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Abstract. A vertex coloring of a graph G is called acyclic if no two

adjacent vertices have the same color and no cycle in G is bichromatic.

The acyclic chromatic number a(G) of a graph G is the least number of

colors in an acyclic coloring of G. In this paper, we obtain bound for the

acyclic chromatic number of the strong product of a tree and a graph.

An exact value for the acyclic chromatic number of the strong product of

two trees is derived. Further observations are made on the upper bound

for the strong product of three paths.

Keywords: Strong product of graphs, Acyclic coloring, Acyclic chromatic

number.
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1. Introduction

A proper coloring of the vertices of a graphG is an assignment of colors to the

vertices so that no two adjacent vertices have the same color. A proper coloring

is said to be acyclic if the coloring does not induce any bichromatic cycles. The

acyclic chromatic number of G, denoted by a(G), is the minimum number of

colors required for its acyclic coloring. The concept of acyclic coloring, acyclic

chromatic number, and star coloring was introduced by Grunbaum [5] in 1973
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and mainly studied by Albertson [1], Borodin [3], and amongst others. Acyclic

colorings are hereditary in the sense that the restriction of an acyclic coloring

to a subgraph is an acyclic coloring. It was also proved by Kostochka [9], that

for every k ≥ 3, the problem of deciding whether a graph is acyclically k-

colorable is NP -complete for an arbitrary graph. There exist numerous types

of operations on graphs, like graph union, graph intersection, graph join, graph

sum, graph product, etc., which are generally named as binary operations on

graphs. While there are some other types of operations, called unary operations

on graph. Some examples for unary operations on a graph are the complement

of a graph, power of a graph, line graph of a graph, middle graph of a graph,

total graph of a graph, splitting graph of a graph, central graph of a graph,

etc. Other operations of this kind can be found in Harary and Wilcox [6]. The

product of graphs and their coloring are an interesting area of work for many

researchers, due to its vast applications in different fields of science. A product

G∗H of two graphs means a graph with vertex set V (G)×V (H), and the edge

set is determined by a function on the edges of the factors. Even though many

such products are defined, the most important ones are the strong product, the

Cartesian product, the tensor product, and the lexicographic product. These

products are respectively denoted by G ⊠H, G□H, G ×H and G[H]. Sandi

Klavzar [8], Greenwell and Lovasz [4] have made studies on some interesting

applications of product colorings in their papers.

The strong product of graph was first introduced by the Austrian Math-

ematician Gert Sabidussi [11] in 1960. The strong product G1 ⊠ G2 of two

graphs G1 and G2 is a graph having vertex set V (G1) × V (G2) and edge set

E(G1 ⊠ G2) given by the pairs (u, v), where u = (u1, u2) and v = (v1, v2) are

adjacent in G = G1 ⊠ G2 whenever [u1 = v1 and u2 adj v2] or [u2 = v2 and

u1 adj v1] or [u1 adj v1 and u2 adj v2]. Note that, the strong product of graphs

is commutative for unlabeled graphs and also associative. Hence, the graph

product G1 ⊠G2 ⊠ · · ·⊠Gn is explicitly defined for any n. One of the known

application of the strong product of graphs is in the information theory, where

the zero-error capacity of a noisy channel is defined in terms of independence

numbers of strong products of the graph related to the channel ([10], [12]). The

chromatic number of the strong product of cycles and its several consequences

has been studied by Zerovnik and Janez [14]. Acyclic colorings of Cartesian

products of trees have been studied by Robert E. Jamison et al. [7]. But no

work related to the acyclic coloring of strong products of trees has been formu-

lated yet. Determining the exact values of acyclic chromatic number for the

strong product of different families of a graph is a hard problem. Even for the

simple and highly structured graph classes, the value is still not determined

exactly.

