
Iranian Journal of Mathematical Sciences and Informatics

Vol. 19, No. 1 (2024), pp 117-133

10.61186/ijmsi.19.1.117

A Parametric F4 Algorithm

Mahdi Dehghani Darmiana,b∗, Amir Hashemib,c

aDepartment of Mathematics, Technical and Vocational University (TVU),

Tehran, Iran
bSchool of Mathematics, Institute for Research in Fundamental Sciences

(IPM), Tehran, 19395-5746, Iran
cDepartment of Mathematical Sciences, Isfahan University of Technology,

Isfahan, 84156-83111, Iran

E-mail: m.dehghanidarmian@ipm.ir; m.dehghanidarmian@gmail.com

E-mail: amir.hashemi@ipm.ir

Abstract. In this paper, we present a parametric F4 algorithm (so-

called PF4) which can be considered as a generalization of Faugère’s

F4 algorithm [8] to polynomial ideals with parametric coefficients. Our

approach is based on the F4 algorithm, Montes DisPGB algorithm [21]

and the parametric linear algebra method developed in [6]. The PF4

algorithm takes as input a parametric polynomial ideal and two monomial

orderings on the variables and the parameters and returns a Gröbner

system of the ideal with respect to a compatible elimination product of

the given monomial orderings. We have implemented our new algorithm

in Maple and give timings to compare its performance with those of

(our implementation) of the Kapur et al. algorithm [16] and the DisPGB

algorithm [21].

Keywords: Gröbner bases, Gröbner systems, F4 algorithm, PF4 algorithm,

PGBMain algorithm, DisPGB algorithm.

2000 Mathematics subject classification: 13P10, 68W30.

∗Corresponding Author

Received 07 September 2019; Accepted 28 December 2020

©2024 Academic Center for Education, Culture and Research TMU

117

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 1 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

118 M. Dehghani Darmian, A. Hashemi

1. Introduction

Gröbner bases are a powerful tool and an important theoretical concept

in the polynomial ring theory. The theory of Gröbner bases was introduced

by Buchberger [4] in 1965, who named them after his supervisor Gröbner.

Buchberger’s algorithm is the first and most reputed method for computing

Gröbner bases which was presented in Buchberger’s Ph.D. thesis [2, 4]. Then,

he proposed [3] two criteria to improve the performance of his algorithm. In [10]

Gebauer and Möller presented an improvement of the Buchberger algorithm to

apply efficiently Buchberger’s criteria. In 1983, Lazard described an algorithm

by using linear algebra methods [18] for the computation of Gröbner bases.

Later on, Faugère proposed his two well-known algorithms, namely F4 and F5

for computing Gröbner bases (see [8, 9]). The main idea of the F4 algorithm is

the use of linear algebra techniques to perform simultaneously the reduction of

a large number of critical pairs. This algorithm has been implemented in some

of the computer algebra systems like Maple and Magma.

In this paper, we adapt the F4 algorithm to compute comprehensive Gröbner

systems (CGS’s) for parametric polynomial ideals. For simplicity, throughout

this paper we employ the terminology Gröbner system instead of CGS. Roughly

speaking, Gröbner systems can be considered as an extension of Gröbner bases

for polynomial ideals over fields to polynomial ideals with parametric coeffi-

cients. More precisely, a Gröbner system is a finite set of triples (so-called

branches or segments); each branch contains a couple of null and non-null

parametric sets (parametric constraints) and also a set of polynomials so that

for every values of the parameters (specialization) one can find a branch so

that the specialization satisfies its constraints, and the specialization of the

corresponding polynomial set forms a Gröbner basis for the parametric ideal

under the substitution of the values of the parameters. Gröbner systems have

numerous applications in Mathematics and other field of sciences. In partic-

ular, we can point out algebraic geometry [11, 20, 21, 28], parametric linear

algebra [6, 13], robotics [19, 21], automated geometry theorem proving [20, 22],

automated geometry theorem discovery [22], electrical network [23] and so on.

Since our study is focused on the theory of Gröbner systems, we review briefly

this topic. The concept of Gröbner system was introduced by Weispfenning

in [28]. He established also the existence of a Gröbner system for any given

parametric polynomial ideal [28, Proposition 3.4 and Theorem 2.7] and pre-

sented the first algorithm to compute it [28, Theorem 3.6]. It should be noted

that the solutions of parametric systems were studied at the same time using

different methods by Kapur [15] and Sit [26], independently. In 2002, Montes

[21] proposed a more efficient algorithm (DisPGB) for computing Gröbner sys-

tems (see also [7, 12]). Manubens and Montes in 2006, utilizing the concept

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 2 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 119

of discriminant ideals improved the DisPGB algorithm [19] and then intro-

duced an algorithm to compute minimal canonical Gröbner systems [20]. In

[27] Suzuki and Sato propounded an impressive improvement for computing

Gröbner systems based on Kalkbrener’s results [14] concerning specialization

of parametric polynomial ideals and stability of the Gröbner bases under spe-

cialization. The Suzuki-Sato algorithm employed recursively computations of

reduced Gröbner bases in an extension of the base polynomial ring. Afterward,

Nabeshima proposed an improvement of this algorithm in [25] by reducing the

number of branches generated by the Suzuki-Sato algorithm. Furthermore, Ka-

pur et al. in 2010 proposed an efficient algorithm (PGBMain algorithm) for

computing Gröbner systems by using combination of the Weispfenning [29] and

the Suzuki-Sato algorithms, see [16, 17]. Finally, Montes and Wibmer in 2010

presented Gröbner Cover algorithm [24] based on a result for parametric

polynomial systems proved by Wibmer in [30]. Gröbner Cover algorithm is

the canonical algorithm for solving parametric polynomial systems and it plays

a role similar to the reduced Gröbner basis for parametric systems. This algo-

rithm computes a finite partition of parameter space into locally closed subsets

together with certain polynomial data, from which the reduced Gröbner basis

for each parameter point can be determined. The interested reader is referred

to [22] for more details on theory of Göbner systems and their applications.

As mentioned above, PGBMain algorithm was presented by Kapur et al.

in 2010. This algorithm at each iteration computes the Gröbner basis over a

polynomial ring in terms of the variables and the parameters. Therefore, this

step may be very expensive in practice, because the complexity of Gröbner ba-

sis computation is extremely influenced by the number of variables and degree

of the given polynomials. Hence, it is important to design an efficient algorithm

to reduces the computation in a polynomial ring in terms of only the variables.

On the other hand, the DisPGB algorithm works in a polynomial ring in terms

of only the variables and in addition benefits from almost all the improvements

of the Buchberger algorithm which are applicable in the non-parametric set-

ting. So, in this algorithm, like the conventional Buchberger’s algorithm, a

parametric S-polynomials is constructed and if its remainder is non-null then

it is added to the basis set (see also [12]). In consequence, DisPGB creates

new branches when a new polynomial with an undecidable coefficient is con-

structed and this may end with many number of branches which may turn the

algorithm inefficient in practice. In order to tackle this problem, we present

a parametric version of the F4 algorithm. As the first step in this direction,

we shall need a parametric linear algebra technique to achieve our purpose.

It is worth noting that Gröbner systems may be not a powerful tool in solv-

ing any parametric polynomial system and that is why we already developed

parametric linear algebra tools for studying parametric polynomial systems

(in [6, Section 3], it is shown that applying parametric Gaussian elimination

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 3 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

120 M. Dehghani Darmian, A. Hashemi

method to solve a parametric polynomial system may be faster than applying

Gröbner system method). Based on this approach using the basic ideas from

the DisPGB structure [21], we present a parametric F4 algorithm to compute

Gröbner systems for parametric polynomial ideals. The proposed algorithm

along with the algorithm due to Kapur et al [16] and the DiSPGB algorithm

have been implemented in Maple and the comparison of their efficiency is

discussed via a set of benchmark polynomials.

The rest of the paper is organized as follows. In Section 2, we review the

basic definition and notations related to the theory of Gröbner systems. Then

we present a parametric version of the F4 algorithm in Section 3. Furthermore,

in this section we illustrate the steps of this algorithm through a simple ex-

ample. The efficiency of the proposed algorithm (compared to the PGBMain

and DiSPGB algorithms) is discussed using several benchmark polynomials in

Section 4.

2. Gröbner Systems

In this section, we review the basic definitions and notations that we use

in the subsequent sections, for more details we refer the reader to [5, 22].

Throughout this paper, we consider R = K[x1, . . . , xn] the polynomial ring in

terms of x1, . . . , xn over a field K. Let I = ⟨f1, . . . , fk⟩ ⊂ R be the polynomial

ideal generated by the fi’s. We consider a monomial ordering ≺ on the set of

all monomials (power products of the xi’s) of R. For any f ∈ R, the leading

monomial of f , denoted by LM≺(f), is the greatest monomial (with respect

to ≺) appearing in f and its coefficient is the leading coefficient of f which

denoted by LC≺(f). The leading term of f with respect to ≺ is the product

LT≺(f) = LC≺(f)LM≺(f). The leading monomial ideal of I is defined to be

LM≺(I) = ⟨LM≺(f) | f ∈ I⟩. A finite subset {g1, . . . , gm} ⊂ I is called a

Gröbner basis for I with respect to ≺ if LM≺(I) = ⟨LM≺(g1), . . . ,LM≺(gm)⟩.
We refer e.g. to [5] for more details on the theory of Gröbner bases. Using these

notations, we recall the definition of Gröbner systems for parametric polynomial

ideals. For this purpose, let us consider S = K[a,x] as a polynomial ring

with parametric coefficients where a = a1, . . . , am is a sequence of parameters,

x = x1, . . . , xn is a sequence of variables and {x} ∩ {a} = ∅. Thus a monomial

xα1
1 · · ·xαn

n is denoted by xα where α = (α1, . . . , αn). Let ≺x be a monomial

ordering on the variables and ≺a a monomial ordering on the parameters. For

defining Gröbner systems, we shall need also to give recall a product ordering

to specify an ordering on S. The product of ≺x and ≺a denoted by ≺x,a, is

defined as follows: For all α, β ∈ Nn and γ, δ ∈ Nm, we write xαaγ ≺x,a xβaδ

if either xα ≺x xβ or (xα = xβand aγ ≺a aδ).

In addition, if K denotes the algebraic closure of K then from a specialization

of parameters we mean a morphism

σ : K[a] → K.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 4 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 121

Therefore, for each f , we can write σ(f) = f |a=t1,...,tm where σ(ai) = ti.

Furthermore, we say that a specialization σ satisfies (N,W) ⊂ K[a] × K[a] if

σ(p) = 0 for all p ∈ N and σ(q) ̸= 0 for some q ∈ W . Equivalently, σ satisfies

(N,W) if (t1, . . . , tm) ∈ V(N) \ V(W) where σ(ai) = ti. If V(N) \ V(W) = ∅
then (N,W) is said to be inconsistent. Also, Ni and Wi are called the null and

non-null condition sets, respectively. The set of common zeros of N ⊂ R is

denoted by V(N), for a set of polynomials N .

Definition 2.1. [27, Definition 1] Let F ⊂ S, Gi ⊂ S and (Ni,Wi) ⊂ K[a] ×
K[a] for i = 1, . . . , ℓ. The triple set G = {(Ni,Wi, Gi)}ℓi=1 is called a Gröbner

system for ⟨F ⟩ with respect to ≺x,a over V ⊆ Km
if for any i we have

• σ(Gi) ⊂ K[x] is a Gröbner basis of ⟨σ(F)⟩ with respect to ≺x, for any

specialization σ : K[a] → K satisfying (Ni,Wi)

• V ⊆
⋃ℓ

i=1 V(Ni) \ V(Wi).

For each i, (Ni,Wi, Gi) is called a branch (segment) of the Gröbner system G .

Furthermore, if V = Km
then G is called a Gröbner system of F .

The concept of Gröbner system was introduced by Weispfenning in [28]. He

proved that any parametric polynomial ideal has a Gröbner system and de-

scribed an algorithm to compute it. Kapur et al. in [16] presented the efficient

PGBMain algorithm for this computation. However, the output Gröbner sys-

tem of this algorithm may contain several branches so that the corresponding

Gröbner basis is {1}. On the other hand, by substituting only one branch in-

stead of considering all these branches may reduce the consistency check and

this can improve significantly the performance of the PGBMain algorithm, see

[11] for more details. In the rest of the paper when we refer to the PGBmain

algorithm we mean the modified version of this algorithm proposed in [11].

Example 2.2. Let F = {ay3 + y2x + 2, cy2 + bz} ⊂ K[a, b, c, x, y, z] where

x, y, z are variables and a, b, c are parameters. We consider the monomial or-

derings z ≺drl y ≺drl x and c ≺drl b ≺drl a. Using our implementation of the

PGBMain algorithm, we can compute a Gröbner system for ⟨F ⟩ as follows
([], [bc], [abyz + bxz − 2c, cy2 + bz])

([b, c], [], [ay3 + y2x+ 2])

([c], [b], [bz, ay3 + y2x+ 2]))

([b], [c], [1])).

For instance, if we set a = 1, b = 2 and c = 3 then the first branch corre-

sponds to these values of parameters and so {zx+zy−3, 3y2+2z} is a Gröbner

basis for the ideal ⟨F ⟩ |a=1,b=2,c=3.

3. Description of a Parametric F4 Algorithm

Faugère’s F4 algorithm [8] has a structure similar to that of the Buchberger

algorithm, however in contrast to it which computes S-polynomial remainders

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 5 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

122 M. Dehghani Darmian, A. Hashemi

one by one, several S-polynomial remainders are performed simultaneously via

row-reduction on a suitable matrix (generally sparse matrix) to do the reduc-

tions in parallel. This structure, along with the use of linear algebra methods,

is the cornerstone of the F4 algorithm. We refer e.g. to [5, 8] for more details

on the structure of the F4 algorithm. In this section, we present a parametric

F4 algorithm which can be considered as a generalization of the F4 algorithm

to polynomial ideals with parametric coefficients. We remark that our gener-

alization is non-trivial in the sense that, in several stages in the F4 algorithm

we shall perform linear and non-linear reductions, and it is non-trivial to han-

dle the parametric variants of all these reductions. In this direction, we apply

the GES algorithm [6] with slight modifications. This algorithm computes a

Gaussian elimination system for a parametric matrix (equivalently a paramet-

ric linear system corresponding to the input matrix). However, we apply this

algorithm on non-linear polynomials to make a linear inter-reduction, and we

look for their Gaussian forms according to parametric constraints. To this end,

we shall linearize the input polynomials by replacing each monomial appearing

in the polynomials by new variables. The engine of the GES algorithm is the

LDS algorithm [6] which discusses the dependency of a linear parametric poly-

nomial with respect to a given set of parametric polynomials without the use of

Gröbner systems. For the convenience of the reader, we review shortly the LDS

algorithm from [6]. Below, we let Sys be a variable which is initialized to empty

set, and finally it is the output linear dependency system. In addition, the LDS

algorithm receives as input (N,W,F, f) where (N,W) is a pair of condition sets,

F is a set of linear parametric polynomials (which forms a parametric Gröbner

basis with respect to the given condition sets) and f is a linear parametric poly-

nomial and returns a finite set of triples of the form (N1,W1, [flag,Q, g]) where

(N1,W1) is a pair of condition sets, flag is a Boolean variable, Q represents the

quotients of the division and g is the normal form of f with respect to F . If

flag is true then g = 0 and in consequence f is linear dependent on F with re-

spect to (N1,W1), and if it is false then f is linear independent modulo F with

respect to (N1,W1). We use below the function NormalForm which receives

as input a polynomial p, a Gröbner basis G = {g1, . . . , gm} and a monomial

ordering ≺ and returns f and Q = [q1, . . . , qm] where f is the normal form of

p by G and p = q1g1 + · · ·+ qmgm + f . Finally, we shall mention that the LDS

algorithm uses an arbitrary monomial ordering on the variables appearing in

F and f to discuss the parametric linear dependency of f on F and this does

not change the correctness of the output.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 6 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 123

Algorithm 1 LDS (Linear Dependency System)

Require: G ⊂ S; a linear set which is a reduced Gröbner basis w.r.t. the product of the

monomial orderings ≺x and ≺a provided that a conditions pair (N,W) is satisfied and

g ∈ S; a parametric linear polynomial

Ensure: A linear dependency system of g on (N,W,G)

Sys:= {}
f,Q :=NormalForm(g,GröbnerBasis(N,≺a),≺a)

f ′, Q′ :=NormalForm(f,G,≺x)

if f ′ = 0 then

Sys:=Sys
⋃
{(N,W, [true,Q′, 0])}

else

A := {ai1 , . . . , ait} where f ′ = ai1xi1 + · · ·+aitxit with aij ̸= 0 and xi1 ≻x · · · ≻x xit

for j from 1 to t do

if aij is not constant then

Sys:=Sys
⋃
{(N ∪ {ai1 , . . . , aij−1},W ∪ {aij }, [false,Q′, f ′|ai1

=0,...,aij−1
=0])}

else

Sys:=Sys
⋃
{(N ∪ {ai1 , . . . , aij−1},W, [false,Q′, f ′|ai1

=0,...,aij−1
=0])}

Return(Sys)

end if

end for

Sys:=Sys
⋃
{(N

⋃
A,W, [true,Q′, 0])}

end if

Return(Sys)

The behavior of the above algorithm is illustrate by a simple example.

Example 3.1. Consider (N,W,G) = ([], [a − 1, b − 1, c], [x + av, y + bu, z])
and g = (a − 2)x + ty + cz + du + (3 − b)v. We fix the monomial orderings
t ≺lex d ≺lex c ≺lex b ≺lex a and v ≺lex u ≺lex z ≺lex y ≺lex x on the
parameters and the variables, respectively. At the beginning, we set

f,Q := NormalForm(g,N,≺a) = (a− 2)x+ ty + cz + du+ (3− b)v, []

f ′, Q′ := NormalForm(f,G,≺x) = (−bt+ d)u+ (−a2 + 2a+ 3− b)v, [a− 2, t, c].

Since f ′ ̸= 0 we consider the set A = {−bt + d,−a2 + 2a − b + 3} of the
coefficients of f ′. By the structure of the algorithm, we consider first two pairs
([], [a − 1, b − 1, c,−bt + d]) and ([−bt + d], [a − 1, b − 1, c,−a2 + 2a − b + 3])
which are consistent and therefore we have

Sys =

{
([], [a− 1, b− 1, c,−bt+ d], [false, [a− 2, t, c], (−bt+ d)u+ (−a2 + 2a+ 3− b)v]),

([−bt+ d], [a− 1, b− 1, c,−a2 + 2a− b+ 3], [false, [a− 2, t, c], (−a2 + 2a+ 3− b)v]).

Since A does not contain any constant and the pair (N ∪{A},W) is consistent
then a linear dependency system of g on (N,W,G) is as follow:

Sys =


([], [a− 1, b− 1, c,−bt+ d], [false, [a− 2, t, c], (−bt+ d)u+ (−a2 + 2a+ 3− b)v]),

([−bt+ d], [a− 1, b− 1, c,−a2 + 2a− b+ 3], [false, [a− 2, t, c], (−a2 + 2a+ 3− b)v]),

([−bt+ d,−a2 + 2a− b+ 3], [a− 1, b− 1, c], [true, [a− 2, t, c], 0]).

Using this algorithm, we are willing to present an efficient algorithm to

compute a Gaussian elimination system for a set of (non necessary linear)

parametric polynomials. Below, the notion Sys stands for a variable which

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 7 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

124 M. Dehghani Darmian, A. Hashemi

is initialized to empty set, and finally it is the output Gaussian elimination

system. We note that each recorded branch in Sys contains a triple (N,W,G)

where (N,W) is a pair of condition sets and G is a Gaussian elimination form of

the input parametric polynomials set with respect to (N,W). In the following

algorithm Y [i] denotes i-th element of a list or set Y .

Algorithm 2 GES (Gaussian Elimination System)

Require: N ⊂ K[a]; null condition set, W ⊂ K[a]; non-null condition set, F ⊂ K[a,x]; a

parametric polynomial set

Ensure: A Gaussian elimination system of F according to N and W

Sys:= {}
M := Mon(F) = [m1, . . . ,mt] (the set of all monomials in terms of the xi’s appearing in

F)

[Y1, . . . , Yt] :=A list of tag variables corresponding to Mon(F)

L := ϕ(F) where ϕ is a linear map sending each mi into Yi

A := {(N,W, {}, L[1], L)}
while A ̸= {} do

a := A[1] and A := A \ {a}
if a[5] = {} then

G := ϕ−1(a[3])

Sys:=Sys
⋃
{(a[1], a[2], G)}

else

G := a[5] \ {a[4]}
g := G[1]

P :=LDS(a[1], a[2], a[3], a[4])

for i from 1 to |P | do
Let P [i] = (N1,W1, [flag,Q, f])

if flag = true then

A := A ∪ {(N1,W1, a[3], g, G)}
else

A := A ∪ {(N1,W1, a[3] ∪ {f}, g, G)}
end if

end for

end if

end while

Return (Sys)

Theorem 3.2. The GES algorithm terminates in finitely many steps and is

correct.

Proof. Since F is finite and for any f ∈ F the LDS algorithm computes the

linear dependency system of f in finitely many steps then the GES algorithm

trivially terminates in finitely many steps. Also, the correctness of the LDS

algorithm guarantees the correctness of this algorithm. More precisely, by the

structure of the algorithm, we discuss a new polynomial f ∈ F using the LDS

algorithm. If it is linear dependent on the computed basis, then it is removed.

Otherwise, its normal form with respect to the computed basis is added into

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 8 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 125

the basis. Thus, each branch contains a Gaussian elimination form of the

input parametric polynomial set with respect to the corresponding conditions

pair. □

Example 3.3. Let us consider F = {ax2+ by+1, cz3+(a−1)y− b, (a− b)y2+

(c−1)xy−2} ⊂ K[a, b, c][x, y, z] as a set of polynomials with parameters. Using

the GES algorithm, we get the following Gaussian elimination system for F

when (N,W) = ([a− 1], [c]).
([a− 1], [c, c− 1], [x2 + by + 1, cz3 − b, (1− b)y2 + cxy − xy − 2]),

([c− 1, a− 1], [b− 1], [x2 + by + 1, z3 − b, (1− b)y2 − 2]),

([c− 1, b− 1, a− 1], [], [x2 + y + 1, z3 − 1,−2]).

We deal now with presenting a parametric F4 algorithm, so-called PF4 to

compute Gröbner systems for parametric polynomial ideals. This algorithm,

which is a generalization of F4 algorithm to parametric coefficients, receives as

input a parametric polynomial set F and two monomial orderings on variables

and parameters and outputs a Gröbner system for the ideal generated by F . In

this algorithm, we use a global variable OUTSYS which is initially the empty

sequence and at each iteration of two algorithms PF4 and PF4Basis, some

new segments are added to this sequence. At the end, OUTSYS is a Gröbner

system of the input parametric polynomial ideal.

Algorithm 3 PF4

Require: F ⊂ K[a,x] = K[a1, . . . , am, x1, . . . , xn], ≺x,≺a; two monomial orderings

Ensure: G; A Gröbner system of ⟨F ⟩ with respect to ≺x,a

OUTSY S := NULL

A :=GES([], [], F)

for (Nn,Wn, Fn) ∈ A do

if Fn = [] then

OUTSYS:= OUTSYS, (Nn,Wn, [])

end if

if there is any constant or non-zero parameter in Fn then

OUTSYS:= OUTSYS, (Nn,Wn, [1])

else

t := |Fn| (the cardinality of Fn)

B := [[{i, j}, deg(lcm(LM≺x (Fn[i]),LM≺x (Fn[j])))] | 1 ≤ i < j ≤
t, gcd(LM≺x (Fn[i]),LM≺x (Fn[j])) ̸= 1]

if B = [] then

OUTSYS:= OUTSYS, (Nn,Wn, Fn)

else

SY S := [[Nn,Wn, Fn, t, B]]

end if

end if

PF4Basis(SY S)

end for

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 9 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

126 M. Dehghani Darmian, A. Hashemi

We continue this section with the description of the PF4Basis algorithm

which is the most important part of the PF4 algorithm. Below, we used the

ComputeM sub-algorithm proposed by Faugère in [8] and its simple version

was presented in [5, page 571]. This sub-algorithm receives two sets of poly-

nomials L and G and its goal is to produce a polynomial set H so that the

following conditions hold:

i) L ⊆ H,

ii) if there exists fℓ ∈ G with LM(fℓ)|xβ for some monomial xβ appearing

in some element inH then xαfℓ is included inH where LM(xαfℓ) = xβ .

So, it is clear that this sub-algorithm can construct H within a finite loop.

Furthermore, in the next algorithm, the Newpolys is a procedure which gets

two lists of polynomials F,G and returns the list of those polynomials f ∈ F

so that LM(f) /∈ ⟨LM(G)⟩. Also, NormalSet(F,G,≺) computes the normal

form of all polynomials of F modulo G with respect to a monomial ordering

≺, namely NormalSet(F,G,≺) = {fG

≺|f ∈ F} where f
G

≺ is a remainder of f

on division by G with respect to ≺. The algorithm maintains a list B of pairs

whose corresponding S-polynomials have not be reduced. But it is worth noting

that B is now a set of not ordered pairs. For this purpose, the degree of a pair

{i, j} is defined to be deg(lcm(LM≺x(fi),LM≺x(fj))) and then one can use the

degree-normal selection strategy to order the pairs. Like the original form of

the F4 algorithm, the degree-normal selection strategy consists of choosing the

set of all pairs of the minimal degree in each step.

It should be mentioned that the PF4 algorithm has a structure similar to

the Buchberger algorithm in which we consider the set of critical pairs to study

and therefore applying Buchberger’s criteria may be helpful to skip some un-

necessary critical pairs. In this direction, the PF4Basis algorithm benefits

from the Update algorithm exhibited in [1, page 230] to discard apriori super-

fluous critical pairs by employing Buchberger’s criteria (this algorithm is due

to Gebauer-Möller [10], and it has been presented in a more clear manner in [1,

page 230]). Moreover, in order to enhance the efficiency of the PF4Basis algo-

rithm, we keep track of the computations as follows: Each branch sys ∈ SY S

in the PF4Basis algorithm is of the form sys = (a[1], . . . , a[5]) containing the

following information:

• a[1]: The null condition set

• a[2]: The non-null condition set

• a[3]: The set of polynomials which forms a Gröbner basis for ⟨F ⟩ with
respect to ≺x

• a[4]: The cardinality of a[3]

• a[5]: A list of pairs so that the first component each element is a pair

{i, j} and second component is deg(lcm(LM≺x
(a[3][i]),LM≺x

(a[3][j]))).

If L = [f1, . . . , fℓ] is a list, then sequence f1, . . . , dℓ is denoted by op(L).

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 10 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 127

Algorithm 4 PF4Basis

Require: N ⊂ K[a]; null condition set, W ⊂ K[a]; non-null condition set, F ⊂ K[a,x]; t;

the cardinality of F and Cpairs; a list of pairs so that the first component is a pair of

integers {i, j} and second component is deg(lcm≺x (LM(F [i]),LM≺x (F [j])))

Ensure: Decomposing the space of parameters into a finite set of parametric cells and for

each cell associating a finite set of parametric polynomials

B := Cpairs

while SY S ̸= [] do

sys := SY S[1] and remove it from SY S

G := sys[3]

B := sys[5]

Select Bp ⊆ B using degree-normal selection strategy

B := B \Bp

Bsys := B

L := { lcm(LM(fi),LM(fj))

LM(fi)
.fi,

lcm(LM(fi),LM(fj))

LM(fj)
.fj | {i, j} ∈ Bp}

H :=ComputeM(L,G)

Ges :=GES(sys[1], sys[2], H)

allNPi := [Newpolys(Ges[i][3], H), i = 1, . . . ,
∣∣ Ges

∣∣]
for j from 1 to

∣∣ allNPi
∣∣ do

t := sys[4]

G := NormalSet(sys[3], Ges[j][1],≺a);

B := Bsys

for ℓ from 1 to
∣∣ allNPi[j]

∣∣ do
t := t+ 1

B :=Update(allNPi[j][ℓ], G,B)

G := [op(G), allNPi[j][ℓ]]

if B = [] then

OUTSYS:= OUTSYS, (Ges[j][1], Ges[j][2], G)

else

SY S := [op(SY S), [Ges[j][1], Ges[j][2], G, t, B]]

end if

end for

end for{
PF4Basis(SY S[m])

}∣∣SY S
∣∣

m=1

end while

Return (OUTSYS)

Theorem 3.4. The PF4 algorithm terminates in finitely many steps and is

correct.

Proof. The termination of this algorithm is essentially ensured by those of the

GES and F4 algorithms. More precisely, we can consider this computation like

a tree graph and each node corresponds to a triple which is the output of the

GES algorithm. The number of branches is finite (due to the termination of the

original F4 algorithm). Moreover, the number of nodes in this tree is finite (by

termination of the GES algorithm) and all these arguments together conclude

the termination of the algorithm.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 11 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

128 M. Dehghani Darmian, A. Hashemi

Also, the correctness of the algorithm is guaranteed by the correctness of

the GES and the F4 algorithms. Indeed, by the structure of the algorithm, at

each step we have a condition sets (sys[1], sys[2]), a set of polynomials G and

a list of critical pairs B. Then, we choose the critical pairs with lowest possible

degree and start discussing them using the GES algorithm. We obtain in turn

new polynomials by decomposing (sys[1], sys[2]). For each new polynomial

with its own condition sets, we add it into G and also update B. Since, we

basically follow the structure of the F4 algorithm, we get at the end a Gröbner

system of the input ideal. □

We illustrate the steps of the PF4 algorithm by the following simple example.

Example 3.5. Let F = [(c2−1)x2+ b2−1, (a2−1)xy2+ c+ b] ⊂ K[a, b, c][x, y]

where x, y are varibles and a, b, c are parameters. We consider the monomial

orderings y ≺lex x and c ≺lex b ≺lex a. We want to compute a Gröbner system

of the ideal generated by F using the PF4 algorithm. At the beginning, the

GES algorithm is called to compute a Gaussian elimination system of F and

the output of this algorithm is as follows

A =



([], [a− 1, a+ 1, c− 1, c+ 1], [c2x2 + b2 − x2 − 1, a2xy2 − xy2 + b+ c]),

([a2 − 1], [b+ c, c− 1, c+ 1], [c2x2 + b2 − x2 − 1, b+ c]),

([b+ c, a2 − 1], [c− 1, c+ 1], [c2x2 + c2 − x2 − 1]),

([c2 − 1], [a2 − 1, b− 1, b+ 1], [b2 − 1, a2xy2 − xy2]),

([c2 − 1, a2 − 1], [b− 1, b+ 1], [b2 − 1]),

([c2 − 1, b2 − 1], [a− 1, a+ 1], [a2xy2 − xy2 + b+ c]),

([c2 − 1, b2 − 1, a2 − 1], [b+ c], [b+ c]),

([c2 − 1, b+ c, a2 − 1], [], []).

A has eight segments and as it is seen the last Gröbner basis is []. Furthermore,

the associated Gröbner bases of the second, fourth, fifth and seventh branches

are all [1]. Thus, the corresponding branches are added in advance to OUTSYS:

OUTSYS =


([a2 − 1], [b+ c, c− 1, c+ 1], [1]),

([c2 − 1], [a− 1, a+ 1, b− 1, b+ 1], [1]),

([c2 − 1, a2 − 1], [b− 1, b+ 1], [1]),

([c2 − 1, b2 − 1, a2 − 1], [b+ c], [1]),

([c2 − 1, b+ c, a2 − 1], [], []).

Now for simplicity, we select the first triple of A namely;

([], [a− 1, a+ 1, c− 1, c+ 1], [c2x2 + b2 − x2 − 1, a2xy2 − xy2 + b+ c])

and ignore the other branches. Therefore, we set SYS as the following

[[], [a−1, a+1, c−1, c+1], [c2x2+b2−x2−1, a2xy2−xy2+b+c], 2, [[[1, 2], 4]]].

Now, PF4Basis is called and receives a quintuple of SY S. Let sys be the only

element of SY S. In the while loop, we have

L = H = {x(a
2xy2 − xy2 + b+ c)

a2 − 1
,
y2(c2x2 + b2 − x2 − 1)

c2 − 1
}.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 12 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 129

Now, the GES algorithm receives as input sys[1], sys[2], H and gives a Gaussian

elimination system of H as follows

Ges =


([], [b+ c, a− 1, a+ 1, c− 1, c+ 1], [a2x2y2 − x2y2 + bx+ cx, a2b2y2 + y2

−a2y2 − b2y2 − bc2x− c3x+ bx+ cx]),

([b+ c], [a− 1, a+ 1, c− 1, c+ 1], [a2x2y2 − x2y2, (a2c2 − a2 − c2 + 1)y2]).

Since, Ges has two branches so Newpolys function is called twice and so we

can write

Newpolys(Ges[1][3], H) = [a2b2y2 − a2y2 − b2y2 − bc2x− c3x+ bx+ cx+ y2]

Newpolys(Ges[2][3], H) = [a2c2y2 − a2y2 − c2y2 + y2].

Notice that Newpolys is a procedure which receives two lists of polynomials

F,G and returns those polynomials f ∈ F so that LM(f) /∈ ⟨LM(G)⟩. Hence,

in this step, the list of all new polynomials added to allNPi is

allNPi = [a2b2y2−a2y2−b2y2−bc2x−c3x+bx+cx+y2], [a2c2y2−a2y2−c2y2+y2].

The cardinality of allNPi is 2. So after passing two for loop and applying the
Update algorithm, one gets

t = 3, G = [c2x2 + c2 −x2 − 1, a2xy2 −xy2, a2c2y2 −a2y2 − c2y2 + y2], B = [[{2, 3}, 3]]

Note that each element of B contains the indices corresponding to a critical

pair along with the degree of the corresponding S-polynomial. Therefore, SY S

is enlarged by two new quintuples as the following

SY S =



([], [a− 1, a+ 1, b+ c, c− 1, c+ 1], [c2x2 + b2 − x2 − 1, a2xy2 − xy2 + b+ c,

a2b2y2 − a2y2 − b2y2 − bc2x− c3x+

bx+ cx+ y2],

3, [[{1, 3}, 2], [{2, 3}, 3]]),

([b+ c], [a− 1, a+ 1, c− 1, c+ 1], [c2x2 + c2 − x2 − 1, a2xy2 − xy2,

a2c2y2 − a2y2 − c2y2 + y2],

3, [[{2, 3}, 3]]).

Since SY S has two segments the computation is continued into two branches
and again for simplicity, we focus on the second member and ignore the first
one. The PF4Basis algorithm is called again and receives as input the following
data

[b+c], [a−1, a+1, c−1, c+1], [c2x2+c2−x2−1, a2xy2−xy2, (a2c2−a2−c2+1)y2], 3, [[{2, 3}, 3]].

Since SY S is not empty, so we enter into the while loop by setting L = H =

{xy2}. The Gaussian elimination system of H is

Ges = [[[b+ c], [a− 1, a+ 1, c− 1, c+ 1], [xy2]]].

On the other hand, Ges[1][3] = H = [xy2]. Accordingly,

Newpolys([xy2], [xy2]) = [] which deduces that allNPi = [] and we have

t = 3, G = [c2x2 + c2 − x2 − 1, a2xy2 − xy2, a2c2y2 − a2y2 − c2y2 + y2], B = [].

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 13 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

130 M. Dehghani Darmian, A. Hashemi

Since, B = [] so the sixth triple of Gröbner system of ⟨F ⟩ added to OUTSYS

is

[[b+c], [a−1, a+1, c−1, c+1], [c2x2+c2−x2−1, a2xy2−xy2, (a2c2−a2−c2+1)y2]].

If we consider all the ignored branches during the calculation then we obtain

the following Gröbner system of ⟨F ⟩ saved in OUTSYS:

([a2 − 1], [b + c, c − 1, c + 1], [1]),

([c2 − 1], [a − 1, a + 1, b − 1, b + 1], [1]),

([c2 − 1, a2 − 1], [b − 1, b + 1], [1]),

([c2 − 1, b2 − 1, a2 − 1], [b + c], [1]),

([c2 − 1, b + c, a2 − 1], [], []),

([b2 − 1], [a − 1, a + 1, b + c, c − 1, c + 1, 2bc + c2 + 1], [c2x2 − x2, a2xy2 − xy2 + b + c, bc2x

+c3x − bx − cx, 2bc3 + c4 − 2bc − 1]),

([b + c, a2 − 1], [c − 1, c + 1], [c2x2 + c2 − x2 − 1]),

([c2 − 1, b2 − 1], [a − 1, a + 1], [a2xy2 − xy2 + b + c]),

([b + c], [a − 1, a + 1, c − 1, c + 1], [c2x2 + c2 − x2 − 1, a2xy2 − xy2,

a2c2y2 − a2y2 − c2y2 + y2]),

([], [a − 1, a + 1, b − 1, b + 1, b + c, c − 1, c + 1], [c2x2 + b2 − x2 − 1, a2xy2 − xy2 + b

+c, (a2b2 − a2 − b2)y2 − bc2x − c3x

+bx + cx + y2, (a4b2 − a4 − 2a2b2)y4

+2a2y4 + b2c2 + (y4 − 1)b2 + 2bc3−
2bc + c4 − c2 − y4]).

4. Experiments and Results

In this section, we aim to compare the performance of the PF4 algorithm

with PGBMain and DisPGB algorithms. For this purpose, we have im-

plemented all the algorithms described in this paper in Maple 15. Below,

we refer to the Kapur et al. algorithm as “PGBMain”) and to the Montes

DisPGB algorithm as Improved-DisPGB which involves an improvement

of the DisPGB algorithm [21] by installing Update algorithm [12]. In this

direction, the following parametric ideals have been chosen in the ring S =

Q[a, b, c, d,m, n, r, t][x, y, z, u, v, w], and we aimed to compute a Gröbner sys-

tem of the ideal generated by each list of polynomials with respect to the

product of the orderings v ≺lex w ≺lex u ≺lex z ≺lex y ≺lex x and t ≺lex

r ≺lex n ≺lex m ≺lex d ≺lex c ≺lex b ≺lex a.

• EX.1= [ab4cuxz − a− c, aby2 − a2 + b2, abuxz − c]

• EX.2= [(a− c)xz − x, (−b3 + a2)uxz − ab, (a+ b)y − a2]

• EX.3= [(c2−1)x2y+ b2−1, (a2−1)x2z+ c+ b, (a− b)y2z−x−1, bxy+a− c]

• EX.4= [bx2z3 − n3 + n, cx2y3 − a3 − a, dx3y2 −m3 −m]

• EX.5= [(c− 1)x3 + a2b− c, (1− b)zy4x+ b+ a, (1− c)yzx− a− b− c]

• EX.6= [abcxyz − a− b− c, abxy − a− b, ax3 − bc, by3 − c, cz3 − a]

• EX.7= [(bc−1)x2+c2−a, (ab−1)z2−c+a, y2−(b−1)x−1, (b+c+a)z2+a+b+c]

• EX.8= [(c−a−b)x3z3+c3−a−b, (b−a−c)z2y5−c−a−m, (a−m+n)z2−a+b]

• EX.9= [(a− 1)xyz + a, (b− 2)y2 + ab, (c+ a)xy − a− 1]

• EX.10= [b4x2 + ac3 − c, aby3 + b6 − a, bcz5 − 3ac+ 1]

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 14 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 131

• EX.11= [ab4tux3 − x− a3 − n, abxy3 + b4 − a2 + a, anxz3 + a− 1]

• EX.12= [(m5 − b)x+ n− 1, y + (b3m2 − n)z − 1, b3z2 −mz − 1]

• EX.13= [rx5 + (ab− c)z − n, cy3 + acx+ dn, z3 − (c− t)y]

• EX.14= [abxy + ay3 − cz + 1, ax2 + ax+ cu, tu3 + tu, bz3 +mnx− bz]

Example Method Time (sec.) Used Memory (GB)

PF4 0.38 0.007

EX.1 PGBMain 0.51 0.016

FirstGB 0.2 0.006

Improved-DisPGB 0.54 0.018

PF4 0.9 0.02

EX.2 PGBMain 0.41 0.012

FirstGB 0.3 0.005

Improved-DisPGB 1.44 0.035

PF4 11.64 0.72

EX.3 PGBMain — —

FirstGB — —

Improved-DisPGB — —

PF4 3.52 0.09

EX.4 PGBMain 27.81 1.91

FirstGB 0.32 0.015

Improved-DisPGB 6.1 0.23

PF4 24.26 1.84

EX.5 PGBMain — —

FirstGB 8.41 0.82

Improved-DisPGB 17.93 1.99

PF4 12.48 1.2

EX.6 PGBMain — —

FirstGB — —

Improved-DisPGB — —

PF4 1.13 0.041

EX.7 PGBMain 2.17 0.1

FirstGB 0.02 0.016

Improved-DisPGB 1.84 0.048

PF4 1.43 0.036

EX.8 PGBMain — —

FirstGB 197.25 27.64

Improved-DisPGB 2.59 0.075

PF4 0.67 0.022

EX.9 PGBMain 031 0.007

FirstGB 0.14 0.001

Improved-DisPGB 1.04 0.029

PF4 0.21 0.005

EX.10 PGBMain 1.89 0.16

FirstGB 1.41 0.12

Improved-DisPGB 0.32 0.01

PF4 9.71 0.45

EX.11 PGBMain 11.23 0.85

FirstGB 4.81 0.51

Improved-DisPGB 50.21 6.3

PF4 0.27 0.01

EX.12 PGBMain 56.11 5.62

FirstGB 40.54 5.19

Improved-DisPGB 0.31 0.014

PF4 65.87 3.41

EX.13 PGBMain — —

FirstGB 15.12 1.12

Improved-DisPGB 3.21 0.45

PF4 265.13 10.78

EX.14 PGBMain 523.17 57.91

FirstGB 59.23 7.98

Improved-DisPGB 2.41 0.32

The results are shown in the above tables where the third and fourth columns

show respectively the CPU time (in seconds) and the amount of used memory

(in gigabytes) of the total computation by the corresponding method. Further-

more, the row “First GB” stands for the computation of the reduced Gröbner

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 15 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

132 M. Dehghani Darmian, A. Hashemi

basis of the corresponding ideal in the polynomial ring K[a,x] with respect

to ≺x,a using the Maple function Basis. It is worth noting that, this com-

putation is needed the first step in the PGBMain algorithm to compute a

Gröbner system with respect to ≺x,a. Also, the symbol “—” means that the

results can not computed within 600 seconds. The timings were conducted on

personal computer with 5 core, 4 GB RAM and 64 bits under the Windows 10

operating system.

Acknowledgement

The authors would like to thanks anonymous reviewers for their helpful

comments. This work was partially supported by IPM.

References

1. T. Becker, V. Weispfenning, Gröbner Bases: a Computational Approach to Commutative

Algebra, New York: Springer-Verlag, 1993.

2. B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassen

Ringes nach einem Nulldimensionalen Polynomideal, Innsbruck: Univ. Innsbruck, Math-

ematisches Institut (Diss.), 1965.

3. B. Buchberger, A Criterion for Detecting Unnecessary Reductions in the Construction

of Gröbner Bases, Symbolic and algebraic computation, EUROSAM ’79, int. Symp.,

Marseille 1979, Lect. Notes Comput. Sci., 72, (1979), 3-21.

4. B. Buchberger, Bruno Buchberger’s Ph.D. Thesis 1965: An Algorithm for Finding the

Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal Trans-

lation from the German, J. Symb. Comput., 41(3-4), (2006), 475-511.

5. D. Cox, A. Little, D. O’Shea Ideals, Varieties, and Algorithms. An introduction to Com-

putational Algebraic Geometry and Commutative Algebra, 4th edition, Springer, 2015.

6. M. Dehghani Darmian, A. Hashemi, Parametric FGLM Algorithm, J. Symb. Comput.,

82, (2017), 38-56.

7. M. Dehghani Darmian, A. Hashemi, A. Montes, Erratum to “A new algorithm for dis-

cussing Gröbner bases with parameters” [J. Symbolic Comput. 33 (1-2) (2002) 183-208],

J. Symb. Comput., 46(10), (2011), 1187-1188.

8. J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases (F4), J. Pure

Appl. Algebra, 139(1-3), (1999), 61-88.

9. J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases without Reduc-

tion to Zero (F5), In Proceedings of the 2002 international symposium on symbolic and

algebraic computation, ISSAC 2002, Lille, France, July 07–10, 2002. New York, ACM

Press, (2002), 75-83.

10. R. Gebauer, H. Möller, On an Installation of Buchberger’s Algorithm, J. Symb. Comput.,

6(2-3), (1988), 275-286.

11. A. Hashemi, M. Dehghani Darmian, M. Barkhordar, Gröbner Systems Conversion,

Math. Comput. Sci., 11(1), (2017), 61-77.

The Maple codes of the algorithms are available at

http://amirhashemi.iut.ac.ir/softwares under the names PF4.mpl, PLA-PFGLM.mpl

and Montes.mpl. The first file contains a Maple implementation of our algorithm for

computing Gröbner systems. The second file contains a Maple implementation of the

Kapur et al. algorithm (PGBMain algorithm) and the last one is a Maple implementation

of the improvement of the Montes DisPGB algorithm.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

 16 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html

A Parametric F4 Algorithm 133

12. A. Hashemi, M. Dehghani Darmian, B. M.-Alizadeh, Applying Buchberger’s Criteria on

Montes’s DisPGB Algorithm, Bull. Iran. Math. Soc., 38(3), (2012), 715-724.

13. A. Hashemi, B. M.-Alizadeh, M. Dehghani Darmian, Minimal Polynomial Systems for

Parametric Matrices, Linear Multilinear Algebra, 61(2), (2013), 265-272.

14. M. Kalkbrener, On the Complexity of Gröbner Bases Conversion, J. Symb. Comput.,

28(1-2), (1999), 265-273.

15. D. Kapur, An Approach for Solving Systems of Parametric Polynomial Equations, In

Saraswat, Vijay, Van Hentenryck, Pascal (Eds.), Principles and Practice of Constraint

Programming. MIT Press, (1995), 217-224.

16. D. Kapur, Y. Sun, D. Wang, A New Algorithm for Computing Comprehensive Gröbner

Systems, In Proceedings of the 35th international symposium on symbolic and algebraic

computation, ISSAC 2010, Munich, Germany, July 25–28, 2010. New York, NY: Asso-

ciation for Computing Machinery (ACM), (2010), 29-36.

17. D. Kapur, Y. Sun, D. Wang, An Efficient Algorithm for Computing a Comprehensive

Gröbner System of a Parametric Polynomial System, J. Symb. Comput., 49, (2013),

27-44.

18. D. Lazard, Gröbner Bases, Gaussian Elimination and Resolution of Systems of Algebraic

Equations, Computer algebra, EUROCAL ’83, Proc. Conf., London 1983, