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ABSTRACT. A vertex coloring of a graph G is called acyclic if no two
adjacent vertices have the same color and no cycle in G is bichromatic.
The acyclic chromatic number a(G) of a graph G is the least number of
colors in an acyclic coloring of G. In this paper, we obtain bound for the
acyclic chromatic number of the strong product of a tree and a graph.
An exact value for the acyclic chromatic number of the strong product of
two trees is derived. Further observations are made on the upper bound

for the strong product of three paths.
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1. INTRODUCTION

A proper coloring of the vertices of a graph G is an assignment of colors to the
vertices so that no two adjacent vertices have the same color. A proper coloring
is said to be acyclic if the coloring does not induce any bichromatic cycles. The
acyclic chromatic number of G, denoted by a(G), is the minimum number of
colors required for its acyclic coloring. The concept of acyclic coloring, acyclic
chromatic number, and star coloring was introduced by Grunbaum [5] in 1973
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and mainly studied by Albertson [1], Borodin [3], and amongst others. Acyclic
colorings are hereditary in the sense that the restriction of an acyclic coloring
to a subgraph is an acyclic coloring. It was also proved by Kostochka [9], that
for every k > 3, the problem of deciding whether a graph is acyclically k-
colorable is NV P-complete for an arbitrary graph. There exist numerous types
of operations on graphs, like graph union, graph intersection, graph join, graph
sum, graph product, etc., which are generally named as binary operations on
graphs. While there are some other types of operations, called unary operations
on graph. Some examples for unary operations on a graph are the complement
of a graph, power of a graph, line graph of a graph, middle graph of a graph,
total graph of a graph, splitting graph of a graph, central graph of a graph,
etc. Other operations of this kind can be found in Harary and Wilcox [6]. The
product of graphs and their coloring are an interesting area of work for many
researchers, due to its vast applications in different fields of science. A product
G x H of two graphs means a graph with vertex set V(G) x V(H), and the edge
set is determined by a function on the edges of the factors. Even though many
such products are defined, the most important ones are the strong product, the
Cartesian product, the tensor product, and the lexicographic product. These
products are respectively denoted by G X H, GOH, G x H and G[H]. Sandi
Klavzar [8], Greenwell and Lovasz [4] have made studies on some interesting
applications of product colorings in their papers.

The strong product of graph was first introduced by the Austrian Math-
ematician Gert Sabidussi [11] in 1960. The strong product G; K G2 of two
graphs G and Gs is a graph having vertex set V(G1) x V(G2) and edge set
E(G1 K Gs) given by the pairs (u,v), where u = (u,us) and v = (vy,v9) are
adjacent in G = G K G2 whenever [u; = v and us adj vs] or [ug = vy and
u1 adj v1] or [uy adj v1 and ug adj vs]. Note that, the strong product of graphs
is commutative for unlabeled graphs and also associative. Hence, the graph
product G1 K Gy X --- X G, is explicitly defined for any n. One of the known
application of the strong product of graphs is in the information theory, where
the zero-error capacity of a noisy channel is defined in terms of independence
numbers of strong products of the graph related to the channel ([10], [12]). The
chromatic number of the strong product of cycles and its several consequences
has been studied by Zerovnik and Janez [14]. Acyclic colorings of Cartesian
products of trees have been studied by Robert E. Jamison et al. [7]. But no
work related to the acyclic coloring of strong products of trees has been formu-
lated yet. Determining the exact values of acyclic chromatic number for the
strong product of different families of a graph is a hard problem. Even for the
simple and highly structured graph classes, the value is still not determined
exactly.

In this paper, we obtain bound for the acyclic chromatic number of the
strong product of a tree and a graph. The exact value obtained for the acyclic
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chromatic number of strong product of paths, lead to the acyclic chromatic
number of strong product of two trees. Observations are made on the upper
bound for the strong product of three paths; its generalization is a scope of
future work. In the strong product of paths and trees, the most of the subgraphs
are of the form kings graphs, that is, a graph whose vertices are squares of a
chess board and whose edges represent possible moves of a chess king. The
strong product of two trees resembles like a tree, where each edge is a king’s
graph. While discussing the proofs of theorems, we have to deal with various
king’s graph at different branches of such trees. Throughout this paper graphs
means simple connected graphs. In figures the symbol ¢ represents the color
¢;. P, denotes the path on m vertices and C,, denotes the cycle on n vertices.
Diameter of a graph G is defined by diam(G) = max{d(z,y) : =,y € V(G)},
where d(z,y) is the distance between = and y. The removal of a vertex v; from
a graph G results in that subgraph G — v; of G consisting of all vertices of G
except v; and all edges incident with v;. G — v; is the maximal subgraph of G
not containing v;.

2. ACYCLIC CHROMATIC NUMBER OF STRONG PRODUCT OF TWO PATHS

In this section an exact value for the acyclic chromatic number of P3 X P,,,
n > 2 and P, X P,,m,n > 4 are computed.

Proposition 2.1. [13] Let G = G1 X Gs, and A; is the mazimum degree of G;
fori=1,2. Then,

(i) the mazimum degree, A(G) = (A1 +1)(Ax+1) — 1.

(ii) the number of edges, e(G) = 2¢(G1)e(G2) + £(G1)v(G2) + e(G2)v(Gr).

Proposition 2.2. [2] Let G = P,, ® P,,. Then
(i) a(G) =2, form=1 and n > 2.
(i) a(G) =4, form =2 and n > 2.

Theorem 2.3. For n > 2, the acyclic chromatic number a(Ps X P,) = 4.

Proof. Let G = P3 X P, and V(G) = {v1,v2,03, "+ , Up, Up, Up—1, -+ , UL, W1,
wa, -+ , Wy} be the vertex set of G which are marked in the same order as they
appear in V(G). Consider the set C' = {c1, ¢2,c3, ¢4}, where ¢q, ¢, c3,c4 are
distinct colors. Assign the color ¢; to the vertices of G as follows.

For odd values of i, the color ¢; is assigned to v; and w;+1 and c3 to u;. For
even values of i, the color cs is assigned to v; and w;_; and ¢4 to u;.

Now we prove that the coloring is acyclic. That is the coloring does not induce
a bichromatic cycle. The coloring is in such a way that the subgraphs induced
by each pair of colors are listed below.
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Sl. Subgraph Odd n Even n Value of
No. | Induced by | w V| e v| e vV—e€

1 <cp,c3 > 1[3[5]—1]3[5]—2|3%| 35 —1 1

2 <cp,cq > 13[5]—-2]3[5]—-3|35| 35 —1 1

3 < cg,c3 > 1[3[5]—1]3[5]—2|3%| 35 —1 1

4 < C9,Cq4 > 1 3[%]—2 3[%]—3 3% 3%—1 1

Here in each case the result € = v — w, (w is the number of components, v
the number of vertices and e is the number of edges) is verified, which is the
necessary and sufficient condition for a forest. Also the subgraphs induced by
< ¢1,co > is the union of 2 paths P, and the subgraph induced by < c3,cq >
is the path P,. Thus any pair of the colors in the set C will never induce a
bichromatic cycle in the graph G. So the above said coloring is acyclic. Also
the coloring is minimum, since G contains the subgraph Kj.

Hence a(PsX P,) =4 for n > 2. O

Illustrate the above theorem with an example

F1GURE 1. Acyclic Coloring of P3 X Pg.

Lemma 2.4. The acyclic chromatic number a(Py X Py) = 5.

Proof. Let G = P, X P,. This graph resembles a square, as depicted in Figure
2. We consider three cases according to the degree of the vertices in G. Let
v; €G
Case 1. If deg(v;) = 3, then these vertices are labeled with colors ¢y, ¢, 3, ¢4
in anti-clock wise direction (from left bottom corner vertex).
Case 2. If deg(v;) = 5, then these vertices are labeled with colors ¢y, ¢5, ¢1, ¢5, 2,
¢5, 3, ¢5 in anti-clock wise direction (from left bottom).
Case 3. If deg(v;) = 8, then these vertices are assigned with colors ¢y, ¢1, 2, c3
such that the coloring is proper.

Next we prove that this coloring does not induce a bichromatic cycle. Con-
sider the vertices which are adjacent to the vertices of degree 3 in GG. Since these
vertices are colored with distinct colors, it is not possible to form a bichromatic
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cycle through the degree 3 vertices in G. Remove these 4 vertices from G to
form a subgraph G’. In G’, the subgraph induced by < ¢;,¢5 =,i < 4 always
constitute disjoint union of 2 paths P3 and hence they never form a bichro-
matic cycle through c5. A new subgraph G” is formed from G’ by removing
the vertices which are colored by the color ¢5. This process is explained in
the Figure 2. Also in G, the adjacent vertices of the remaining four vertices
with degree 5 in G, which are mentioned in case 2 are colored with distinct
colors. Therefore, we cannot find a bichromatic cycle passing through these
vertices. Finally in G, the subgraph induced by the vertices of degree 8 in G,
which are mentioned in case 3 form a complete graph K,. Hence the coloring is
acyclic. Next to prove that the coloring described above is minimum. Assume
that a(Py W Py) = 4. By Theorem 2.3, a(P; X P;) = 4. The acyclic 4-coloring
of P3 X P, is unique, up to permutation of colors and any 4-coloring of our
required graph Py X P, leaves only two colors on the top row which are also
used in the second row. There are only two ways to color this top row, each
of which will produce a bichromatic cycle. Thus a(Py X Py) > 5. Hence the
lemma follows.

The color pattern described above can be exhibited in the form of a square

4 5 2 3
i 1 4 . . .
matrix of order 4, Py 4 = £ 9 3 1| we call it as a generating matrix.

1 4 5 2

3
—> —

1 1
4 5 4
G G' G

FIGURE 2. An acyclic coloring of G = P4 K Py, the color ¢; is
marked as i.

]

Theorem 2.5. For m,n >4, the acyclic chromatic number a(P,, X P,) = 5.
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Proof. Let G = P,, K P,,. Then by Lemma 2.4, we have a(Py X Py) = 5. By
using the generating matrix,

4 5 2 3 ai1 a2 413 a4
31 4 5 21 G22 A23 Q24
P4 = = 2.1
44 5 2 3 1 asi asz2 ass a34 ( )
1 4 5 2 a4l Q42 Q43 Q44
we can construct a matrix Py, , = [p; j]an which represents the acyclic coloring
of G. Define
A mod 5),(j mod 5) when both i 20 and j Z0 mod 5,
R when both i =0and j =0 mod 5,
Pij = a(—j mod 5),(—j mod 5) when both i =0 and j 20 mod 5,
A(=i mod 5),5—(—i mod 5) when both j =0 and i 20 mod 5,

(2.2)
where, the positive x mod k is taken, while considering the congruences.

FIGURE 3. The matrix P;q 12 and the subgraph < 2,3 .

Here the minimality is obvious from Lemma 2.4. Now the coloring described
in the matrix P, ,, for m,n > 4 will never constitute a bichromatic cycle for any
pair of colors, which can be explained as follows. By the above definition 2.2,
in the matrix P, , we can find full or partial blocks of the generating matrix
P, 4 separated by the rows R; and the columns Cj}, where ¢,7 =0 mod 5. In
the matrix Py 4, it can be noticed that the subgraphs induced by the opposite
corner pair of colors namely < 1,3 = and < 2,4 > are union of a path P, and
two points; while the subgraphs induced by all other pair of colors are union
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of two non-intersecting paths P, and Ps. Thus in P, , the subgraphs induced
by any two colors are either non-intersecting paths or union of non-intersecting
paths and points. Therefore the coloring is acyclic. Hence a(P,, K P,,) = 5,
m,n > 4.

The matrix Py 12 with different blocks and the subgraph induced by one pair
< 2,3 > is illustrated in Figure 3. a

3. ACYCLIC CHROMATIC NUMBER OF STRONG PRODUCT OF TREES

In this section, we determine exact value for the acyclic chromatic number
of strong product of two trees, and bound for the strong product of a graph
and a tree.

Lemma 3.1. Let G = T1XTy, where T; is a tree and diam(T;) > 3 fori=1,2.
Then a(G) = 5.

Proof. Case 1. Assume that 77 and T» are paths and diam(T;) > 3. Then by
Theorem 2.5 a(G) = 5.

Case 2. Suppose that T} and T5 are trees with branches and sub-branches
and diameters of 77 and T be m and n respectively. Then the largest paths
in T and T, will be P,,41 and P,y respectively. Let c, vy, v, v3, -+ ,vpm—1,d
and a,uy, us,us3, -+ ,Un_1,b be vertices of the largest path in 77 and 75 respec-
tively, where a, b, c and d are pendant vertices.

The maximum possible length of any branch at the internal vertices v, and
Um—r will be of at most r, where r € {1,2,3,---, [ %] }. Also in each branch at
the vertex v,, the maximum length of the sub-branch at v, ; and vy,—, s will
be of length at most r — s, for r = 1,2,3,---,[%] and s < r. Similarly for
the tree T the maximum possible length of any branch at the internal vertices
u; and u,_; will be of at most i, where i € {1,2,3,---,[5]}. Also, in each
branch at the vertex u;, the maximum length of the sub-branch at w;; and
un—;,; will be of length at most i — j, for i = 1,2,3,---, | 5] and j < 4. This
can be extended to any number of sub-branches of 77 and 75. By Theorem
2.5, a(Ppt1 ® Pyi1) =5 and P11 X P,y is a subgraph of G, which gives
a(G) > 5.

By equation (2.2) of Theorem 2.5, we construct a matrix P41 .,41 that repre-
sents the acyclic coloring of G.
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4 5 2 3 1 4 P1,n+1
3 1 4 5 2 3 P2,n+1
5 2 3 1 4 5 P3.n+1
1 4 5 2 3 1 P4,n+1
Prging1 = 2 3 1 4 5 2 DP6,n+1
4 5 2 3 1 4 P7n+1
3 1 4 5 2 3 P8,nt1
|Pm+1,1  Pm+1,2 Pm+1,3 Pm+1,4 Pm+1,5 Pm+16 °°° Pm+ln+l]

Subcase 1. Assume that the tree T is a path and T5 is a tree with branches
and sub-branches. Consider the arbitrary branch at the internal vertex wu, of
the tree T having maximum length z, for v = 1,2,3,---, [§]. Then we get a
king’s subgraph P, 11 X P,y of P41 ® P,y at the (z + 1)** branch of the
original graph P, 11 X P,11. For 1 < j < x + 1, the vertices of this subgraph
which lies in the j** vertical columns are assigned by the (j + 2)'" column
colors of the matrix Pp,41,n41, such that the coloring of the subgraph coincide
with the coloring of P,,11 X P, 1. As the acyclic coloring is hereditary, we can
conclude that (G) = 5.

Subcase 2. In the case of both 77 and T5 having branches and sub-branches,
by the same argument of Subcase 1, we have corresponding to every branch at
the internal vertex v, of T, we get king’s subgraph P, 1 X P, 1 of Py, 1XP, 1.
This is true for any branch or sub-branch of 77 or 7. Moreover, since a tree is
an acyclic graph and the coloring assigned to the vertices of king’s subgraph are
submatrices of the matrix Pp, 1 n41, the coloring will never induce bichromatic
cycles in G. Thus we can color G with 5 colors acyclically.

Hence in all cases a(G) = 5. O

Remark 3.2. Let G = P,, KT and diam(T) > 1. Then a(G) = 4, m € {2,3}.

Proposition 3.3. Let G = G1 XG4 where Gy and Ga are two complete graphs
with mazimum degree A; for i =1,2. Then a(G) = A(G) + 1.

Proof. Let m,n > 1 be the number of vertices of G; and G5 respectively. Then
the graph G will have mn vertices and Ay = m — 1 and Ay = n — 1. By
Proposition 2.1(%), we have A(G) = (m—1+1)(n—1+41) —1=mn—1. Thus
we get G is complete, and a(G) = mn = A(G) + 1. O

Corollary 3.4. Let G = G1 R Gy K --- K G,,, where G; are complete graphs
with mazimum degree A; fori=1,2,--- ,n. Then a(G) =1, (A; +1).

Proof. By Propositions 2.1(7) and 3.3, we have a(G1 KG2) = (A1 +1)(Az+1).
Since the strong product of two complete graphs are complete, G will be a
complete graph. Hence by extending the above result we can conclude that
a(G) =TI, (A; + 1). |
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Theorem 3.5. Let G = K,, T, where diam(T) > 1. Then a(G) = 2n.

Proof. In K,, X P, there are 2 copies of K, say KT(LI) and K,(f) and we can find
an edge from each vertex of K,Sl) to all other vertices of Kﬁz) or vice versa. By
Proposition 2.1(7), A(K, X P;) = (n—1+1)(1+1)—1 = 2n —1. Thus by
Proposition 3.3 a(K, X Py) = 2n.

Let ¢ be an acyclic coloring of K,,XP; using the color set C' = {1,2,3,--- ,2n}.
Let us take C = C, UCy, ={1,2,3,--- ;n}U{n+1,n+2,n+3,---,2n} and
the colors of the sets C7 and Cy are assigned to Kﬁl) and K,(f) respectively.
Here the subgraph induced by < 4,j = is a path Ps, for all 1 < 4,5 < 2n. The

coloring is represented in Figure 4.

FIGURE 4. Representation of K,, X P, and its coloring.

The acyclic coloring ¢ can be extended to the product K, X P, such that
the adjacent K, ’s are assigned with different color set as explained in Figure
5. Here the subgraph induced by < ¢,j > is the union of paths P, if both ¢
and j belong to the same color set Cy or Csy, otherwise it will be a path P,.
Thus a(K,, X P,) = 2n.

FIGURE 5. Representation of K, X P, and its coloring.

We can extend the coloring ¢ to K,, XT by preserving its acyclicity. Because
the tree T'is a connected acyclic graph, so in any proper coloring of K, XT using
¢, no adjacent K,’s will be assigned with same color set C; or C5. Thus the
subgraph induced by any two colors will be always a forest. Hence a(K,,XT) =
2n.

A tree T and an acyclic coloring of K, X T is explained in Figure 6.

From Proposition 3.3 and Theorem 3.5, the Remark 3.6 is obtained.
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....................................

FIGURE 6. A tree T and a representation of an acyclic coloring
of K,, XT.

Remark 3.6. Let G = K,,lKH, where the graph H is non-empty and diam(H) >
1. Then 2n < a(G) < A(G) + 1

Theorem 3.7. Let G = HXT, where H is a non-empty graph other than a tree
having n vertices and T be a tree other than path. If A1 and Ao are respectively
the mazimum degrees of H and T with Ay > [5], then a(G) < A(G) —

Proof. By Theorem 3.5, we have a(G) < 2n. Since T is a tree other than a
path, Ay > 3. Now by Pr0p0s1t10n 2.1(i), we have A(G) > ([§]+1)(3+1) —
If n is even, we get A(G) > (5 +1)(4) —1=2n+ 3. That is A(G) -3 > 2n.
If n is odd, we get A(G) > ("4'1 +1)(4) =1 =2n+5. That is A(G) —3 >
2n+2 > 2n.

Thus we get a(G) < A(G) — 3. O

The determination of the exact value for the acyclic chromatic number of
strong product of three or more graphs is a tedious job. However, we compute
the exact value of a(P,, X P, X P,) in the following Theorem.

Theorem 3.8. The acyclic chromatic number, a(P,,XP,XPy) = 8, form > 2.

Proof. The proof is by induction on m. For m = 2, the graph G = P,X P, X P,
is isomorphic to the complete graph Kg. Thus a(G) = 8. Now before moving
to the next step of induction, for m = 2, define an acyclic coloring ¢ of G by
using the colors c1,ca,- -, cs as follows.

Let v; € V(G), 1 < i < 8and V = {v1,ve, - ,vs} be the vertex set of G
which are marked in anti-clockwise direction in the same order as they appear
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in V. Then the coloring given by the function c¢(v;) = ¢;, 1 < i < 8 gives an
acyclic coloring of G. Next assume that the result is true for m = k. That is,
an acyclic coloring of G = P, P, X Py is amap ¢: V(G) — {c1, -+ ,cs} such
that

1<i<4 (3.1)

ci r=0,2,4---
c(Varyi) = {

Cati r=1,3,5,---
forr=0,1,2,3,4,--- Jk—1.
It can be noted that in this coloring the subgraphs induced by

%W copies of Py fori,7=1,2,3,4,
< ¢, c5 == ng copies of Py fori,j =5,6,7,8,
b fori=1,2,3,4and j =5,6,7,8,
forms a forest.

Next to prove the result holds for m = k + 1. According to equation (3.1),
we can extend the coloring to G = Ppy1 X P X Py, with r =0,1,2,3,4,--- k.
It gives the induced subgraphs

[£8L] copies of P, fori,j =1,2,3,4,

< ¢, ¢ == L%J copies of Py for i,7 =5,6,7,8,
Py fori=1,2,3,4 and j =5,6,7,8,

which again forms a forest. Thus the result is true for m =k + 1.
Hence by method of mathematical induction, a(P,, X P, X Py) = 8,m > 2.
An acyclic coloring of P, X P, X P, is illustrated in Figure 7.

FIGURE 7. An acyclic coloring of Py X P, X Ps.

]

Observation 3.1. (i) The acyclic chromatic number, a(P,, X P, X P3) = 10, for
m > 3. (ii) The acyclic chromatic number, a(P,, X P, X P,)) < 2(n + 2), for
m,n > 3.
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4. CONCLUSIONS

In this paper, the acyclic chromatic number of the strong product of paths,

trees, and graphs are studied. The exact value of the strong product of paths
and trees are derived. In other cases, bounds are obtained. Some observations

are made on the upper bound for the strong product of three paths.
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