In this paper, we obtain bound for the acyclic chromatic number of the

strong product of a tree and a graph. The exact value obtained for the acyclic
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chromatic number of strong product of paths, lead to the acyclic chromatic

number of strong product of two trees. Observations are made on the upper

bound for the strong product of three paths; its generalization is a scope of

future work. In the strong product of paths and trees, the most of the subgraphs

are of the form kings graphs, that is, a graph whose vertices are squares of a

chess board and whose edges represent possible moves of a chess king. The

strong product of two trees resembles like a tree, where each edge is a king’s

graph. While discussing the proofs of theorems, we have to deal with various

king’s graph at different branches of such trees. Throughout this paper graphs

means simple connected graphs. In figures the symbol i represents the color

ci. Pm denotes the path on m vertices and Cn denotes the cycle on n vertices.

Diameter of a graph G is defined by diam(G) = max{d(x, y) : x, y ∈ V (G)},
where d(x, y) is the distance between x and y. The removal of a vertex vi from

a graph G results in that subgraph G − vi of G consisting of all vertices of G

except vi and all edges incident with vi. G− vi is the maximal subgraph of G

not containing vi.

2. Acyclic chromatic number of strong product of two paths

In this section an exact value for the acyclic chromatic number of P3 ⊠ Pn,

n ≥ 2 and Pm ⊠ Pn,m,n ≥ 4 are computed.

Proposition 2.1. [13] Let G = G1⊠G2, and ∆i is the maximum degree of Gi

for i = 1, 2. Then,

(i) the maximum degree, ∆(G) = (∆1 + 1)(∆2 + 1)− 1.

(ii) the number of edges, ε(G) = 2ε(G1)ε(G2) + ε(G1)υ(G2) + ε(G2)υ(G1).

Proposition 2.2. [2] Let G = Pm ⊠ Pn. Then

(i) a(G) = 2, for m = 1 and n ≥ 2.

(ii) a(G) = 4, for m = 2 and n ≥ 2.

Theorem 2.3. For n ≥ 2, the acyclic chromatic number a(P3 ⊠ Pn) = 4.

Proof. Let G = P3 ⊠ Pn and V (G) = {v1, v2, v3, · · · , vn, un, un−1, · · · , u1, w1,

w2, · · · , wn} be the vertex set of G which are marked in the same order as they

appear in V (G). Consider the set C = {c1, c2, c3, c4}, where c1, c2, c3, c4 are

distinct colors. Assign the color ci to the vertices of G as follows.

For odd values of i, the color c1 is assigned to vi and wi+1 and c3 to ui. For

even values of i, the color c2 is assigned to vi and wi−1 and c4 to ui.

Now we prove that the coloring is acyclic. That is the coloring does not induce

a bichromatic cycle. The coloring is in such a way that the subgraphs induced

by each pair of colors are listed below.
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Sl. Subgraph Odd n Even n Value of

No. Induced by ω ν ϵ ν ϵ ν − ϵ

1 < c1, c3 > 1 3⌈n
2 ⌉ − 1 3⌈n

2 ⌉ − 2 3n
2 3n

2 − 1 1

2 < c1, c4 > 1 3⌈n
2 ⌉ − 2 3⌈n

2 ⌉ − 3 3n
2 3n

2 − 1 1

3 < c2, c3 > 1 3⌈n
2 ⌉ − 1 3⌈n

2 ⌉ − 2 3n
2 3n

2 − 1 1

4 < c2, c4 > 1 3⌈n
2 ⌉ − 2 3⌈n

2 ⌉ − 3 3n
2 3n

2 − 1 1

Here in each case the result ϵ = ν − ω, (ω is the number of components, ν

the number of vertices and ϵ is the number of edges) is verified, which is the

necessary and sufficient condition for a forest. Also the subgraphs induced by

< c1, c2 > is the union of 2 paths Pn and the subgraph induced by < c3, c4 >

is the path Pn. Thus any pair of the colors in the set C will never induce a

bichromatic cycle in the graph G. So the above said coloring is acyclic. Also

the coloring is minimum, since G contains the subgraph K4.

Hence a(P3 ⊠ Pn) = 4 for n ≥ 2. □

Illustrate the above theorem with an example

Figure 1. Acyclic Coloring of P3 ⊠ P6.

Lemma 2.4. The acyclic chromatic number a(P4 ⊠ P4) = 5.

