (2.10)-(2.12) by the associated Lagrange multiplier,
respectively, we get

1

r
ζ∗j e

rQj(S̃) ≧ 1

r
ζ∗j e

rQj(S
∗)

[
1 + rβj

(
S̃, S∗

) n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉]
,

j ∈ J (S∗) , (2.15)

1

r
ϑ∗t e

rHt(S̃) ≧ 1

r
ϑ∗t e

rHt(S
∗)

[
1 + rγt

(
S̃, S∗

) n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉]
,

t ∈ T+ (S∗) ∪ T− (S∗) . (2.16)
Thus, (2.15) yields

ζ∗j
r

(
e

r
ζ∗
j
(ζ∗

j Qj(S̃)−ζ∗
j Qj(S

∗)) − 1

)
≧ ζ∗j βj

(
S̃, S∗

) n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
,

j ∈ J (S∗) . (2.17)
Using the optimality conditions (2.7) and (2.8) together with the feasibility of
S̃ in (MP), we obtain

ζ∗j βj

(
S̃, S∗

) n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
≦ 0, j ∈ J (S∗) . (2.18)

Since βj
(
S̃, S∗

)
> 0, j ∈ J (S∗), (2.18) gives

ζ∗j

n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
≦ 0, j ∈ J (S∗) .
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Then, adding both sides of the inequalities above and taking into account
ζ∗j = 0, j /∈ J (S∗), we get

m∑
j=1

ζ∗j

n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
≦ 0. (2.19)

Thus, by the feasibility of S̃ and S∗ in (MP), (2.16) implies

ϑ∗t γt

(
S̃, S∗

) n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉
≤ 0, t ∈ T+ (S∗)∪T− (S∗) . (2.20)

Since γt
(
S̃, S∗

)
> 0, t ∈ T+ (S∗) ∪ T− (S∗), (2.20) yields

ϑ∗t

n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉
≦ 0, t ∈ T+ (S∗) ∪ T− (S∗) .

Then, adding both sides of the inequalities above and taking into account
ϑ∗t = 0, t /∈ T+ (S∗) ∪ T− (S∗), we get

w∑
t=1

ϑ∗t

n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉
≦ 0. (2.21)

Combining (2.14), (2.19) and (2.21), we obtain that the inequality
p∑

i=1

ξ∗i

n∑
k=1

〈
DkFi (S

∗) , χS̃k
− χS∗

k

〉
+

m∑
j=1

ζ∗j

n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
+

w∑
t=1

ϑ∗t

n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉
< 0 (2.22)

holds, contradicting (2.6). This means that S∗ is a weakly efficient solution of
(MP) and completes the proof of this theorem under hypothesis A).

Now, we prove this theorem under hypothesis B).
We proceed by contradiction. Suppose, contrary to the result, that there

exists other S̃ ∈ Ω such that

F
(
S̃
)
< F (S∗) . (2.23)

Since ξ∗ =
(
ξ∗1 , ..., ξ

∗
p

)
≥ 0, (2.23) yields

ξ∗i Fi

(
S̃
)
≦ ξ∗i Fi(S

∗), i ∈ I, (2.24)

ξ∗i Fi

(
S̃
)
< ξ∗i Fi(S

∗) for at least one i ∈ I. (2.25)

By assumption, ξ∗i Fi, i ∈ I, is an αi-r-pseudo-convex function at S∗ on Ω.
Then, by Definition 2.6, there exist functions αi : Ω×Ω → R, i = 1, ..., p, such
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that αi

(
S̃, S∗

)
> 0. Thus, (2.24) and (2.25) imply

1

r

p∑
i=1

αi

(
S̃, S∗

)
erξ

∗
i Fi(S̃) <

1

r

p∑
i=1

αi

(
S̃, S∗

)
erξ

∗
i Fi(S

∗). (2.26)

Hence, by Definition 2.6, (2.26) gives
p∑

i=1

ξ∗i

〈
n∑

k=1

DkFi (S
∗) , χS̃k

− χS∗
k

〉
< 0. (2.27)

By assumption, ζ∗jQj , j ∈ J (S∗), is βj-r-quasi-convex function at S∗ on Ω.
Hence, by Definition 2.7, there exist functions βj : Ω×Ω → R, j ∈ J (S∗), such
that βj

(
S̃, S∗

)
> 0. Thus, taking into account also ζ∗j /∈ J (S∗), by S̃ ∈ Ω,

(2.7) and (2.8) yield

1

r

m∑
j=1

βj

(
S̃, S∗

)
erζ

∗
j Qj(S̃) ≦ 1

r

m∑
j=1

βj

(
S̃, S∗

)
erζ

∗
j Qj(S

∗). (2.28)

Hence, by Definition 2.7, (2.28) implies
m∑
j=1

ζ∗j

n∑
k=1

〈
DkQj (S

∗) , χS̃k
− χS∗

k

〉
≦ 0. (2.29)

By assumption,ϑ∗tHt, t ∈ T , is γt-r-quasi-convex function at S∗ on Ω. Hence,
by Definition 2.7, there exist functions γt : Ω × Ω → R, i = 1, ..., p, such that
γt

