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ABSTRACT. Argerami and Farenick have found conditions for the injective
envelope of a separable C*-algebra to be a von Neumann algebra. In
this paper, we introduce an equivalent version of this result by finding
conditions for the G-injective envelope of a separable G-C*-algebra A to

be a von Neumann algebra, when G is a discrete group acting on A.
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1. INTRODUCTION

1.1. Notice. In 1979, Hamana [7, theorem 4.1] used the Arveson extension
theorem to prove that any C*-algebra has an injective envelope which is unique
up to *-isomorphism. Indeed, he showed that if A is a C*-algebra, then the
image of a unit-preserving idempotent contractive linear map ¢ of an Arveson
injective extension B into itself, is the injective envelope of A. Later, in 1985,
Hamana found an equivariant version of his result [9] by showing that there
exists a unique G-injective envelope (I(A), k), for any G-operator system A,

such that if (B, £) is any G-injective envelope of A, there exists a complete
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order isomorphism ¢ : I¢(A) — B, satisfying ¢ o k = £, where G is a discrete
group acting on A and B.

On the other hand, an injective operator system is unitally and completely
order isomorphic to a unital, monotone complete AW *-algebra [5, 12]. In the
above cited result of Hamana, if ¢ : B — B is a minimal A-projection, then
the multiplication on Ig(A) = ¢(B) is given by the Choi-Effros product, that
is, by

xoyzap(:cy), l‘,yEIg(A)
and the involution and norm on I (A) are inherited from B. Furthermore, if A
is a unital G-C*-algebra, then A embeds into its G-injective envelope as a G-
invariant unital C*-subalgebra. In the case when G = {1}, the above product
yields a C*-algebra injective structure on the injective envelope I(A) of A.

In this paper, we extend a result of M. Argerami and D. R. Farenick [2,
Theorem 1.2] to the setting of discrete C*-dynamics. In the next section, we
set up the terminology and notations for G-C*-algebras and G-W *-algebras.
In the main result of the paper in section 3, we show that parts (), (4¢) and (v)
of Theorem 1.2 in [2] remain equivalent in separable G-C*-algebras for discrete
C*-dynamics.

2. G-C*-ALGEBRAS

Let B(H) and K(H) be the set of bounded and compact operators on a
complex Hilbert space H, respectively. A C*-algebra A is a W*-algebra if A,
as a Banach space, is the dual space X* of some (in fact, unique) Banach
space X. It is a classical fact that a C*-algebra A is a W*-algebra iff A has a
representation as a von Neumann algebra of operators acting on some complex
Hilbert space. A C*-algebra A is an AW *-algebra if the left annihilator of each
right ideal in A is of the form Ap, for some projection p € A, or equivalently,
if every maximal abelian C*-subalgebra D C A is monotone complete [3]. Any
W*-algebra is an AW *-algebra, but the converse is not true, i.e., there exists
AW*-algebras that fail to have any faithful representation as a von Neumann
algebra.

In the category of C*-algebras and completely positive (c.p.) linear maps,
the pair (B, k) is an extension of a C*-algebra A, if B is a C*-algebra and
k: A — Bisacp. map. A C*-algebra A is injective if we can extend any
A-valued completely positive linear map of subspace S of a C*-algebra C to
an A-valued completely positive linear map of the C*-algebra C'. An extension
(B, k) of a C*-algebra A is called the injective envelope of A if B is injective and
the only completely positive linear map of B into itself that fixes each element
of k(A), is the identity map idp. In [7], Hamana proved that any C*-algebra
has a unique injective envelope. Following Choi and Effros [4], he considered a
completely positive linear map ¢ of the C*-algebra B into itself, and observed
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that Im(¢) with multiplication ” o”, z oy = ¢(xy) for all z,y € Im(¢), and
involution and norm induced by those of B, is a unital C*-algebra. The C*-
algebra I'm(¢) is denoted by C*(¢). Hamana proved that C*(¢) is injective
if B is injective in this category. Finally, if A is a C*-algebra, there exists
an injective C*-algebra C' containing A as a C*-subalgebra, by the Arveson
extension theorem (which asserts that the algebra of bounded operators on a
complex Hilbert space is injective). By [7, Theorem 3.4], there exists a minimal
A-projection ¢ on C. If B = C*(¢) and « is the canonical inclusion of A into
B, then (B, k) is an injective envelope of A.