Proof. Let G = P4 ⊠ P4. This graph resembles a square, as depicted in Figure

2. We consider three cases according to the degree of the vertices in G. Let

vi ∈ G

Case 1. If deg(vi) = 3, then these vertices are labeled with colors c1, c2, c3, c4
in anti-clock wise direction (from left bottom corner vertex).

Case 2. If deg(vi) = 5, then these vertices are labeled with colors c4, c5, c1, c5, c2,

c5, c3, c5 in anti-clock wise direction (from left bottom).

Case 3. If deg(vi) = 8, then these vertices are assigned with colors c4, c1, c2, c3
such that the coloring is proper.

Next we prove that this coloring does not induce a bichromatic cycle. Con-

sider the vertices which are adjacent to the vertices of degree 3 in G. Since these

vertices are colored with distinct colors, it is not possible to form a bichromatic
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cycle through the degree 3 vertices in G. Remove these 4 vertices from G to

form a subgraph G′. In G′, the subgraph induced by ≺ ci, c5 ≻, i ≤ 4 always

constitute disjoint union of 2 paths P3 and hence they never form a bichro-

matic cycle through c5. A new subgraph G′′ is formed from G′ by removing

the vertices which are colored by the color c5. This process is explained in

the Figure 2. Also in G
′′
, the adjacent vertices of the remaining four vertices

with degree 5 in G, which are mentioned in case 2 are colored with distinct

colors. Therefore, we cannot find a bichromatic cycle passing through these

vertices. Finally in G
′′
, the subgraph induced by the vertices of degree 8 in G,

which are mentioned in case 3 form a complete graph K4. Hence the coloring is

acyclic. Next to prove that the coloring described above is minimum. Assume

that a(P4 ⊠ P4) = 4. By Theorem 2.3, a(P3 ⊠ P4) = 4. The acyclic 4-coloring

of P3 ⊠ P4 is unique, up to permutation of colors and any 4-coloring of our

required graph P4 ⊠ P4 leaves only two colors on the top row which are also

used in the second row. There are only two ways to color this top row, each

of which will produce a bichromatic cycle. Thus a(P4 ⊠ P4) ≥ 5. Hence the

lemma follows.

The color pattern described above can be exhibited in the form of a square

matrix of order 4, P4,4 =


4 5 2 3

3 1 4 5

5 2 3 1

1 4 5 2

, we call it as a generating matrix.

Figure 2. An acyclic coloring of G = P4 ⊠ P4, the color ci is

marked as i.

□

Theorem 2.5. For m,n ≥ 4, the acyclic chromatic number a(Pm ⊠ Pn) = 5.
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Proof. Let G = Pm ⊠ Pn. Then by Lemma 2.4, we have a(P4 ⊠ P4) = 5. By

using the generating matrix,

P4,4 =


4 5 2 3

3 1 4 5

5 2 3 1

1 4 5 2

 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (2.1)

we can construct a matrix Pm,n = [pij ]m×n which represents the acyclic coloring

of G. Define

pi,j =


a(i mod 5),(j mod 5) when both i ̸≡ 0 and j ̸≡ 0 mod 5,

5 when both i ≡ 0 and j ≡ 0 mod 5,

a(−j mod 5),(−j mod 5) when both i ≡ 0 and j ̸≡ 0 mod 5,

a(−i mod 5),5−(−i mod 5) when both j ≡ 0 and i ̸≡ 0 mod 5,
(2.2)

where, the positive x mod k is taken, while considering the congruences.

Figure 3. The matrix P11,12 and the subgraph ≺ 2, 3 ≻.

Here the minimality is obvious from Lemma 2.4. Now the coloring described

in the matrix Pm,n form,n ≥ 4 will never constitute a bichromatic cycle for any

pair of colors, which can be explained as follows. By the above definition 2.2,

in the matrix Pm,n we can find full or partial blocks of the generating matrix

P4,4 separated by the rows Ri and the columns Cj , where i, j ≡ 0 mod 5. In

the matrix P4,4, it can be noticed that the subgraphs induced by the opposite

corner pair of colors namely ≺ 1, 3 ≻ and ≺ 2, 4 ≻ are union of a path P4 and

two points; while the subgraphs induced by all other pair of colors are union
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of two non-intersecting paths P4 and P3. Thus in Pm,n the subgraphs induced

by any two colors are either non-intersecting paths or union of non-intersecting

paths and points. Therefore the coloring is acyclic. Hence a(Pm ⊠ Pn) = 5,

m,n ≥ 4.

The matrix P11,12 with different blocks and the subgraph induced by one pair

≺ 2, 3 ≻ is illustrated in Figure 3. □

3. Acyclic chromatic number of strong product of trees

In this section, we determine exact value for the acyclic chromatic number

of strong product of two trees, and bound for the strong product of a graph

and a tree.

Lemma 3.1. Let G = T1⊠T2, where Ti is a tree and diam(Ti) ≥ 3 for i = 1, 2.

Then a(G) = 5.

Proof. Case 1. Assume that T1 and T2 are paths and diam(Ti) ≥ 3. Then by

Theorem 2.5 a(G) = 5.

Case 2. Suppose that T1 and T2 are trees with branches and sub-branches

and diameters of T1 and T2 be m and n respectively. Then the largest paths

in T1 and T2 will be Pm+1 and Pn+1 respectively. Let c, v1, v2, v3, · · · , vm−1, d

and a, u1, u2, u3, · · · , un−1, b be vertices of the largest path in T1 and T2 respec-

tively, where a, b, c and d are pendant vertices.

The maximum possible length of any branch at the internal vertices vr and

vm−r will be of at most r, where r ∈ {1, 2, 3, · · · , ⌊m
2 ⌋}. Also in each branch at

the vertex vr, the maximum length of the sub-branch at vr,s and vm−r,s will

be of length at most r − s, for r = 1, 2, 3, · · · , ⌊m
2 ⌋ and s ≤ r. Similarly for

the tree T2 the maximum possible length of any branch at the internal vertices

ui and un−i will be of at most i, where i ∈ {1, 2, 3, · · · , ⌊n
2 ⌋}. Also, in each

branch at the vertex ui, the maximum length of the sub-branch at ui,j and

un−i,j will be of length at most i − j, for i = 1, 2, 3, · · · , ⌊n
2 ⌋ and j ≤ i. This

can be extended to any number of sub-branches of T1 and T2. By Theorem

2.5, a(Pm+1 ⊠ Pn+1) = 5 and Pm+1 ⊠ Pn+1 is a subgraph of G, which gives

a(G) ≥ 5.

By equation (2.2) of Theorem 2.5, we construct a matrix Pm+1,n+1 that repre-

sents the acyclic coloring of G.
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Pm+1,n+1 =



4 5 2 3 1 4 · · · p1,n+1

3 1 4 5 2 3 · · · p2,n+1

5 2 3 1 4 5 · · · p3,n+1

1 4 5 2 3 1 · · · p4,n+1

2 3 1 4 5 2 · · · p6,n+1

4 5 2 3 1 4 · · · p7,n+1

3 1 4 5 2 3 · · · p8,n+1

...
...

...
...

...
... · · ·

...

pm+1,1 pm+1,2 pm+1,3 pm+1,4 pm+1,5 pm+1,6 · · · pm+1,n+1



Subcase 1. Assume that the tree T1 is a path and T2 is a tree with branches

and sub-branches. Consider the arbitrary branch at the internal vertex ux of

the tree T2 having maximum length x, for x = 1, 2, 3, · · · , ⌈n
2 ⌉. Then we get a

king’s subgraph Pm+1 ⊠ Px+1 of Pm+1 ⊠ Pn+1 at the (x + 1)th branch of the

original graph Pm+1 ⊠ Pn+1. For 1 ≤ j ≤ x + 1, the vertices of this subgraph

which lies in the jth vertical columns are assigned by the (j + x)th column

colors of the matrix Pm+1,n+1, such that the coloring of the subgraph coincide

with the coloring of Pm+1⊠Pn+1. As the acyclic coloring is hereditary, we can

conclude that (G) = 5.

Subcase 2. In the case of both T1 and T2 having branches and sub-branches,

by the same argument of Subcase 1, we have corresponding to every branch at

the internal vertex vy of T1, we get king’s subgraph Py+1⊠Pn+1 of Pm+1⊠Pn+1.