(
S̃, S∗

)
> 0. Thus, by S̃ ∈ Ω, it follows that

1

r

w∑
t=1

γt

(
S̃, S∗

)
erϑ

∗
tHt(S̃) ≦ 1

r

w∑
t=1

γt

(
S̃, S∗

)
erϑ

∗
tHt(S

∗). (2.30)

Hence, by Definition 2.7, (2.28) implies
w∑

t=1

ϑ∗t

n∑
k=1

〈
DkHt (S

∗) , χS̃k
− χS∗

k

〉
≦ 0. (2.31)

Combining (2.27), (2.29) and (2.31), we get that the inequality (2.22) holds,
contradicting (2.6). This means that S∗ is a weakly efficient solution of (MP)
and completes the proof of this theorem under hypothesis B). □

Theorem 2.13. Let S∗ be a feasible solution of the considered multiobjective
programming problem (MP). Further, assume that there exist ξ∗ ∈ Rp, ζ∗ ∈ Rm

and ϑ∗ ∈ Rw such that the conditions (2.6)-(2.8) be satisfied at S∗. If one of
the set of the following hypotheses

a) each objective function Fi, i ∈ I, is strictly αi-r-convex at S∗ on Ω, each
inequality constraint Qj, j ∈ J (S∗),is βj-r-convex at S∗ on Ω, each
equality constraint Ht, t ∈ T+ (S∗) = {t ∈ T : ϑ∗t > 0} is γt-r-convex at
S∗ on Ω, each equality constraint Ht, t ∈ T− (S∗) = {t ∈ T : ϑ∗t < 0}
is γt-r-concave at S∗ on Ω,
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b) ξ∗i Fi, i ∈ I, is a strictly αi-r-pseudo-convex function at S∗ on Ω, ζ∗jQj,
j ∈ J , is βj-r-quasi-convex at S∗ on Ω, ϑ∗tHt, t ∈ T , is γt-r-quasi-
convex at S∗ on Ω

is fulfilled, then S∗ is an efficient solution of (MP).

Proof. The proof of this theorem follows on the lines of Theorem 2.12. □

Theorem 2.14. Let all hypotheses of Theorem 2.13 be fulfilled. If ξ∗ > 0,
then S∗ is a properly efficient solution of (MP).

Proof. Since all the hypotheses of Theorem 2.13 are fulfilled, therefore, S∗ is
an efficient solution of (MP).

Now, we prove that S∗ is a properly efficient solution of (MP). Suppose,
contrary to the result, that S∗ is not a properly efficient solution of (MP). If
we assume that p ≧ 2, then we choose

M = (p− 1) max
i,q∈I, i ̸=q

ξ∗q
ξ∗i
. (2.32)

Then, there exist other S̃ ∈ Ω and i ∈ I, such that Fi (S
∗) > Fi

(
S̃
)

and,
moreover,

Fi (S
∗)− Fi

(
S̃
)

Fq

(
S̃
)
− Fq (S∗)

> M (2.33)

for each q ̸= i such that Fq

(
S̃
)
> Fq (S

∗). Thus, for each q ̸= i, (2.32) and
(2.33) yield

Fi (S
∗)− Fi

(
S̃
)
> (p− 1) max

i,q∈I,i ̸=q

ξ∗q
ξ∗i

(
Fq

(
S̃
)
− Fq (S

∗)
)
. (2.34)

Since Fq

(
S̃
)
− Fq (S

∗) > 0, (2.34) implies

(p− 1) max
i,q∈P,i ̸=q

ξ∗q
ξ∗i

(
Fq

(
S̃
)
− Fq (S

∗)
)
≧ (2.35)

(p− 1)
ξ∗q
ξ∗i

(
Fq

(
S̃
)
− Fq (S

∗)
)

, ∀i ∈ I\{q}.

By (2.34) and (2.35), it follows that

ξ∗i

(
Fi (S

∗)− Fi

(
S̃
))

> (p− 1) ξ∗q

(
Fq

(
S̃
)
− Fq (S

∗)
)
.

Summing over q ̸= i both sides of the inequalities above, we get

(p− 1) ξ∗i

(
Fi (S

∗)− Fi

(
S̃
))

> (p− 1)
∑
q ̸=i

ξ∗q

(
Fq

(
S̃
)
− Fq (S

∗)
)
. (2.36)

Hence, by (2.36), we conclude that the inequality

ξ∗i Fi (S
∗) +

∑
q ̸=i

ξ∗qFq (S
∗) > ξ∗i Fi

(
S̃
)
dt+

∑
q ̸=i

ξ∗qFq

(
S̃
)
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holds. This is a contradiction to the assumption that S∗ is an efficient solution
of (MP). Hence, S∗ is a properly efficient solution of (MP) and the proof of
this theorem is completed. □

3. Saddle-point criteria

In this section, for the considered multicriteria optimization problem (MP)
with n-set functions, we prove vector saddle point criteria. First, we define the
vector-valued Lagrangian-type function L for the considered vector optimiza-
tion problem (MP) with n-set functions and then we introduce the definition
of its saddle point.

Definition 3.1. For the considered multiobjective programming problem (MP),
the Lagrange-type function L(·, ζ∗, ϑ∗) : An → Rp is defined, for fixed ζ∗, ϑ∗,
as follows:

L(S, ζ∗, ϑ∗) = F (S) +

 m∑
j=1

ζ∗jQj (S) +

w∑
t=1

ϑ∗tHt (S)

 e,
where e = [1, ..., 1]

T ∈ Rp.

Definition 3.2. A point (S∗, ζ∗, ϑ∗) ∈ Ω × Rm
+ × Rw is said to be a saddle

point of the vector-valued Lagrange function L defined for the multiobjective
programming problem (MP) if,

i): L (S∗, ζ, ϑ) ≦ L (S∗, ζ∗, ϑ∗) ∀ζ ∈ Rm
+ , ϑ ∈ Rw,

ii): L (S∗, ζ∗, ϑ∗) ≰ L (S, ζ∗, ϑ∗) ∀S ∈ Ω.

Theorem 3.3. Let (S∗, ζ∗, ϑ∗) ∈ Ω×Rm
+ ×Rw be a saddle point of the vector-

valued Lagrangian-type function defined for the considered multicriteria opti-
mization problem (MP) with n-set functions. Then S∗ is a weakly efficient
solution of (MP).

Proof. By assumption, (S∗, ζ∗, ϑ∗) ∈ Ω × Rm
+ × Rw is a saddle point of the

partial Lagrange function defined for the considered multiobjective program-
ming problem (MP). By Definition 3.2 i), we have that, for each ζ ∈ Rm

+ and
ϑ ∈ Rw, the inequality

L (S∗, ζ, ϑ) ≦ L (S∗, ζ∗, ϑ∗)

holds. Then, by a definition of the Lagrange function L, it follows that

F (S∗) +

 m∑
j=1

ζjQj (S
∗) +

w∑
t=1

ϑtHt (S
∗)

 e ≦
F (S∗) +

 m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗)

 e.
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In the above inequality, let ξ = 0 and ζ = 0. Then,
m∑
i=1

ζ∗i Qi (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) ≧ 0. (3.1)

Using the feasibility of S∗ in the problem (MP) again together with ζ∗ ∈ Rm
+ ,

we get
m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) ≦ 0. (3.2)

Combining (3.1) and (3.2), we obtain
m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) = 0. (3.3)

By means of contradiction, suppose, contrary to the result, that S∗ is not a
weakly efficient solution of (MP). This means that there exists S̃ ∈ Ω such that

F
(
S̃
)
< F (S∗) .

Thus, the above inequality yields

Fi

(
S̃
)
< Fi(S

∗), i = 1, ..., p. (3.4)

Using the feasibility of S̃ in (MP) together with ζ∗ ≧ 0, we get
m∑
j=1

ζ∗jQj

(
S̃
)
+

w∑
t=1

ϑ∗tHt

(
S̃
)
≦ 0. (3.5)

Combining (3.3), (3.4) and (3.5), we obtain

Fi

(
S̃
)
+

m∑
j=1

ξ∗jQj

(
S̃
)
+

w∑
t=1

ζ∗tHt

(
S̃
)
< (3.6)

Fi(S
∗) +

m∑
j=1

ξ∗jQj (S
∗) +

w∑
t=1

ζ∗tHt (S
∗) , i = 1, ..., p.

By the definition of the vector-valued Lagrangian-type function, (3.6) implies
that the inequality

L
(
S̃, ζ∗, ϑ∗

)
< L (S∗, ζ∗, ϑ∗)

holds, contradicting the inequality ii) in Definition 3.2. This means that S∗ is a
weakly efficient solution of the considered multiobjective programming problem
(MP). □

Remark 3.4. Note that we have established the necessary optimality condi-
tion in Theorem 3.3 for a saddle point of the vector-valued Lagrangian-type
function L without any V -r-convexity assumptions imposed on the functions
constituting (MP).
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Theorem 3.5. Let S∗ be a feasible point in (MP) and there exist Lagrange
multipliers ξ∗ ∈ Rp, ζ∗ ∈ Rm and ϑ∗ ∈ Rw such that the optimality conditions
(2.6)-(2.8) are satisfied at S∗. Further, we assume that at least one of the
hypotheses are fulfilled:

A) the function F (·) +
[∑m

j=1 ζ
∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
e is strictly V -r-

convex at S∗ on Ω with α (S, S∗) = (α1 (S, S
∗) , ..., αp (S, S

∗)) > 0 for
any S ∈ Ω.

B) each function ξ∗i
[
Fi (·) +

∑m
j=1 ζjQj (·) +

∑w
t=1 ϑtHt (·)

]
, i ∈ {1, ..., p :

ξ∗i > 0}, is strictly αi-r-pseudo-convex at S∗ on Ω with αi (S, S
∗) > 0.

Then (S∗, ζ∗, ϑ∗) ∈ Ω × Rm
+ × Rw is a saddle point of the vector-valued

Lagrangian-type function defined for the considered multiobjective programming
problem (MP).

Proof. Let S∗ be a feasible solution in (MP) and let the optimality conditions
(2.6)-(2.8) be fulfilled at S∗ with Lagrange multipliers ξ∗ ∈ Rp, ζ∗ ∈ Rm and
ϑ∗ ∈ Rw.

Firstly, we prove the inequality i) in Definition 3.2.
Using the feasibility of S∗ in (MP) together with the optimality conditions
(2.7) and (2.8), we get that the inequality

m∑
i=1

ζjQj (S
∗) ≦

m∑
j=1

ζ∗jQj (S
∗) (3.7)

holds for each ζ ∈ Rm, ζ ≧ 0. Using the feasibility of S∗ in the problem (MP)
again, we obtain that the relation

w∑
t=1

ϑtHt (S
∗) =

w∑
t=1

ϑ∗tHt (S
∗) (3.8)

holds for each ϑ ∈ Rw. Combining (3.7) and (3.8), we get that the inequalities

Fi(S
∗) +

m∑
j=1

ζjQj (S
∗) +

w∑
t=1

ϑtHt (S
∗) ≦

Fi(S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) , i = 1, ..., p

hold for any ζ ∈ Rm, ζ ≧ 0, and any ϑ ∈ Rw. Hence, by the definition of the
Lagrange function, the inequality above imply that the inequality

L (S∗, ζ, ϑ) ≦ L (S∗, ζ∗, ϑ∗) (3.9)

holds for any ζ ∈ Rm, ζ ≧ 0, and any ϑ ∈ Rw.
We proceed by contradiction in order to prove the second relation in Defi-

nition 3.2. Suppose, contrary to the result, that the inequality ii) in Definition
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3.2 is not satisfied. This means that there exists other S̃ ∈ Ω such that

L
(
S̃, ζ∗, ϑ∗

)
≤ L (S∗, ζ∗, ϑ∗) . (3.10)

By the definition of L, (3.10) implies that the inequalities

Fi

(
S̃
)
+

m∑
j=1

ζ∗jQj

(
S̃
)
+

w∑
t=1

ϑ∗tHt

(
S̃
)
≦ (3.11)

Fi(S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) , i = 1, ..., p,

Fi

(
S̃
)
+

m∑
j=1

ζ∗jQj

(
S̃
)
+

w∑
t=1

ϑ∗tHt

(
S̃
)
< (3.12)

Fi(S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) for at least one i ∈ {1, ..., p}

hold.
Now, we prove the inequality ii) in Definition 3.2 under hypothesis A).

By assumption, the function F (·) +
[∑m

j=1 ζ
∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
e is

strictly V -r-convex at S∗ on Ω with α (S, S∗) = (α1 (S, S
∗) , ..., αp (S, S

∗)) > 0

for any S ∈ Ω. Thus, by Definition 2.4, (3.11) and (3.12) yield, respectively,

αi

(
S̃, S∗

) n∑
k=1

〈
DkFi (S

∗) +

m∑
j=1

ζ∗jDkQj (S
∗)+ (3.13)

+

w∑
t=1

ϑ∗tDkHt (S
∗) , χS̃k

− χS∗
k

〉
≦ 0, i = 1, ..., p,

αi

(
S̃, S∗

) n∑
k=1

〈
DkFi (S

∗) +

m∑
j=1

ζ∗jDkQj (S
∗)+ (3.14)

+

w∑
t=1

ϑ∗tDkHt (S
∗) , χS̃k

− χS∗
k

〉
< 0 for at least one i ∈ {1, ..., p} .

By αi

(
S̃, S∗

)
> 0, i = 1, ..., p, (3.13) and (3.14) give, respectively,

n∑
k=1

〈
DkFi (S

∗) +

m∑
j=1

ζ∗jDkQj (S
∗)+ (3.15)

+

w∑
t=1

ϑ∗tDkHt (S
∗) , χS̃k

− χS∗
k

〉
≦ 0, i = 1, ..., p,

n∑
k=1

〈
DkFi (S

∗) +

m∑
j=1

ζ∗jDkQj (S
∗)+ (3.16)
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+

w∑
t=1

ϑ∗tDkHt (S
∗) , χS̃k

− χS∗
k

〉
< 0 for at least one i ∈ {1, ..., p} .

Since ξ∗ ≥ 0,
∑p

i=1 ξ
∗
i = 1, (3.15) and (3.16) imply that the inequality

n∑
k=1

〈
Dk

 p∑
i=1

ξ∗i Fi (S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗)

 , χS̃k
− χS∗

k

〉
< 0

holds, contradicting (2.6).
Now, we prove the inequality ii) in Definition 3.2 under hypothesis B)

By assumption, each function ξ∗i

[
Fi (·) +

∑m
j=1 ζ

∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
,

i ∈ {1, ..., p : ξ∗i > 0}, is strictly αi-r-pseudo-convex at S∗ on Ω, where αi (S, S
∗) >

0 for any S ∈ Ω. Thus, (3.11) and (3.12) yield

1

r

p∑
i=1

αi

(
S̃, S∗

)
erξ

∗
i [Fi(S̃)+

∑m
j=1 ζ∗

j Qj(S̃)+
∑w

t=1 ϑ∗
tHt(S̃)] < (3.17)

1

r

p∑
i=1

αi

(
S̃, S∗

)
erξ

∗
i [Fi(S

∗)+
∑m

j=1 ζ∗
j Qj(S

∗)+
∑w

t=1 ϑ∗
tHt(S

∗)].

Hence, by Definition 2.6, (3.17) implies that

p∑
i=1

ξ∗i

n∑
k=1

〈
Dk

 p∑
i=1

Fi (S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗)

 , χS̃k
− χS∗

k

〉
< 0.

(3.18)
Since

∑p
i=1 ξ

∗
i = 1, (3.18) gives that the inequality

n∑
k=1

〈
Dk

 p∑
i=1

ξ∗i Fi (S
∗) +

m∑
j=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗)

 , χS̃k
− χS∗

k

〉
< 0

holds, contradicting (2.6). Then, the proof of this theorem is completed. □

Remark 3.6. If ξ∗i > 0, i = 1, ..., p, then the hypotheses A) and B) can be
weakened. Namely, it is sufficient to assume that, in place of hypotheses A)
and B), one of the following hypotheses a) and b) is fulfilled:

a) the function F (·)+
[∑m

j=1 ζ
∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
e is V -r-convex at

S∗ on Ω with α (S, S∗) = (α1 (S, S
∗) , ..., αp (S, S

∗)) > 0 for any S ∈ Ω,
b) each function ξ∗i

[
Fi (·) +

∑m
j=1 ζjQj (·) +

∑w
t=1 ϑtHt (·)

]
, i = 1, ..., p,

is αi-r-pseudo-convex at S∗ on Ω with αi (S, S
∗) > 0.
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4. Mixed duality

In this section, for the considered differentiable multiobjective programming
subset problem (MP), we formulate its mixed dual problem. We prove sev-
eral families of duality results under both V -r-convexity and/or generalized
V -r-convexity hypotheses imposed on certain combinations of the functions
constituting (MP). This is accomplished by employing a certain partitioning
scheme which was originally proposed Mond and Weir [18] for the purpose of
constructing generalized dual problems for nonlinear scalar optimization prob-
lems. To do this, we need some additional notations.

Let {J0, J1, ..., Jτ} and {T0, T1, ..., Tγ} be partitions of the indexes sets J and
T , respectively. Thus, Jq ⊆ J for each q = 0, 1, . . . , τ , Jq1 ∩ Jq2 = ∅ for each
q1, q2 = 0, 1, . . . ., τ with q1 ̸= q2, and

τ⋃
i=0

Ji = J . Obviously, similar properties

hold for {T0, T1, ..., Tτ}. Moreover, if q1, q2 are the numbers of partitioning
sets of J and T , respectively, then Ω = max{q1, q2} and Jq = ∅ or Tq = ∅ for
q > min{q1, q2}.

Now, we state, for the considered multiobjective programming subset prob-
lem (MP), the following vector mixed dual problems is defined as follows:

V -maximize ψ (Z, ζ, ϑ) = F (Z) +

∑
j∈J0

ζjQj (Z) +
∑
t∈T0

ϑtHt (Z)

 e
s.t.

〈
p∑

i=1

ξi

n∑
k=1

DkFi (Z) +

m∑
j=1

ζj

n∑
k=1

DkQj (Z)+ (4.1)

w∑
t=1

ϑt

n∑
k=1

DkHt (Z) , χSk
− χZk

〉
≧ 0, ∀S ∈ An,∑

j∈Jr

ζjQj (Z) +
∑
t∈Tr

ϑtHt (Z) ≧ 0, r = 1, ..., τ , (MD) (4.2)

Z ∈ An, ξ ≥ 0,
p∑

i=1

ξi = 1, ζ ≧ 0, (4.3)

where e = [1, ..., 1] ∈ Rp. We denote by ∆ the set of all feasible solutions in
the vector mixed dual subset problem (MD), that is,
∆ = {(Z, ξ, ζ, ϑ) ∈ An ×Rp ×Rm ×Rw : (Z, ξ, ζ, ϑ) satisfying the constraints
(4.1)-(4.3)}. Further, denote Γ = {Z ∈ An : (Z, ξ, ζ, ϑ) ∈ ∆}.

Remark 4.1. In view of the vector Wolfe type dual, one can see that its ob-
jective function contains all constraint functions of the original multiobjective
programming problem, while the vector Mond-Weir type dual contains no con-
straint function of the original multiobjective programming problem in its ob-
jective function. In this section, we formulate a vector mixed-type dual (MD)
like an incomplete Lagrangian dual in its objective function which will involve
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the Wolfe type dual and Mond-Weir type dual as the special cases. In fact,
we see that the Wolfe and Mond-Weir duals follows as special cases of mixed
duality. Namely, in the case when J0 = ∅ and T0 = ∅, the vector mixed dual
problem (MD) reduces to the vector dual problem in the sense of Mond-Weir.
Whereas in the case when J0 = J and T0 = T , we obtain the definition of the
vector dual problem in the sense of Wolfe.

Theorem 4.2. (Weak duality): Let S and (Z, ξ, ζ, ϑ) be feasible solutions for
the vector optimization problems (MP) and (MD), respectively. Further, we
assume that one of the hypotheses are fulfilled:

A) the function F (·)+
[∑m

j=1 ζjQj (·) +
∑w

t=1 ϑtHt (·)
]
e is V -r-convex at

Z on Ω ∪ Γ with α (S,Z) = (α1 (S,Z) , ..., αp (S,Z)) > 0.
B) each function ξi

[
Fi (·) +

∑m
j=1 ζjQj (·) +

∑w
t=1 ϑtHt (·)

]
, i ∈ {1, ..., p :

ξi > 0}, is αi-r-pseudo-convex at Z on Ω ∪ Γ with αi (S,Z) > 0.
Then F (S) ≮ ψ (Z, ζ, ϑ).

