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ABSTRACT. In the paper, we consider a type of Cattaneo equation with
time fractional derivative without singular kernel based on fourth-order
compact finite difference (CFD) in the space directions. In case of two di-
mensional, two alternating direction implicit (ADI) methods are proposed
to split the equation into two separate one dimensional equations. The
time fractional derivation is described in the Caputo-Fabrizio’s sense with
scheme of order O(72). The solvability, unconditional stability and H*!
norm convergence of the scheme are proved. Numerical results confirm

the theoretical results and the effectiveness of the proposed scheme.
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1. INTRODUCTION

In recent years, fractional calculus has played an important role in many fields
of physics, chemistry, mechanics, electricity, signal and processing, etc [14, 15,
21, 28, 29, 30, 31].
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In this paper, we consider the following time fractional Cattaneo equation:

% +&F Du(X, 1) = Au(X, 1) + f(X,0), X €Q 0<t<T. (L1)

SFDY is the a-th Caputo-Fabrizio fractional derivative defined by

M(a)
2 -«

“lds, 1<a<2, (12)

FDFu(X, ) = o

t
/ u'(X,s)exp [(1 -«

0
where M («) is a normalization function such that M (0) = M (1) = 1.

In 2015, Caputo and Fabrizio suggested a new definition of fractional derivative
based on the exponential kernel [7]. They considered two different represen-
tations for the temporal and spatial variables. It is important and interesting
that this approach describes the behavior of classical viscoelastic materials,
thermal media, electromagnetic systems, etc. Another interesting property of
this definition is that it opens up new avenues in the mechanical phenomena,
related with plasticity, fatigue, damage and with electromagnetic hysteresis [7].
In connection with the application of this new fractional derivative, interested
reader may find details in [2, 3, 5.

Recently, studies of Caputo-Fabrizio fractional derivative have been carried
out by some authors. Authors of [6] investigated the existence of solution for
two high-order fractional integro-differential equations including the Caputo-
Fabrizio derivative. Atangana and Algahtani [4] considered a numerical ap-
proximation of the space and time Caputo-Fabrizio fractional derivative in
connection with ground water pollution equation. In [16] authors presented a
Crank-Nicolson finite difference scheme to solve fractional Cattaneo equation
by a new fractional derivative. Furthermore, they analysed the stability and
convergence order of the scheme. The main aim of [8] is to prove existence
and uniqueness of the flow of water within a confined aquifer with Caputo-
Fabrizio fractional diffusion for the temporal and spatial variables. A type of
Fokker-Planck equation with Caputo-Fabizio fractional derivative based on the
Ritz method with known basis functions is considered in [11]. In 2017, Mirza
and Vieru proposed the fundamental solutions to advection-diffusion equation
with time-fractional without singular kernel. They applied the Laplace trans-
form and Fourier transform with respect to the temporal variable and space
coordinates, respectively. Authors of [35] proposed a new fractional derivative
without singular kernel. They investigated the potential application for mod-
eling the steady heat-conduction problem and obtained the analytical solution
of the fractional-order heat flow by means of the Laplace transform. In [17]
authors constructed the shifted Legendre polynomials operational matrix in
order to solve problems with left-sided Caputo-Fabrizio operator. A second-
order scheme for the space fractional diffusion equation with Caputo-Fabrizio
is provided in [27]. The main aim of [13] is to solve two problems in nonlocal
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quantum machanics wherein the nonlocal shrodinger equation has been trans-
formed to an ordinary linear differential equation. Other interesting papers in
the field of the Caputo-Fabrizio derivative are found in [1, 9, 18, 19, 32, 34].
The time fractional Cattaneo equation has been considered by some reserchers
[10, 12, 22, 23, 24]. For instance, Ren and Gan [24] considered the new numer-
ical methods for the solution of two-dimensional Cattaneo equation with time
fractional derivative. Authors of [10] studied a family of generalized fractional
Cattaneo’s equation by using fractional substitutions in integer-order rational
transfer functions. The solution of the space-time fractional Cattaneo diffusion
model is considered in [23]. In such way the solutions of the Cattaneo equation
are obtained under integral and series form in terms of the H-functions. In [12]
authors developed two finite difference schemes based on the explicit predictor-
corrector and totally implicit schemes for Cattaneo equation. The main of [22]
is to present a Cattaneo type time fractional heat conduction equation for laser
heating. They obtained the analytical solution for the temperature distribution
by the Laplace transformation method.

Previous studies for fractional Cattaneo equation have been limited to the
singular kernel. Therefore, it is interesting to discuss numerical schemes for
the fractional derivatives with the non-singular kernel. It is clear from the
truncation error estimate of the .1 method for singular kernel that the accuracy
is dependent on the fractional order a@ and when the order of the Caputo
fractional derivative a =~ 2 (1 < a: < 2), its accuracy decreases to the first order.
Hence, It is important to improve numerical accuracy of the L1 approximation
of fractional derivative. What distinguishes this paper from previous study is
its two-dimensional problem type which is arised from one-dimensional case of
[16].

In this work, we turn our attention to the time fractional derivative with
non-singular kernel. First, we apply a second-order scheme for approximating
the time fractional derivative by Caputo-Fabrizio derivative. Then, we use a
fourth-order CFD scheme to solve one-dimensional fractional Cattaneo equa-
tion. For two-dimensional case, we design two ADI schemes in time stepping
which resulting two-dimensional system is reduced to series of one-dimensional
equations. In this paper, we introduce the ||.|| 71 norm, which is proved to
be equivalent to the standard H' norm. Furthermore, we prove that present
scheme is unconditionally stable and convergent in H' norm with the order
O(7? + ht).

The reminder of the paper is organized as follows. In section 2, the Caputo
fractional derivative is described. In section 3, we develop the CFD for the
one and two-dimensional fractional Cattaneo equation. Section 4 is devoted to
theoretical analysis of this scheme. In section 5, the stability and convergence
analysis of the compact ADI scheme is discussed. In section 6, the numerical


http://dx.doi.org/10.61186/ijmsi.19.2.127
http://ijmsi.com/article-1-1783-en.html

[ Downloaded from ijmsi.com on 2025-07-04 ]

[ DOI: 10.61186/ijmsi.19.2.127 ]

130 Z. Soori, A. Aminataei

examples are carried out which confirm the accuracy of the scheme. Concluding
remarks are given in section 7.

2. PROPOSED SCHEME

2.1. One-dimensional fractional Cattaneo equation. In this section, we
study the Caputo-Fabrizio type Cattaneo equation where the fourth-order com-
pact difference method is used to discretize the spatial derivative.

Consider the following time fractional Cattaneo equation given by:

ou(z,t o O*u(z,t
P Dputet) = 5+ f@t), (@) €= 0.0 x 0.7),
l<a<?2,
(2.1)
with the initial conditions
u(z,0) = 6(x), % — (@), 0<z<L, (2.2)
and the boundary conditions
uw(0,t) = v1(t), w(L,t) =a(t), 0<t<T, (2.3)

here, f(z,t) is the source function with sufficient smoothness, ¥ (z), ¢(x), @1 (t)
and s (t) are given continuous functions.

Consider Eq. (2.1). For spatial and temporal approximations, let h = %
and 7 = % be the spatial and the temporal step sizes respectively, where M

and N are some given positive integers, so we define

x; = th, 1=0,1,..., M,
t, =nT, n=20,1,...,N.

We introduce the following notations:

n+i 1 +1 n+i 1 +1
v, = 5(1}? + ), So; 2 == (vt —of),
T
00 1 = l(vn —o' ) 820t = l((5 vl — 000 1)
mi_l—hz i—1)s wz—h $i+% xi_%v

and

s = Ligr +10v; +v;-1), 1<i< M -1,
O v, i=0or M.

It is obvious that

h2
Ho; = <I+126§>vi, 1<i<M-—1.
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Lemma 2.1. (See [33]). Let function g(z) € CO[z;_1,7;11], and &(s) = 5(1 —
5) —3(1 — s)5, then
9" (@ip1) + 109" (z:) + 9" (@i-1) _ g(@i1) — 29(x) + g(wi1)
12 B h?
hto[!

" 360 J, [9°(w; — sh) + g%(x; + sh)]&(s)ds.

Define the grid functions
Ul =u(zitn), fi'=f(zity), 0<i< M, 1<n<N.
According to [16], we define

1 DL fuf = ouk okl
DR tury) = oy O (M

o — 1 7’2
k=1
1 L _ 0 a1
n <U7, zul _7/))]\471%_1,%l‘—1r2
a—1 T T
1 n+l n b1
= — | Mybu,; * — M, — M,,_ S
(a— 1)1 [ 00¢U; kZ:l ( k k+1) U,
- nwi] +R"?, (2.4)
where
1-— 1—
Mk:exp(QioéTk)—exp(270é7—(k;-|-1))7 (2.5)
and
n+s 1 ZL [T} k (3)
F; 2:2fa2/t (7' + (s = te)uy” (w4, ck)
k=0 n—%
t,o 1 —S§
€xXp ((1 - Oé)n2+2>ds
—a
1 0 o . ti—s . »
oy G (L ) TN
2
where
1
k= @72 [“§4)($i,771) + U£4)(l’i,772)} +0(r?) = 0(t%), m € (ths s 1)

2 € (tk_%;tk)~ (2.7)

Lemma 2.2. ([16]). For the definition My, we have My, > 0 and My < M,
Vk <n.

Lemma 2.3. Let 1 < o < 2 and My, = exp (3=27k) —exp (5=27(k+1)), then

a—1 1l -« a—1 11—«
t < M <
270&7'exp(27a k+1) k 27a7exp(

5 Oztk).
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Proof. Noticing that My = §= [}/ " oxp (322 2z)dx, and exp (5=%tpq1) <
exp( x) < exp (;:—gtk), by propertles of the integral, it is easy to verify
that

tht1 1— tht1 1— tht1 1—
/tk exp(2 Ztk+1)dxg / exp(2 Zx)dxg / exp(2_2tk)dx,

- tr - tr

1l-« 2 -« l-—a l-«a
t < t — t
Texp (5——ti1) < 7 (exp (G tw1) —exp (G—t))
l1-«
< Texp (2 — atk),
multiplying the above equation by g‘f_i, we complete the proof. (I

Lemma 2.4. ([16]). Suppose u(z,t) € C;L:?([O, L] x [0,T)), then we have

n+3 (3) 20 — 2 , 9

R3] < g e [ (v )| exp (5—0) P+ 0(7%). (28)
ntg _ tagitts .

Let f; = f(xi,thr%) and t,,1 = 5=, Then according to the new

2
Caputo-Fabrizio formula (2.4), Eq. (2.1) can be written as follows:

n 1 1 n “
56U + @ Dr [Moét T2 ST (Mo = My o) iU — My
k=1

82u n n
8 g(m“ n+ )+f +2 +(R) +27

1<i<M-1, 0<n<N-1.