In this section we generalize some of the results obtained in the category
of C*-algebras and completely positive linear maps to the category of G-C*-
algebras and completely positive G-linear maps. We assume throughout this
paper that G is a discrete group.

A G-C*-algebra is a C*-algebra which equipped with an action of G by
automorphisms. In other words, a G-C*-algebra A is a C*-algebra and a left
G-module. Given two G-C*-algebras A and B, the unital completely positive
linear map ¢ : A — B is G-equivariant, if ©(g-a) = g - ¢(a), for any g € G
and a € A. A G-C*-algebra B can be viewed as a C*-algebra over the discrete
group algebra L!'(G) with the module operation defined by

frz=[f(gly(x)dg , feL'(G),zeB

One could define the category of G-W*-algebras and G-injective objects in
this category in an analogous manner. A G-C*-algebra B is a G-W*-algebra if
B is a W*-algebra with the L' (G)-module structure such that the map x — f-x
in B is positive and normal, for each f € L*(G)*.

A G-C*-algebra A is said to be G-injective if for any G-C*-algebras B and
C, any G-equivariant complete isometry x : B — C' and any G-equivariant
u.c.p map ¢ : B — A, there exists a G-equivariant u.c.p map @ : C — A

satisfying ¢ o k = ¢, i.e., the following diagram commutes,

B—sC

N

A

This simply means that G-equivariant u.c.p maps into A have G-equivariant
u.c.p extensions.

Suppose that A and B are G-C*-algebras. We say that;
(i) (B, k) is a G-extension of A, if kK : A — B be a G-equivariant and u.c.p
*-monomorphism.
(ii) The G-extension (B, k) is G-essential if for any G-C*-algebra C' and any
G-equivariant u.c.p map ¢ : B — C, ¢ is completely isometric whenever pox
is.
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(iii) The G-extension (B, k) is G-rigid if the only G-equivariant u.c.p map
¢ : B — B satisfying ¢ o k = k is the identity map idp.

The pair (B, k) is a G-injective envelope of A, if (B, k) is G-essential , G-rigid
and B is G-injective.

Throughout this paper, we denote the G-injective envelope of a G-C*-algebra
A by Ig(A). When G is trivial we are back to the notations of injectivity for
C*-algebras, as well as plain essentiality and rigidity of extensions.

Let A be a unital G-C*-algebra and let § : G — Aut(A) be a G-action.
Writing 0, = 0(g), for all g € G, by injectivity each 6, : A — A (a — ¢ - a)
extends to a s-isomorphism Ig(A) — Ig(A), still denoted by 6,. Due to
rigidity, one can show that 8,060, = 04, on I¢(A), for all g, h € G, so that I (A)
becomes a unital G-C*-algebra containing A as a G-invariant C*-subalgebra.
Further, the inclusion A < I¢(A) is a G-essential extension of A.

In [9], Hamana proved that there exist a unique G-injective envelope (I (A4), &),
for any G-operator system A, such that if (B, £) is any other G-injective enve-
lope of A, there exists a complete order isomorphism ¢ : I¢(A) — B satisfying
poKr=AK.

Let H be a complex Hilbert space and A be an operator system in B(H),
then £>°(G, A) becomes a G-operator subsystem of B(H ® (?(G)) with the
action of G given by the left translation, i.e.,

(9f)(h) = f(g~'h), gheG, [elx(G, A)

and each f € (G, A) is acting on H @ ¢*(G) by f(£ ® 64) = f(9)§ ® dg, for
£ € H and g € G.

Hamana showed that if A is an injective operator system, then (G, A) is
G-injective, and that any G-injective G-operator system is injective.

If A C B and B is a G-injective G-operator system, then an A-projection
on B is a G-equivariant u.c.p map ¢ : B — B satisfying ¢|a = ida. A
partial ordering on the set of A-projections on B can be defined by ¢ < 1, for
A-projections ¢, ¢ : B— Bif poy) =1 op = .