Proof. We proceed by contradiction. Suppose, contrary to the result, that
there exist S ∈ Ω and (Z, ξ, ζ, ϑ) ∈ ∆ such that

F (S) < ψ (Z, ζ, ϑ) .

Thus,

F (S) < F (Z) +

∑
j∈J0

ζjQj (Z) +
∑
t∈T0

ϑtHt (Z)

 e. (4.4)

Since S ∈ Ω and ζ ≧ 0, (4.4) implies

Fi (S) +
∑

j∈J0
ζjQj (S) +

∑
t∈T0

ϑtHt (S) <

Fi (Z) +
∑

j∈J0
ζjQj (Z) +

∑
t∈T0

ϑtHt (Z) , i = 1, ..., p.
(4.5)

By S ∈ Ω and (Z, ξ, ζ, ϑ) ∈ ∆, it follows that

∑
j∈Jr

ζjQj (S) +
∑
t∈Tr

ϑtHt (S) ≦

∑
j∈Jr

ζjQj (Z) +
∑
t∈Tr

ϑtHt (Z)

 , r = 1, ..., τ .

(4.6)
Hence, (4.5) and (4.6) yield

Fi (S) +
∑m

j=1 ζjQj (S) +
∑w

t=1 ϑtHt (S) <

Fi (Z) +
∑m

j=1 ζjQj (Z) +
∑w

t=1 ϑtHt (Z) , i = 1, ..., p.
(4.7)

Proof under hypothesis A).
By assumption, F (·)+

[∑m
j=1 ζjQj (·) +

∑w
t=1 ϑtHt (·)

]
e is V -r-convex at Z

on Ω∪Γ. Hence, by Definition 2.4, each its component Fi (·)+
∑m

j=1 ζjQj (·)+
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t=1 ϑtHt (·) is αi-r-convex at Z on Ω ∪ Γ. Then, by Definition 2.4, for any

i = 1, ..., p,
1

r
er[Fi(S)+

∑m
j=1 ζjQj(S)+

∑w
t=1 ϑtHt(S)] ≧

1

r
er[Fi(Z)+

∑m
j=1 ζjQj(Z)+

∑w
t=1 ϑtHt(Z)] [1+

rαi (S,Z)

n∑
k=1

〈
Dk

Fi (Z) +

m∑
j=1

ζjQj (Z) +

w∑
t=1

ϑtHt (Z)

 , χSk
− χZk

〉 .

Thus, the above inequality can be re-written as follows

1

r

(
er([Fi(S)+

∑m
j=1 ζjQj(S)+

∑w
t=1 ϑtHt(S)]−[Fi(Z)+

∑m
j=1 ζjQj(Z)+

∑w
t=1 ϑtHt(Z)]) − 1

)
(4.8)

≧ αi (S,Z)

n∑
k=1

〈
Dk

Fi (Z) +

m∑
j=1

ζjQj (Z) +

w∑
t=1

ϑtHt (Z)

 , χSk
− χZk

〉
.

Combining (4.7) and (4.8), we get

αi (S,Z)

n∑
k=1

〈
Dk

Fi (Z) +

m∑
j=1

ζjQj (Z) +

w∑
t=1

ϑtHt (Z)

 , χSk
− χZk

〉
< 0, i ∈ I.

(4.9)
Since αi (S,Z) > 0, i = 1, ..., p, (4.9) gives

n∑
k=1

〈
Dk

Fi (Z) +

m∑
j=1

ζjQj (Z) +

w∑
t=1

ϑtHt (Z)

 , χSk
− χZk

〉
< 0, i ∈ I.

(4.10)
Multiplying each inequality (4.10) by the corresponding Lagrange multiplier
ξi, by the constraint (4.3), we obtain that the inequality〈

p∑
i=1

ξi

n∑
k=1

DkFi (Z) +

m∑
j=1

ζj

n∑
k=1

DkQj (Z) +

w∑
t=1

ϑt

n∑
k=1

DkHt (Z) , χSk
− χZk

〉
< 0

(4.11)
holds, contradicting the constraint (4.2).

Proof under hypothesis B).
By assumption, the function ξi

[
Fi(·) +

∑
j∈J0

ζjQj (·) +
∑

t∈T0
ϑtHt (·)

]
, i ∈

{1, ..., p : ξi > 0}, is αi-r-pseudo-convex at Z on Ω∪Γ with αi (S,Z) > 0. Hence,
(4.5) gives

1
r

∑p
i=1 αi (S,Z) e

rξi[Fi(S)+
∑m

j=1 ζjQj(S)+
∑w

t=1 ϑtHt(S)] <

1
r

∑p
i=1 αi (S,Z) e

rξi[Fi(Z)+
∑m

j=1 ζjQj(Z)+
∑w

t=1 ϑtHt(Z)].
(4.12)
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Thus, by Definition 2.6, (4.12) implies that the inequality
p∑

i=1

ξi

n∑
k=1

〈
Dk

Fi (Z) +

m∑
j=1

ζjQj (Z) +

w∑
t=1

ϑtHt (Z)

 , χSk
− χZk

〉
< 0

(4.13)
holds. By (Z, ξ, ζ, ϑ) ∈ ∆, it follows that

∑p
i=1 ξi = 1. Thus, (4.13) yields

the inequality (4.11), which is a contradiction to the feasibility of (Z, ξ, ζ, ϑ) in
(MD). Hence, the proof of this theorem is completed. □

If some stronger (generalized) V -r-convexity hypotheses are imposed on the
functions, then the following result is true:

Theorem 4.3. (Weak duality): Let S and (Z, ξ, ζ, ϑ) be any feasible solutions
for the problems (MP) and (MD), respectively. Further, we assume that one of
the hypotheses are fulfilled:

A) the function F (·) +
[∑m

j=1 ζjQj (·) +
∑w

t=1 ϑtHt (·)
]
e is strictly V -r-

convex at Z on Ω ∪ Γ with α (S,Z) = (α1 (S,Z) , ..., αp (S,Z)) > 0.
B) each function ξi

[
Fi (·) +

∑m
j=1 ζjQj (·) +

∑w
t=1 ϑtHt (·)

]
,

i ∈ {1, ..., p : ξi > 0}, is strictly αi-r-pseudo-convex at Z on Ω∪Γ with
α (S,Z) = (α1 (S,Z) , ..., αp (S,Z)) > 0.

Then F (S) ≰ ψ (Z, ζ, ϑ).

Theorem 4.4. (Direct duality). Let S∗ ∈ Ω and the optimality conditions
(2.6)-(2.8) be satisfied at S∗ with Lagrange multipliers ξ∗ ∈ Rp, ζ∗ ∈ Rm and
ϑ∗ ∈ Rw. If all the hypotheses of the weak duality theorem (Theorem 4.2 or
Theorem 4.3) are satisfied, then (S∗, ξ∗, ζ∗, ϑ∗) is a weak efficient solution (an
efficient solution) of a maximum type in (MD). If (S∗, ξ∗, ζ∗, ϑ∗) is an efficient
solution of (MD) with ξ∗ > 0, then (S∗, ξ∗, ζ∗, ϑ∗) is also a properly efficient
solution in (MD).

Proof. The feasibility of (S∗, ξ∗, ζ∗, ϑ∗) in (MD) follows from the optimality
conditions (2.6)-(2.8). Then, if all the hypotheses of weak duality (Theorem 4.2
or Theorem 4.3) are fulfilled, then (S∗, ξ∗, ζ∗, ϑ∗) is a weakly efficient solution
(or an efficient solution) of a maximum type in (MD), respectively.

Now, we assume that ξ∗ > 0. Then we shall prove that (S∗, ξ∗, ζ∗, ϑ∗) is a
properly efficient solution in (MD) by the method of contradiction. Suppose,
contrary to the result, that (S∗, ξ∗, ζ∗, ϑ∗) is not a properly efficient solution of
(MD). Then, for some criterion i and

(
Z̃, ξ̃, ζ̃, ϑ̃

)
∈ ∆, the following inequality

Fi

(
Z̃
)
− Fi (S

∗) > M
[
Fj (S

∗)− Fj

(
Z̃
)]

(4.14)

holds for every scalar M > 0 and for all j ̸= i such that Fj

(
Z̃
)
< Fj (S

∗).

Assume that p ≧ 2 and let M = (p− 1)max
i,j

ξ∗i
ξ∗j

. Hence, (4.14) gives that the
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inequality

Fi

(
Z̃
)
− Fi (S

∗) > (p− 1)
ξ∗j
ξ∗i

[
Fj (S

∗)− Fj

(
Z̃
)]

(4.15)

holds for all j ̸= i. Then, if we rewrite (4.15), then we get
ξ∗i
p− 1

Fi

(
Z̃
)
− Fi (S

∗) > ξ∗j

[
Fj (S

∗)− Fj

(
Z̃
)]

.

Now, summing the above inequalities over j ̸= i, we obtain

ξ∗i Fi

(
Z̃
)
− Fi (S

∗) >
∑
j≠i

ξ∗j

[
Fj (S

∗)− Fj

(
Z̃
)]

.

Then, if we re-write the above inequality, we get that the inequality
p∑

i=1

ξ∗i Fi

(
Z̃
)
>

p∑
i=1

ξ∗jFj (S
∗)

holds, which is a contradiction to the assumption that (S∗, ξ∗, ζ∗, ϑ∗) is an
efficient solution of a maximum type in (MD). □

Theorem 4.5. (Strict duality): Let S∗ and (Z∗, ξ∗, ζ∗, ϑ∗) be feasible solutions
in (MP) and (MD), respectively, such that

F (S∗) = ψ (Z∗, ζ∗, ϑ∗) . (4.16)

Further, we assume that one of the hypotheses are fulfilled:
A) the function F (·) +

[∑m
j=1 ζ

∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
e is strictly V -r-

convex at Z∗ on Ω∪Γ with α (S∗, Z∗) = (α1 (S
∗, Z∗) , ..., αp (S

∗, Z∗)) >

0.
B) each function ξ∗i

[
Fi (·) +

∑m
j=1 ζ

∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
,

i ∈ {1, ..., p : ξ∗i > 0}, is strictly αi-r-pseudo-convex at Z∗ on Ω∪Γ with
αi (S

∗, Z∗) > 0.
Then S∗ = Z∗.