Operating H on the above equality, we have:

n

n+ % 1 n 1
Ho, U2 + WH [M05tU I Z (M, — Mn—k+1)5tUik ? = My
k=1

2

—”H8 o (@artyyy) F M MR,

1<i<M-1, 0<n<N-L1 (2.9)
Lemma (2.1) implies that
82U 2 n+2 n+2 .
H@(£thn+%)—5 +(R) 5 1§Z§M—1,0STL§N—1,
(2.10)

where

. _ L4 1 |:86u a6u(.231 + sh) |(s)ds. (2.11)

9as 7 M F s
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Substituting (2.10) into (2.9), we obtain

n
(a — 1)rHOU > + 1 {MoétUiH; 3" (Mt = My o) 82,
k=1

= (a— 1)ro2U™ " 4 (o — Drrf™ 4 H(R)ME,

1<i<M—-1, 0<n<N-—1, (2.12)
where
ntl ntl ntl
R = H(R); T+ (Ra)] 2 (2.13)
Noticing that
n+i 3) 200 — 2 2 2
|(Rt)i 2 | < o1 Orgnl?%(n |ut (a%,czc)| exp ( 5 )72+ O(7?).

Then it holds that
R?| < Cr(*+h*), 1<i<M-1,0<n<N -1, (2.14)

where C'r is a positive constant, that is independent of the time step size 7
and grid spacing h. In addition, it follows from the initial and boundary value
conditions that

Uy =pi(tn), Uy = p2(tn), 0<n<N-1,
(2.15)

U2 = é(z;), 0<i<M.
(2.16)

Omitting the small term R;H_ ? and replacing the function U;* with its numerical
approximation u', we obtain the following difference scheme

n

=

(o — 1)r%5tu$+% +H [Mo(stu?*% = (M - Mn_kﬂ)gtuf* — M1,
k=1
= (a — 1702 1 (a— 1)rHfE,
1<i<M-1, 0<n<N-1, (2.17)
uy = 1(tn), upy = p2(tn), 1<n <N, (2.18)
ud = p(x;), 0<i<M. (2.19)
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3. MATRIX FORM OF THE NUMERICAL SCHEME
If we write Eq. (2.17) at each mesh point and u" = [u},u3, ..., u}, |7
can give the matrix form of the proposed method by

, we

Autt = Bu =Y Cp(uf — w4 P =0, N -1, (3.
k=1
where the tridiagonal matrices in (3.1) are given by

A =tri [al,aQ,a;;} ,
M—1xM—1

B = tri |:b1,b2,b3:| 5

M—1xM-1

where
a Z%[(a—l)‘*‘Mo] —(05;1721)72,
agz%[(a—l)—&-MO] +2(a—h721)7'27
agzé[(a—l)—&-Mo] —(a_hizl)#,
blzé[(a—1)+M0]+(a7hin)Tz,
bzz%[(a—l)—l—Mo] _2(0‘2721)72,
by = (0= 1)+ M) + C=T

and finally, the column vector in R~ is given by

Ey
Fy
= :
Frp o
3V
where
n 1 (a — 1)7_2 n+1
F1 = — <12 [(OZ — 1) + MO] — hQ)uO_'_
1 a—1)72
— <12 [(O{ — 1) + MO] — (h2))u8 + TM7L'L/)1,
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n+%

Fy =71Mpe + (a — 1)7’2’Hf2 ,

n+i
Fry_o =1mMytp—o+ (a — 1)7'27'[fM+_227

a—1)72 1
Fy_=— (112[(a —1)+ My — (h21)>u?vj'
1 (a—1)72\ ,,
n+%

+ TMpar—1 + (= 1)T*H [ 3,

10 1
12 12

1 10 1
12 12 12

C]? = (Mnfk - Mnfk%»l) )

1 10

1
2 12 12

1 10
12 12

and My, is defined in (2.5). Also tri[a1, a2, as](ar—1)x (v—1) denotes a (M —1) x
(M —1) tri-diagonal matrix. Each row of this matrix contains the values a1, as
and agz on its sub-diagonal, diagonal, and super-diagonal, respectively.

4. ANALYSIS OF THE PROPOSED SCHEME
4.1. Solvability. For the solvability of the scheme we have:

Theorem 4.1. The difference system (2.17) has a unique solution.

Proof. For any possible values of 7, « and h, the coefficient matrix A is strictly
diagonal dominant. Consequently, it is non-singular, thus it is invertible.
Hence, in this point of view, we can conclude that the difference scheme (2.17)-
(2.19) has a unique solution. O

4.2. Stability. Here, we first introduce the following space of grid functions
which are basic in the whole theory.

Sh:{U|U: (U07’U17"'7’UM)3 Vo = Um :O}
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For any grid function w,v € Sy, define the inner products and L, norm, H'!
and ||.||3 norm as follows:

M-—1
(v, W) =h Y viw;, vl = (v, v)n,
i=1

M
1 1
16:0] = () _(Gavi3)®)?, Nollar = (ol + 116:0]1%) %,
i=1
h2
(u, V)3 = (O, 650)p — E<§iu7égv>h> [vllae = v/ {u, wn,
and we denote ||§2v] similarly.
Lemma 4.2. See([26]). For any grid function v € Sy, it holds that ||v] <

Lemma 4.3. See([26]). For any grid function v € Sy, we have
2 2 2 2
3180l < llvllz, < lldav]”. (4.1)

From the Lemmas 4.2-4.3, one can result that the norm ||.||3 is equivalent
to the standard H' norm and is more convenient than the standard H! norm
for stability and convergence analysis.

Lemma 4.4. See ([25]). For any grid function u € Sy, we have

R (o i A (42)
In proceeding to determine the stability of the difference scheme (2.17)-(2.19)
with respect to the initial values ¢(z), ¥ (x) and the source term f, we now
prove the following theorem.

Theorem 4.5. Suppose {ul|0 < i < M,1 < n < N} is the solution of the
difference scheme (2.17)-(2.19), where ul = u%, = 0; then it holds that

m—1

1 1-— 1 1
O@™) < (o= 8l + 5 (1 - exp(G—o D) IHE|? + (o= Dr S s,
n=0

0<m<N.
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n 1 . . .
Proof. Multiplying the Eq. (2.17) by h?—létui+2, summing over ¢ for i =
1,2,...,M — 1, we have:

(a = D7||HSu™ 2|2 + M| Howu™ 2 ||?

=3 (Mg = My o) (MO =2, Houm 2, — My (Hap, HOumt7)
k=1

h
= (o — D)7r(2u" 3, Hou t2), + (o — Dr(Hf "5 Hou tE), . (4.3)
It follows from Lemma (4.4) that
n+1 n+1 a—1 n n
(0 = Dr{gu2, Howu =), = ——— (" |3 — [lu"113)- (4.4)

Substituting Eq. (4.4) into Eq. (4.3) and noticing that both M,, and M, _; —
M, _k41 are positive, we obtain

n+% n+% a—1 n n

(o = D)7 [ M8 | 4 Mol Howu™ 2 > + == (™15, = Ila”[15,)
1 1 1 nal

<D 5 (Mt = M) [HOu 2 4 o (Mo — M) [ Mo 2

Mn n+1 1 n+1 n+1
+ (12 + o™ 2) + 5 (o= Dr (17732 + Mo 5. (4.5)

Combining Egs. (4.3) and (4.5), we have:

1n+1 klye o a—1, o
5D My [ MOt 32 < S [l
k=1

o —

5 1 ||un+1||$_[ 4

1 < 1
+§’;Mn,k||mtuk 3|2

M,
+ 7”7'“/1”2
1 1
+ 5(a — D7 Hf 2% (4.6)

Let O(u®) = [[u®|3; and ©(u") = &34 [[um 3, + 3 00, Moo HEub 2|2,
Sum with respect to n from to N to obtain

_ 1 1 il
O@uN) < O™ ™) + S My [HY| + 5 (o = Dr|[H ™2
1 N-1 1 N-1
<O@) +5 Y MalHE[P + Sla=1)r Y122 (47)
n=0 n=0

It is easy to verify by straightforward calculation that
SN M, =1 — exp(3=2ty), and thus

N-1
1 1 l1-a
5 2 MelHe|* = 5 (1= exp(5— 1)) IIH])* (4.8)
n=0
Substituting Eq. (4.8) into Eq. (4.7), we obtain the desired result. O
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4.3. Optimal error estimate. Now we can consider the error estimate of the
difference scheme (2.17)-(2.19). Let

el =u(z,ty) —uly, 0<i<M, 0<n<N.

K2

Subtracting Eqs. (2.17)-(2.19) from Egs. (2.12), (2.15)-(2.16), we obtain the

error equations

1
2

ol ot 1 n
(@ —V)rHEe 2 +H [Modtei ST (M - M,y g 11)80es
k=1

1
=(a—1)70%/ "2, 1<i<M-1, 0<n<N-1,

7 9

(4.9)
eg =€y =0, 1<n<N, (4.10)
=0, 0<i<M. (4.11)

Multiplying the Eq. (2.17) by hH(Ste?Jr%, summing over i fori = 1,2,..., M —1,
we have:

(o — 1)7||He™ 2|2 + Mo||Hbe™ 2|2

=3 (Mg = Moy goy1)(HSie" ™2 HOum T 7),
k=1

= My (Hb He" 3), = (o= 1) (aem E Hen ),
+ (o= Dr{ufd et ), (412)

The following relation can now be obtianed in a similar way to the stability
analysis as follows:
n+1

_1
D My gy |[HEe 2| <
k=1

1
2

-1
e+ 13, + e 3

a—1
2

1 < 1
+§;Mn,k||ﬂrz5te’f 3|2

M,
+ 7”7{1/’”2
1 1
+ 5(a — D7 Hf 2% (4.13)

By considering the definition of © in stability analysis, the above relation can
be rewritten as follows:

1
0" ) < O(e") + 5 (a — r|[ B3|, (4.14)
applying Eq. (2.14) and sum with respect to 0 <n < N — 1 to obtain:
0(eN) < O(%) + C(r? + hH2 (4.15)
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By Gronwall inequality, we received the following:
a—1
2

™13, < ©(e™) < O(") + C(r* + 1), (4.16)

and

N
> My p|[HoF 22 < 0(eN) < O(eN) + O(r* + 1), (4.17)
k=1

M| —

Theorem 4.6. Suppose that the equation (2.1) has smooth solution u(x,t) €
C’g:f, and let {ul?|0 < i < M, 1 <n < N} be the solution of the difference
scheme (2.17)-(2.19), then it holds that

le™ 13, = O(r* + h*).