By the Zorn’s lemma, there exists a minimal A-projection ¢ : B — B on
the set of seminorms induced by A-projection on B. In this argument, letting
k : A — B be the inclusion map, then (¢(B), k) is a G-rigid and G-C*-
injective extension of A. Therefore, (¢(B), k) is the G-injective envelope of
A.

A canonical G-injective G-operator system is £>°(G, B), where B is an in-
jective C*-algebra. Let A be a unital G-C*-algebra and B be a unital injective
C*-algebra containing A Let k : A — M = (*°(G, B) be the G-equivariant
injective *-homomorphism given by

k(x)(g) =g 'z, xz€A, gedq.
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Then there is a k(A)-projection ¢ : M — M such that (¢(M),x) is the
G-injective envelope of A. Thus, for any injective extension B of a unital
G-C*-algebra A, the map k: A — ¢*°(G, B) is the canonical inclusion map.

Any injective operator system is unitally and completely order isomorphic to
a unital, monotone complete AW *-algebra [5, 12]. In our setting, if A C B are
as above and ¢ : B — B is a minimal A-projection, then the multiplication
on Iz (A) = ¢(B) is given by the Choi-Effros product, i.e., by

zoy=p(ry), x,y€la(A)
and the involution and norm on I¢(A) are inherited from B [7]. Further, if A
is a unital G-C*-algebra, then A embeds into its G-injective envelope as a G-
invariant unital C*-subalgebra. In the case when G = {1}, the above product
yields a C*-algebra injective structure on the injective envelope I(A) of A.

A G-C*-algebra A is a G-monotone complete if underlying C*-algebra A is a
monotone complete. A G-W*-algebra is G-monotone complete if the underlying
W*-algebra is so as a C*-algebra. A linear subspace A of a G-C*-algebra B
is called G-C*-subalgebra of B, written A < B, if A is a G-C*-algebra in the
restricted action of G.

Given two G-C*-algebra A < B, A is said to be G-closed in B if y € B and
g-y € A, forall g € LY(G), imply y € A. For any G-C*-algebras A < B the
smallest G-closed G-C*-subalgebra of B containing A is called the G-closure of
A in B, written G-clgA, ie., G-clpA={y€ B: f-y€ Afor all f € L'(G)}.
A G-C*-algebra A is G-complete if for any G-C*-algebra B with A < B, A is
a G-closed in B.

A G-regular completion of a G-C*-algebra A is a G-C*-algebra, written Ag,
such that;

(1) Ag is G-complete,

(2) A= Ag,

(3) If A < B and B is G-C*-complete, there are a G-C*-algebra B’ with
A = B’ < B and a G-isomorphism ¢ : Ag — B’ with 1|4 = ida.

In fact, the Ag is the smallest G-complete containing A. Hence, Ag exists
and is unique. Now the Hamana’s construction [9] of Ag is via the G-injective
envelope of A. Namely, Ag is the G-closure of A in Ig(A).

For each G-C*-algebra A, there is a representation in which

A=A = 1a(A),

where each containment is as a G-C*-subalgebra. An important feature of this
sequence of containments is that Ag is G-monotone closed in I (A)

An ideal T of A is essential if K NI # {0}, for any non-zero ideal K C A.
Equivalently, if al = 0, for all a € A, then a = 0. Any essential ideal is
necessarily non-zero. The multiplier algebra M (A) of a C*-algebra A is a C*-
subalgebra of the enveloping von Neumann algebra A** that consists of all
x € A** for which za € A and ax € A, for all a € A.
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An essential ideal I of a G-C*-algebra A is G-essential ideal if I is G-
invariant. For a G-invariant ideal I of A, the G-multiplier algebra Mg (I) of I
is the G-regular completion of the multiplier algebra M (I), endowed with the
canonical strictly continuous action of G,that is, Mg (I) = M(I),.

If J C A is a G-invariant ideal, then J** is identified with the closure of
J in A** with respect to the strong operator topology. Thus, if J and K are
G-invariant ideals of A, and if J C K, then Mg (J) = Mg(K) = Mg(A).

Consider the G-multiplier algebra M¢g(J) of any G-essential ideal J of A. If
ec(A) is the set of G-essential ideals of A, partially ordered by reverse inclusion,
then the set £(A) of G-multiplier algebras M (K) of K € e¢(A) is a directed
system of G-C*-algebras. We define a G-local multiplier algebra, denoted by
ME<(A), as follows

MEe(A) = lin{Me(K); K € ec(A)}-
In fact, the ME&¢(A) is defined to be the C*-direct limit over the downward

directed system K € £g(A), and MX°(A) is realized by idealizers in I(A) of
G-essential ideals of A. By an argument similar to [6, Corollary 4.3]

Me(A) = dl (UKGEGW{CE € lg(A);zK + Kz C K})
where the closure is with respect to the norm topology of Iz (A). Thus,
A= MEE(A) < Ia(4)

is an inclusion of G-C*-subalgebras.

Lemma 2.1. If A is a G-C*-algebra for which Ig(A) is a G-W*-algebra, then
Ag is a G-W*-algebra.

Proof. Suppose that I (A) is a G-W*-algebra. Then I (A) is represented as a
von Neumann algebra acting on a Hilbert space. We assume that {h }, be any
bounded increasing net in (Ag)sq. Because Ig(A) is G-monotone complete,
{ha}a has a least upper h such that h = lim, h, = sup, h, in the strong
operator topology. Since, Ag is G-monotone closed in I(A), h € Ag. Thus Ag
is a G-C*-algebra of operators in which the limit of every bounded increasing
net of hermitian elements again belongs to Ag. Therefore, Ag is a G-W*-
algebra by [10, lemma 1]. O

Proposition 2.2. For any G-C*-algebra A the G-closure of A in its G-injective
envelope Ig(A) is the G-regular completion Ag of A.

Proof. Let A; be the G-closure of A in I(A) and A < B, then A < B < By for
some G-injective Bj, and there are an idempotent G-morphism ¢ : By — By
and a G-isomorphism ¢ : Ig(A) — ¢(Bq) such that ¢|a = idg = |a. We
have G-clp, A < ¢(Bi). Indeed, if b € G-clp, A, then f-b € A for all f € L'(G)
and f-b=¢(f-b) = f-¢(b)in By for all f € L*(G); hence b = ¢(b) € ¢(By).
Thus

G-Cl¢(Bl)A = (G—CZBIA) n d)(Bl) = G-CZBIA.


http://dx.doi.org/10.61186/ijmsi.19.2.51
http://ijmsi.com/article-1-1760-en.html

[ Downloaded from ijmsi.com on 2026-01-30 ]

[ DOI: 10.61186/ijmsi.19.2.51 ]

G-Injective Envelope of Separable G-C*-algebras 57

Further, since @ is a G-isomorphism and 9|4 = ida, we have ¢(A;) = G —
clgsyA, and so (A1) = G — clp, A. First we assume that y € (A1), then
there is a a; € A; such that y = ¢(a1) € ¢(B1). On the other hand, since A,
is a G-closure of A, f-a; € A for all f € L'(G), and since 1|4 = ida, we have

fry=Ff-dla) =9 a1)=f-a1 €A

Hence, y € G-cly(p,)A.

Now, let y € G — clgp,)A. By definition, we have f-y € A and y € ¢(By).
Suppose that b; € By, with y = ¢(by1). Since ¥ is a G-isomorphism, there exists
a1 € Ig(A) such that y = ¢(b1) = 9(a1). On the other hand, since 4, is a
G-closure of A in I(A),

1/)(f~a1) :fl/}(al) :f'yEA:>f‘CL1 EA:>CL1 EAl ﬁyzd)(al) G’l/)(Al)

If Ay = A, namely, A is G-closed in I(A). Then sois A in ¢(B1), and A =
G-clp, A. Hence, A = G-clgA, that is, A is G-closed in B. Since A < B < By,
G-clpA <X G-clp, A. As B is arbitrary, this means that A is G-complete.

Next, suppose that A is arbitrary, but B is G-complete. Since Ig(A41) =
I (A) and A; is G-closed in Ig(A), it follows from the foregoing argument
that Ay is G-complete. As B is G-complete, G-clp, A < G-clg, B = B, and
P(A1) = G-clg,A =X B with ¥(A;) = A;. Therefore, A; is the G-regular
completion of A.

Finally, let only that A < B. By the above argument to A < B < Bg,
there is a G-isomorphism ¢ of A; onto G-clz_ A with ¥|a = ids. Hence,
since A < G-clgA < G-CZEGA, G-clg A is isomorphic to the G-C*-subalgebra
P~ H(G-clgA) of Ay. O

3. SEPARABLE C*-ALGEBRA OF A DISCRETE GROUP

The main result of this paper is Theorem (3.4) on separable discrete C*-
dynamics. Before turning to the proof of Theorem (3.4), we prove some prelim-
inary results. We need the notion of covariant representation and the relation
between G-local multiplier algebra and G-regular completion of G-C*-algebras.

Definition 3.1. A C*-algebra A is called elementary if A = K(H) for some
Hilbert space H.

The separable elementary C*-algebras are the finite-dimensional matrix alge-
bras and the C*-algebras of compact operators of separable infinite-dimensional
Hilbert space. Every elementary C*-algebra is simple and the converse is true
when the C*-algebra is of type I. If A is a C*-subalgebra of K(H) acting
irreducibly on Hilbert space H, then A is elementary.

Definition 3.2. A covariant representation of a G-C*-algebra A is a pair (7, o)
where (7, H) is a representation of A , (o, H) is a unitary representations of G,
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such that
a(g)m(a)a(g)~" = 7(8y(a)) = n(g - a)
for every a € A, g € G.
A covariant representation (o) of a G-C*-algebra A on a Hilbert space H is
normal if (7, H) is normal.

Proposition 3.3. ME&¢(A) = Ag for every G-C*-algebra A.

Proof. Since MX¢(A) is G-equivariant *-isomorphically embedded into I (A),
extending the canonical G-equivariant *-monomorphism of A into I5(A), the
G-C*-algebra I;(A) serves as an injective G-extension of the G-C*-algebra
ME<(A). Therefore, the identity map on MX¢(A) admits a unique G-extension
to a G-equivariant completely positive map of I5(A) into itself with the same
completely bounded norm one. Since Ag < M¥°(A) < I¢(A) by construction
and Ig(A) is the G-injective envelope of A, Ig(A) has to be the G-injective
envelope of Mg?c(A). Since the G-regular completion of a G-C*-algebra B is
the G-monotone closure of B in the G-injective envelope Ig(A),

Ag = Mg“(A) = Ag < I6(A) = I(ME*(4))
implies that Ag < MX°(A) < Ag. Thus, Mue(A) = Ag. O

Theorem 3.4. The following statements are equivalent for a separable G-C* -
algebra A:

(i) Ag is a G-W*-algebra.

(i) Ic(A) is a G-W*-algebra.

(iii) A contains a G-invariant minimal essential ideal that is G-isomorphic to
a direct sum of elementary G-C*-algebras.

Proof. By Lemma (2.1), the proof of (ii)=-(i) is clear.

(ii)=-(iii): We have divided the proof into two stages. In the first stage, let us
first show that there exists a faithful representation 7 : A — B(H) such that
the von Neumann algebra w(Ag)"” is generated by its minimal projections, each
of which is contained in 7(Ag). For this, let I¢(A) be a G-W*-algebra. By [11,
lemma 7.4.9], there is a faithful G-equivariant representation 7 : Ig(4) —
B(H) such that 7(Ag) is a G-C*-subalgebra of 7(Ig(A)), with m = 7|(4,).
Without loss of generality, suppose that I (A) is a von Neumann algebra acting
on a Hilbert space. Since the G-regular completion Ag of Ag is G-monotone
closed in Ig(A) and because Ig(A) is a von Neumann algebra, Ag is a von
Neumann algebra by Lemma (2.1). Thus, A7, C Z/c/; = Ag, A, being the
double commutant of Ag.

Now, let w be a normal state on von Neumann algebra A7, that is faithful on
Ag. Assume that w(h) = 0, where h € A" Because h = sup{k € AT;k < h},
we have 0 < w(k) < w(h) = 0, for each k € A with k < h. Thus w(k) = 0,
which implies that & = 0 because w is faithful on A. Hence, h = 0 and so
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w is faithful on A7. Namely, any normal state w € A7 is faithful precisely
when its restriction w|a, to Ag is faithful. By [13, P. 139], because Ag is
separable and order dense in A{,, A7, is generated by its minimal projections,
each of which is contained in Ag. Furthermore, since A7, is a direct product of
type I factors by [3, lemma 2.2], A7 is injective by [3, corollory 2.3]. Because
Ag C Al C Ig(A), we conclude that AY, = Ag = Ig(A), by minimality of the
injective envelope.

The second stage, without loss of generality, assumes that Ag is already
represented as a subalgebra of B(H) and that M = A}, is generated by its
minimal projections, each of with lie in Ag. Let K C Ag be the ideal of Ag
generated by the minimal projections of M. We claim that K is an essential
ideal, minimal among all essential ideals of Ag. Suppose that J C Ag is a
nonzero ideal. Choose any nonzero h € JT. There is a strictly positive A in
the spectrum o (h) of h. Let e € M be the spectral projection e = e/ ([\, +0)),
where e denotes the spectral resolution of h. Thus, 0 # Ae < he, and there is
a minimal projection p of M such that ep = pe = p and 0 # Ap = \p? = pAp <
php € JN K. Then JN K # {0}.

By [3, lemma 2.2], since M = Af, is generated by its minimal projections,
M is a discrete type I von Neumann algebra. Therefore, there is a faithful
normal covariant *-representation v of M on a Hilbert space H of the form
H =&, H, by [11, lemma 7.4.9], such that

Y(K) Cv(Ag) € v(M) =[] B(Hn)

It fact, the minimal projections of any B(H,,) are minimal projection of v(M).
Hence, elements of v(K'). Moreover, if e is a minimal projection of [], B(Hy),
e € B(H,), for some n € N. Therefore, @, K(H,) C v(K). Since v(K) is
the smallest G-C*-algebra that contains the minimal projections of v(M), it
follows that v(K) = ,, K(H,). Since, K = @, K(H,), K is G-invariant
minimal essential ideal of Ag.

(iii)=-(ii): Suppose that Ag has a G-invariant minimal essential ideal K
such that K = @, K(H,). Thus, by [1, Lemma 1.2.21],

M(K) = M(ED K (H,)) = [[ M(K(H,)) = [ B(Hn),

and this shows that M(K) is a type I W*-algebra. Since K is a G-invariant
minimal essential ideal of Ag, by [1, Remark 2.3.7] M(K) = MYX°(A). Hence,
MYe(A) is an injective G-W*-algebra. We know that Ag C M¥°(A) C Ig(A)
as G-C*-subalgebras, it must be that M%¢(A) = I (A) by definition of injective
envelope, and this is precisely the proof of the G-W*-algebra of I5(A).
(1)=(ii): For the G-W*-algebra Ag, Ag = A}, by the proof of (ii)=(iii).
Since A7 is a direct product of type I factors, so Af, is injective. Therefore,
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Ag is injective. Hence, Ag = Ig(A), which yields that Ig(A) is a G-W*-
algebra. O

EXAMPLE 3.5. by [8, lemma 2.2], A = ¢*°(G, B(H)) is G-injective, where G
acts trivially on B(H). Thus Ig(A) = A which is a G-W*-algebra. Now the
minimal essential ideal of A is ¢o(G) ® K (H) which is essential ideal and dense
and is direct sum of |G|-copies of elementary C*-algebras C ® K(H) [This
is an infinite direct sum if the cardinal |G| is not finite]. Also A is already
G-complete, so the G-closure of A is A itself, which is a G-W*-algebra.
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