This is true for any branch or sub-branch of T1 or T2. Moreover, since a tree is

an acyclic graph and the coloring assigned to the vertices of king’s subgraph are

submatrices of the matrix Pm+1,n+1, the coloring will never induce bichromatic

cycles in G. Thus we can color G with 5 colors acyclically.

Hence in all cases a(G) = 5. □

Remark 3.2. Let G = Pm ⊠ T and diam(T ) ≥ 1. Then a(G) = 4, m ∈ {2, 3}.

Proposition 3.3. Let G = G1⊠G2 where G1 and G2 are two complete graphs

with maximum degree ∆i for i = 1, 2. Then a(G) = ∆(G) + 1.

Proof. Let m,n ≥ 1 be the number of vertices of G1 and G2 respectively. Then

the graph G will have mn vertices and ∆1 = m − 1 and ∆2 = n − 1. By

Proposition 2.1(i), we have ∆(G) = (m− 1+1)(n− 1+1)− 1 = mn− 1. Thus

we get G is complete, and a(G) = mn = ∆(G) + 1. □

Corollary 3.4. Let G = G1 ⊠ G2 ⊠ · · · ⊠ Gn, where Gi are complete graphs

with maximum degree ∆i for i = 1, 2, · · · , n. Then a(G) = Πn
i=1(∆i + 1).

Proof. By Propositions 2.1(i) and 3.3, we have a(G1⊠G2) = (∆1+1)(∆2+1).

Since the strong product of two complete graphs are complete, G will be a

complete graph. Hence by extending the above result we can conclude that

a(G) = Πn
i=1(∆i + 1). □
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Theorem 3.5. Let G = Kn ⊠ T , where diam(T ) ≥ 1. Then a(G) = 2n.

Proof. In Kn⊠P2 there are 2 copies of Kn, say K
(1)
n and K

(2)
n and we can find

an edge from each vertex of K
(1)
n to all other vertices of K

(2)
n or vice versa. By

Proposition 2.1(i), ∆(Kn ⊠ P2) = (n − 1 + 1)(1 + 1) − 1 = 2n − 1. Thus by

Proposition 3.3 a(Kn ⊠ P2) = 2n.

Let c be an acyclic coloring ofKn⊠P2 using the color set C = {1, 2, 3, · · · , 2n}.
Let us take C = C1 ∪ C2 = {1, 2, 3, · · · , n} ∪ {n+ 1, n+ 2, n+ 3, · · · , 2n} and

the colors of the sets C1 and C2 are assigned to K
(1)
n and K

(2)
n respectively.

Here the subgraph induced by ≺ i, j ≻ is a path P2, for all 1 ≤ i, j ≤ 2n. The

coloring is represented in Figure 4.

Figure 4. Representation of Kn ⊠ P2 and its coloring.

The acyclic coloring c can be extended to the product Kn ⊠ Pn such that

the adjacent Kn’s are assigned with different color set as explained in Figure

5. Here the subgraph induced by ≺ i, j ≻ is the union of paths P2, if both i

and j belong to the same color set C1 or C2, otherwise it will be a path Pn.

Thus a(Kn ⊠ Pn) = 2n.

Figure 5. Representation of Kn ⊠ Pn and its coloring.

We can extend the coloring c to Kn⊠T by preserving its acyclicity. Because

the tree T is a connected acyclic graph, so in any proper coloring ofKn⊠T using

c, no adjacent Kn’s will be assigned with same color set C1 or C2. Thus the

subgraph induced by any two colors will be always a forest. Hence a(Kn⊠T ) =

2n.

A tree T and an acyclic coloring of Kn ⊠ T is explained in Figure 6.

□

From Proposition 3.3 and Theorem 3.5, the Remark 3.6 is obtained.
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Figure 6. A tree T and a representation of an acyclic coloring

of Kn ⊠ T .

Remark 3.6. LetG = Kn⊠H, where the graphH is non-empty and diam(H) ≥
1. Then 2n ≤ a(G) ≤ ∆(G) + 1.

Theorem 3.7. Let G = H⊠T , where H is a non-empty graph other than a tree

having n vertices and T be a tree other than path. If ∆1 and ∆2 are respectively

the maximum degrees of H and T with ∆1 ≥ ⌈n
2 ⌉, then a(G) ≤ ∆(G)− 3.

Proof. By Theorem 3.5, we have a(G) ≤ 2n. Since T is a tree other than a

path, ∆2 ≥ 3. Now by Proposition 2.1(i), we have ∆(G) ≥ (⌈n
2 ⌉+1)(3+1)−1.

If n is even, we get ∆(G) ≥ (n2 + 1)(4)− 1 = 2n+ 3. That is ∆(G)− 3 ≥ 2n.

If n is odd, we get ∆(G) ≥ (n+1
2 + 1)(4) − 1 = 2n + 5. That is ∆(G) − 3 ≥

2n+ 2 > 2n.

Thus we get a(G) ≤ ∆(G)− 3. □

The determination of the exact value for the acyclic chromatic number of

strong product of three or more graphs is a tedious job. However, we compute

the exact value of a(Pm ⊠ P2 ⊠ P2) in the following Theorem.

Theorem 3.8. The acyclic chromatic number, a(Pm⊠P2⊠P2) = 8, for m ≥ 2.

Proof. The proof is by induction on m. For m = 2, the graph G = P2⊠P2⊠P2

is isomorphic to the complete graph K8. Thus a(G) = 8. Now before moving

to the next step of induction, for m = 2, define an acyclic coloring c of G by

using the colors c1, c2, · · · , c8 as follows.

Let vi ∈ V (G), 1 ≤ i ≤ 8 and V = {v1, v2, · · · , v8} be the vertex set of G

which are marked in anti-clockwise direction in the same order as they appear
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in V . Then the coloring given by the function c(vi) = ci, 1 ≤ i ≤ 8 gives an

acyclic coloring of G. Next assume that the result is true for m = k. That is,

an acyclic coloring of G = Pk ⊠P2 ⊠P2 is a map c : V (G) → {c1, · · · , c8} such

that

c(v4r+i) =

{
ci r = 0, 2, 4 · · ·
c4+i r = 1, 3, 5, · · · 1 ≤ i ≤ 4 (3.1)

for r = 0, 1, 2, 3, 4, · · · , k − 1.

It can be noted that in this coloring the subgraphs induced by

≺ ci, cj ≻=


⌈
k
2

⌉
copies of P2 for i, j = 1, 2, 3, 4,⌊

k
2

⌋
copies of P2 for i, j = 5, 6, 7, 8,

Pk for i = 1, 2, 3, 4 and j = 5, 6, 7, 8,

forms a forest.

Next to prove the result holds for m = k + 1. According to equation (3.1),

we can extend the coloring to G = Pk+1 ⊠ P2 ⊠ P2, with r = 0, 1, 2, 3, 4, · · · , k.
It gives the induced subgraphs

≺ ci, cj ≻=


⌈
k+1
2

⌉
copies of P2 for i, j = 1, 2, 3, 4,⌊

k+1
2

⌋
copies of P2 for i, j = 5, 6, 7, 8,

Pk+1 for i = 1, 2, 3, 4 and j = 5, 6, 7, 8,

which again forms a forest. Thus the result is true for m = k + 1.

Hence by method of mathematical induction, a(Pm ⊠ P2 ⊠ P2) = 8,m ≥ 2.

An acyclic coloring of P2 ⊠ P2 ⊠ P2 is illustrated in Figure 7.

Figure 7. An acyclic coloring of P2 ⊠ P2 ⊠ P2.

□

Observation 3.1. (i) The acyclic chromatic number, a(Pm ⊠P2 ⊠P3) = 10, for

m ≥ 3. (ii) The acyclic chromatic number, a(Pm ⊠ P2 ⊠ Pn) ≤ 2(n + 2), for

m,n ≥ 3.
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4. Conclusions

In this paper, the acyclic chromatic number of the strong product of paths,

trees, and graphs are studied. The exact value of the strong product of paths

and trees are derived. In other cases, bounds are obtained. Some observations

are made on the upper bound for the strong product of three paths.
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