4.4. Two-dimensional fractional Cattaneo equation. Consider the fol-
lowing problem involving the fractional Cattaneo equation in two-dimensional:

du(z,y, t
Qe 1) & Drute,y,t) = Aulay,0) + fa0.0), (ey) €0 0<I<T,
l1<a<?2, (4.18)
with the initial conditions
ou(z,y,0 ~
ur.0) = owy), PEVD ey @y ea=auon, (@19)

and the boundary conditions
u(z,y,t) = o(z,y,t), (v,y) €0, 0<t<T, (4.20)

here, Q = (0,L1) x (0, Lz), 0 is the boundary of Q, f(x,y,t) is the source
function with sufficient smoothness, ¥ (x,y), ¢(z,y) and p(x, y,t) are given con-
tinuous functions.

Let h, = 16—111, hy = I\L/TZ and 7 = % be the spatial and the temporal step sizes
respectively, where M7, My and N are some given positive integers. So we
define

z; = ihg, i=0,1,..., M,
yj:jhya j:Oala'“aMQa
t, = nr, n=20,1,...N.

Qp = {(24,y;)]0 < i < My, 0< 35 <M}, Qp=Q,N0 and 9, = Q) N O,
For any grid function u = {umO <i< M;,0<j< My}, denote

1 1
B 2,

0oty 5= 7= (Uig —wicrg),  Optiig = 3 (0atlipg ;= 0atti_g ),

x x

1
61/6131’61_%7]_% - E(éwul_%)] - 6wui_%’j_l)7
1
2 2 2

Oyl 1 = 7—(0uij — Ozuij-1),

Vi j—5 hy
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H _{ T (uipr s+ W0uiy +upry), 1<i<Mi—1,0< <M,
zWij = .
Us j, i =0 or My,

13 (Wiga1 +10ui 5 +uij1), 0<i< M, 1<j<M—1,

Hyu; j = .
yiJ { Uj 5, j =0 or M.

Similarly, the notations dyu; ; 1, 5§ui_’j, 6z5§ui_%_’j and 512:521%7]- can be defined.
The discrete Laplace operator is denoted as Apu;j = 03u; j + 05u; ;.
It is obvious that

h? h;
kul}j = <I+ 1;52) Ui j, Hyum = <I+ 1;55) Ui j, (l‘i,yi) € Q.

For simplicity of the formulas in our further consideration, we define:
'Huij = HmHin,j, Ahuij = (Hyéi + HICS?E), (l'i7 yz) S Qh.

1
Let f;;-+2 = f(@i,yj,tnys) and b, 1 = % Then according to the new

Caputo-Fabrizio formula (2.4), Eq. (4.18) at points (z;,;,,, 1) can be written
as follows:

1 nti k—3
m |:M05tUij - ]CE_:I (Mnfk - M’I’L*k+1)5tUji - M’ﬂd}lj
B 0%u y 0%u ’
_@($27y]7 n+%)+87y2<$7,7y]3 n+%)

1
SU 7+

L ntl
—l—fij+2 + (Rt)ij+27 (x5,9;) €, 0<n<N-1L

Operating ‘H = H,H, on the above equality, it leads to:
L by k-
PR [MoatUij =Y Myt = Mo—ir)8eU;; * — Moty
k=1
0%u 0%u
= H@(fiayjatm%) + Hain(xi7yj7tn+%)

HOULT? +

FHTE A HR)TE, (wny) € 0<n<N-1 (421)

Lemma (2.1) implies that

Hm@(xivijtn) = 5§:Uij + (Ra)fys (w4,95) € Qpy, 0<n <N,
82’& 21N n
Hyaiyz(xivijtn) =0,Uj; + (Ry)is (wiyy;) € Ay, 0 <n <N, (4.22)
where
n hi L 10 %
(Rx)ij = 360 ; {M(m’ —shy) + @(Zz + th)] &(s)ds,
n h’4 ! a6u 86u
(Ry)iy = ﬁ ; {ay(j(yj —shy) + aT/G(yj + Shy)]ﬁ(s)ds-
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Then
0%u 2 n+2 n+2
HyHmﬁ(xhyﬁthr%) H 695 ij +H ( ) ) (xiayj)egfu OSTLS]\L
82 2 "+2 "+2
HHya Q(xzaij n+ ) ’H(Sy ij +H ( ) ) (.’Ei,yj)EQh,OSTLSN.
(4.23)
ubstituting Eq. (4. mto Eq. (4.21), we obtain:
Substituting Eq. (4.23) i Eq. (4.21 btai
n - 1
(a = 1)THU; +2 +H[M05t +3 Z (My—j, — Mn—k+1)5tU]§- ? = Myij
k=1
n ~ n+li
= (a— DA UM 4+ (a— DTHS, tE (R):2,
(i,y;) € W, 0<n <N -1, (4.24)
where
Ll il il il
(R);™ = MR + My (Ra) T 4+ Ha(Ry)]
noticing that
n+l (3) 200 -2, , 2
‘(Rt) 2’ < — orgnl?%{n‘ut (a:i,yj,ck)‘exp (ﬁ)T +O(77).
Then it holds that
RT3 < Cr(r2+ b+ 1Y), (2i,y) €, 0<Sn<N—1,  (425)

where Cg is a positive constant, that is independent of the time step size 7 and
grid spacing hg, hy.

1y )2

I 5252515 +2 into right hand side of Eq.