Proof. Let S∗ and (Z∗, ξ∗, ζ∗, ϑ∗) be feasible solutions in (MP) and (MD), re-
spectively, such that (4.16) is fulfilled. We proceed by contradiction. Suppose,
contrary to the result, that S∗ ̸= Z∗. By the definition of ψ, (4.16) gives

F (S∗) = F (Z∗) +

∑
j∈J0

ζ∗jQj (Z
∗) +

∑
t∈T0

ϑ∗tHt (Z
∗)

 e. (4.17)

Using S∗ ∈ Ω and (Z∗, ξ∗, ζ∗, ϑ∗) ∈ ∆ together with (4.2), (4.17) gives

F (S∗) +

[
m∑
i=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗)

]
e ≦

F (Z∗) +

[
m∑
i=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

]
e.
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Hence, we have for any i = 1, ..., p,

Fi (S
∗) +

m∑
i=1

ζ∗jQj (S
∗) +

w∑
t=1

ϑ∗tHt (S
∗) ≦ (4.18)

Fi (Z
∗) +

m∑
i=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗) .

Proof under hypothesis A).
By assumption, F (·) +

[∑m
j=1 ζ

∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
e is strictly V -r-

convex at Z∗ on Ω ∪ Γ. Hence, by Definition 2.4, each its component Fi (·) +∑m
j=1 ζ

∗
jQj (·)+

∑w
t=1 ϑ

∗
tHt (·) is strictly αi-r-convex at Z∗ on Ω∪Γ. Then, by

Definition 2.4, for any i = 1, ..., p,
1

r
er[Fi(S

∗)+
∑m

j=1 ζ∗
j Qj(S

∗)+
∑w

t=1 ϑ∗
tH

∗
t (S

∗)] >
1

r
er[Fi(Z

∗)+
∑m

j=1 ζ∗
j Qj(Z

∗)+
∑w

t=1 ϑ∗
tHt(Z

∗)]

1 + αi (S
∗, Z∗)

n∑
k=1

〈
Dk

Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉 .
Thus, the above inequality can be re-written as follows
1

r

(
er([Fi(S

∗)+
∑m

j=1 ζ∗
j Qj(S

∗)+
∑w

t=1 ϑ∗
tH

∗
t (S

∗)]−[Fi(Z
∗)+

∑m
j=1 ζ∗

j Qj(Z
∗)+

∑w
t=1 ϑ∗

tHt(Z
∗)]) − 1

)
>

(4.19)

αi (S
∗, Z∗)

n∑
k=1

〈
Dk

Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉
.

Combining (4.18) and (4.19), we obtain

αi (S
∗, Z∗)

n∑
k=1

〈
Dk

Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉

< 0, i = 1, ..., p. (4.20)
Since αi (S

∗, Z∗) > 0, i = 1, ..., p, (4.20) yields
n∑

k=1

〈
Dk

 p∑
i=1

Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉
< 0,

i = 1, ..., p. (4.21)
Multiplying each inequality (4.21) by the corresponding Lagrange multiplier
ξ∗i , we get

p∑
i=1

ξ∗i

n∑
k=1

〈
Dk

Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉
< 0

(4.22)
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Using the constraint (4.3), we obtain that the inequality
n∑

k=1

〈
Dk

 p∑
i=1

ξ∗i Fi (Z
∗) +

m∑
j=1

ζ∗jQj (Z
∗) +

w∑
t=1

ϑ∗tHt (Z
∗)

 , χS∗
k
− χZ∗

k

〉
< 0

holds, contradicting the constraint (4.2). This means that S∗ = Z∗.
Proof under hypothesis B).
By assumption, each function ξ∗i

[
Fi (·) +

∑m
j=1 ζ

∗
jQj (·) +

∑w
t=1 ϑ

∗
tHt (·)

]
,

i ∈ {1, ..., p : ξ∗i > 0}, is strictly αi-r-pseudo-convex at Z∗ on Ω ∪ Γ with
αi (S

∗, Z∗) > 0. Hence, (4.18) yields
1
r

∑p
i=1 αi (S

∗, Z∗) erξ
∗
i [Fi(S

∗)+
∑m

j=1 ζ∗
j Qj(S

∗)+
∑w

t=1 ϑ∗
tHt(S

∗)] <

1
r

∑p
i=1 αi (S

∗, Z∗) erξ
∗
i [Fi(Z

∗)+
∑m

j=1 ζ∗
j Qj(Z

∗)+
∑w

t=1 ϑ∗
tHt(Z

∗)], i = 1, ..., p.
(4.23)

Thus, by Definition 2.6, (4.21) implies (4.22). The last part of the proof is the
same as in the proof under hypothesis A). Hence, the proof of this theorem is
completed. □
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