Adding small term —45((3
(4.24), we obtain:

n

(a — 1)7_H6tUZ+% + H |:M05tUZ+§ - Z (Mnfk — Mn,k+1)5tU»k,._% — anlj

]

k=1
_ _ ntg ((a_l) ) 2 2 n+2
= (a—1)TALU; 4((@—1)T+M)665t
Fla— DR+ R, (oy) € 0<n< N -1, (4.26)
where
ntl Ll -1 n
(R)™F2 — (R)"F? 4+ ((a=1)r)"r? 52828,U0 2.

)

t 4((a=1)7+ My) *

In addition, it follows from the initial and boundary value conditions that
Uy = o(xs,y),  (xi,5) € O, (4.27)
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Replacing U/ with it’s numerical approximation u; in Eqs. (4.26)-(4.28) and
neglecting the last two terms of Eq. (4.26), we can derlve the following differ-
ence scheme:

(Oz — 1)T7‘[§tu:l]»+§ + 7‘[ {Mo&,u?fz — Z (Mn—k — Mn_k+1)5tufj7§ — Mni/}ij
k=1
2
n+2 _ ((a - 1) )
4((a = D)7+ My) *

= (o — 1)7TApu, nts + (= 1)THS; (5252(5,5 u; 2,

uty = o(xiys),  (i,y5) € D, (4.30)
uly = (@i yjstn),  (2i,y;) € 9, 1<n < N. (4.31)

Define p = (o — 1)7, we now rewrite Eq. (4.29) as follows:

MH(Stu +2 +H |:M()(5tu — Z (Mnfk - M, _ k+1)5tu” — ni/)”
k=1
A gt - IET sagg v
= HARU; +u f - 4(M+MO) z%y tuij ’
(zi,y;) €y, 0<n<N-1L (4.32)

After simplification of terms and using the approximate factorization technique,
we get as follows:

pr pr "
(Hl(/.t + Mo) — ?(Si) (Hy — maj)uij+l
= (Mol + Mo) + £202) (H, + (uiiMo)éz)

n+2

n
1
+ E My — M,,_ k+1)H6tU 24+ TMnHwij + ,LLTHf
k=1

(xi,yj) €y, 0<n <N -1 (4.33)

Difference scheme Eq. (4.33) for solving the two-dimensional problem can
be divided into two sets of independent one-dimensional problems. For this
purpose, we apply the D’Yakonov and Peaceman-Rachford ADI methods [20].

Introducing an intermediate level u*, an ADI scheme of D’Yakonov-type is
designed as follows:
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(Ha(p+ Mo) — 8702)uy; = (Ha (M+M) BI52) (Hy +2(#+M0)5§)

‘|‘Z ( n—k — Mn— k+1)H5tu : +TMTLH¢13+N’T,HJCH+2
].SZSMl_]-a
62) n+l _ 1§j§M2_1 n:O,l,...,N—l,
Oy U

(Hy 2(M+Mo uzzl’
* 2 n * —

Ug,; = (H 2(M+M0 5 )U'Oj » Upgy 5 = (Hy

’U’ZO = @(xza y07t )7 @,MQ - Qp(xivysztn)-

2(pu+Mo) +M0

(4.34)
At first, we solve the first and third system of equations of (4.34) for fixed
J € {l,..., Mz — 1} to compute u;;. Having computed u;;, we then solve the
second and fourth system of equations of (4.34) for fixed i € {1,..., My — 1} to
compute u;;
The scheme Eq. (4.33) can be decomposed into an ADI scheme of Peaceman-
Rachford type as follows:

(Ho(p+ Mo) — 2762)uf; = (Hy + 2(M+M0)55) n
o) Soper (M — Myy_py1)Hy §tul-j

n+3
2(;L+M0)Mn7'[y¢ij 2(M+M(,)H f i
1<i<M;—-1,n=0,1,...,N — 1,

(4.35)
(Hy — 503 )uiy™ = (Ho(p+ Mo) + 15767)u;
o) Py 1( nk — Mn_ky1)Hy 5tufj_§
2(u+Mo)M Hgﬂ/h; 2(M+MO H fn+2

1<j<My—1,n=0,1,...,N — 1.

5. STABILITY AND CONVERGENCE OF THE COMPACT ADI SCHEME

To analyse the stability and convergence of the Compact ADI scheme (4.29)-
(4.31), we introduce some lemmas. We first introduce the following space of
grid functions as follows:

Sy, = {v|v = {vi;|(z4,y;) € U} and v;; = 0 if (25,y;) € O}
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For any grid function w,v € Sy, define the following inner products and norms.

M,—1 Ms—1
(W™, 0™, = hyhy Z Zw” vk, loll = /v, v},
Mi—2 Ms—1 %
Jocoll = [y 23 6y
i=3 =2
My, Ms
10,0,0] = [h hy Y 160601 51l ]
i=1 j=1
M;,—1 M> 1 Mi—1 Ms—1
w&w=%m§32@ﬁ%_ﬂ7|WU—W§jznﬁmﬂ
i=1 j=1 i=1 j=

and we denote [|62v], ||6,v], and [|6,6;v] similarly. The discrete semi-norm
H' and H' norm of the space S}, are defined by

190l = (18017 + 1,002 %, Jlolln = ([oll® + 1V40]%) 2,
and )
ol = (Ml + [Havll3) 2,
where

1 h 1
[olla = (1620]1% — z\|52v|| )2 o]z = (16,011 — ||52 )2,

Lemma 5.1. See ([36]). For any grid function v € Sy, we have

48(L2 + L3)

4
loller < lloll g2 < gllvlle (5.1)
27|6(L% + L3) + L3L3

From Lemma 5.1 one can result that the norm |.||5 is equivalent to the
standard H' norm. Beside, it is more convenient than the standard H' norm
for stability and convergence analysis.

Lemma 5.2. See ([36]). For any grid function v € Sy, it holds that

(Habm 4,620 by = (o4 — (7)), (52)
(Hydeo™ 8202, = = (o — o). (53)

Lemma 5.3. See ([36]). For any grid function v € Sy, it holds that

n+i n+3 1 n n
(Ao 3, 1o 2 ) = = (0" = 10" 7)), (5.4)
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and

(53551}, Hodp > =]10.0,0])°. (5.5)

Wl =

Theorem 5.4. Suppose {u;|(wi,y;) € Q, 1 < n < N} is the solution of the
difference scheme (4.29)-(4.51), where u; = 0 on 0Qy; then it holds that

m—1
m 1 11—« ntl
™[5 < el + 5 (1= exp(5——tn)) IHY|? + (= 1) Y (1Hf 2|2,
k=0
0<m<N.

-

Proof. Multiplying the Eq. (4.29) by 2hmhy7-l5tu?+2, summing over ¢ and j
for (z;,y;) € Qp, we have:

2o — 1)7||HEu" 2|2 4 2Mo||Ho,um 2 |2

— 23 (Mot — Moy )(HOub =% Houm*2), — 2M,, (Hep, Howu™+7),
k=1

(o= 1)7’)27'2
((a = 1)7 + Mo)
+2(a — 1)7'<’an+%’(5tu"+%,7{5tu"+%>
By Lemma (5.3) it follows that

((a — 1)7—)272 252 n+% n+%
— 2((a — 1)7_ n MO) <63:6;C5tu ,H5tu >

2
(e = 1)7) 772 1
< — 8.0,0u"T2(2 <0 5.7
= 6((a— 1)T+M0)H yOott || =Y ( )

=2(a - 1)T<Ahun+%’7{5tun+%>h 9 <5§5§§tu"+%,7¥,5tu"+%>h

. (5.6)

h

and
200 — Dr{Apu 2 1o ), = —(a = )(Ju" G, — [u”%,). (5.8)

Substituting Egs. (5.7) and (5.8) into Eq. (5.6) and noticing that both M,
and (M, — M, _r4+1) are positive, we obtain:

2(a — 1)7||Hou" 5|2 + 2Mo [ HOu" 3|2 + a — L(|[u" 1%, — [lu)|%)
<Y (Myg = My peyr) [HO M2 |2 4 (Mo — M) | HSu" 2 |2
+ My, (J[012 + [HEu 2 ]?) + (a — D7 (|HF 2] + [Hou"T2]?),  (5.9)

the following relation can now be obtained in a similar way to the stability
analysis in one-dimensional case

1— e ,
O(u™) < (a = DG, + (1 - exp(z—oT) [HY]> + (o~ )r 3 1P,
n=0
0<m<N.
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O

Theorem 5.5. Suppose that the equation (2.1) has smooth solution u(x,y,t) €
C’g:;f, and let {uls|(xi,y;) € Qn, 1 < n < N} be the solution of the difference

scheme (4.29)-(4.31), then it holds that

e |13, = O(r* + hjy + hy).
6. NUMERICAL RESULTS

To show the efficiency of the proposed scheme for the time fractional cattaneo
equation, we present two numerical examples in the one and two-dimensional
cases. We test the accuracy and the stability of the presented scheme in the
paper for different values of 7,h and h = h, = hy. In order to carry out our
numerical examples, we have used the Maple 18 software with a PC of 4 GHz
CPU and 6 GB memory. To show the accuracy of the proposed scheme, we use
the following error norms

_ . _ N
e(r,h) = 152?}\)4(71 |U(x“tn) u; |,

_ s —uN
e(r,h) = 1§£121}\<4_1 |U(x“yj,tn) U ’

We denote the numerical convergence orders by
e(27,h) e(r,2h)
, Rater; =1 ——=.
e(r,h) ) e e ( e(r,h)

EXAMPLE 6.1. Consider the time fractional Cattaneo equation in the form of
[16]

Rater = log, <

ufe) +8FD?‘U($J)=%+JC(JW), O<x<l1l 0<t<l,

u(z,0) = sin(rzx), 0<z<l,

%‘ = sin(rz), 0<z <1, (6.1)
t=0

u(0,t) = u(1,t) =0, 0<t<l1,

in which f(z,t) = sin(7x) <7r2 exp(t) + 2exp(t) — exp(%_fﬁt)). The exact solu-

tion is u(x,t) = exp(t) sin(nx).
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T a=125 a=15 a=1.75

e(r,h) Rater e(r, h) Ratey e(N,M)  Ratey
$ 117Tx107% - 111x107% - 921 x107% -
5 293x107%  2.00 2.78 x 1072 2.00 2.31x107%  2.00
35 7:34x107*  2.00 6.97 x 107*  2.00 579x107%  1.99
15 L81x107* 201 1L72x107*  2.02 142 x107*  2.03
% 463x107°  1.97 4.40 x 107°  1.96 3.84x107° 1.88

Table 1: Numerical convergence orders in temporal direction with h =

1
100

for Example 6.1.

h a =125 a=15 o =175

e(r, h) Ratery e(r, h) Ratery e(N,M)  Rateyy
3 366x107% — 3710 x 1073 — 3.86x 1073 —
$ 225x107% 402 2.27x107*  4.03 247 x107*  3.97
75 1.38x107°  4.02 1.39x107%  4.03 1.45x107%  4.09
% 7.35x1077 423 6.08 1077  4.51 6.44x 1077 4.49

Table 2: Numerical convergence orders in spatial direction with 7 =

1
1000

for Example 6.1.

Table 1 shows that the numerical convergence orders of the new developed
difference scheme (2.17)-(2.19) is approximately O(72) in temporal direction.
Having seen Table 1, we conclude that the accuracy of the preseneted method is
not dependent on . Tables 1 and 2 confirm the theoretical analysis in temporal

and spatial directions, respectively. The plots of the exact and approximate
solutions at final time T" = 1 for different values of a = 1.25,1.5 and 1.75 with

B =

L
100°

T = % for Example 6.1 is shown in Figure 1. Figure 2 exhibits the plots

of absolute error with different values e = 1.1,1.5,1.6 and 1.8, respectively.

for Example 6.1.
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0.000018
0.000016
0.000020 0.000014
0.000012
0.000010
0.000008
0.000006
0.000004
0.000002

0.000025

0.000015
0.000010

0.000005

FI1GURE 2. Plots of absolute error with different o for Example 6.1.

EXAMPLE 6.2. Consider the time fractional cattaneo equation in two-dimensional
domain 2 = (0,1) x (0,1)

Dulewnt) 46 D, y,1) = Auz,y,t) + f(2,1), (2,9) €Q, 0<t <1,
u(z,y,0) = sin(mz) sin(my), (z,y) € Q,
Qu = sin(wz) sin(7y), (z,y) € Q,
t=0
u(z,y,t) = exp(t) sin(rz) sin(my), (x,y) € 09,

(6.2)
in which f(z,t) = sin(nz)sin(ry) | 272 exp(t) + 2exp(t) — exp(é:—it)). The

exact solution is u(z,y,t) = exp(t) sin(wx) sin(my).
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o T D’Yakonov ADI scheme P-R ADI scheme
e(r, h) Rate; CPU(s) e(r,h) Rate; CPU(s)
1.25 1 644x107% - 1 6.44 x 1072 — 2
75 1.63x 1072  1.99 4 1.63 x 1072 1.99 6
35 4.06 x 1073 2.00 11 4.06 x 1073 2.00 14
5 1.01x107% 201 30 1.01x107% 201 46
% 247x107* 203 97 247 x107%  2.03 157
15 $ 551x1072 - 2 551 x 1072 — 2
75 1.36 x 1072 2.02 5 1.36 x 1072 2.02 5
a5 3.37x107% 202 9 3.37x107%  2.02 15
5 833 x107*  2.02 30 8.33x 107*  2.02 44
%5 2.04x107* 204 93 203 x107* 204 153
1.75 $ 429x1072 - 2 429x1072 - 2
75 1.00x 1072  2.10 5 1.00 x 1072 2.10 5
35 241 x107%  2.06 11 241 x 107 2.06 14
15 585 x107*  2.04 30 585 x 107*  2.04 45
35 140 x107*  2.06 95 1.40 x 107* 2,06 150

Table 3: The errors and CPU time (seconds) of the D’Yakonov ADI scheme and the P-R
ADI scheme for Example 6.2.

Table 3 describes the error and CPU time of the proposed scheme at final
time T = 1 and h = %. It is clear to see that the two schemes produce
the same accuracy for the same temporal grid size, while the D’Yakonov ADI
scheme needs less CPU time. Hence, one can conclude that the D’Yakonov
ADI scheme is more efficient than the P-R ADI scheme. From Table 3, this
fact is extracted that the computational orders of our schemes is independent

on the fractional order a.

h e(r, h) Raterr
i 4.05 x 1073 -

3 2.48 x 1074 4.03
% 1.52 x 107° 4.03
35 8.26 x 107 4.20

Table 4: Numerical convergence orders in spatial direction with

1
2000

From Table 4, this fact is extracted that the numerical convergence order in
spatial direction is very close to the theoretical order. Figures 3 and 4 show

a=15and 7 = for Example 6.2.

plots of exact solution, numerical solution and absolute error with different
values a = 1.25,1.5 and 1.75 for Example 6.2, where 7 = % and h = %.
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s
Exact solution (o=1.25)

Absolute erfor (a=1.25) Exact solutfon (o=1.5)

Exact solutfon (0=1.5) Absolute erfor (a=1.5)

FIGURE 3. Plots of the exact solution, numerical solution and
absolute error at T'=1 with h = %,T = 5—10 and o = 1.25,1.5
for Example 6.2.
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Exact solution (0=1.75)

Absolute erfor (0=1.75)

FIGURE 4. Plots of the exact solution, numerical solution and
absolute error at T' = 1 with h = %, T= % and o = 1.75 for
Example 6.2.

7. CONCLUSIONS

In this paper, we have presented a high-order CFD and two ADI scheme for
the solution of fractional Cattaneo equation in one and two-dimensions, respec-
tively. The time fractional derivative has been described in the Caputo-Fabrizio
sense. The D’Yakonov ADI scheme decreases CPU time in comparison with the
P-R ADI scheme. The solvability, unconditional stability and H* convergence
of the presented scheme have been proved. Numerical results confirm that the
presented scheme has approximately O(h*) in space variables and O(72) in the
fractional time step which are compatible with theoretical results. What dis-
tinguishes this paper from our previous studies is its accuracy aspect because
the accuracy of the suggested scheme is not dependent on the fractional order
a.
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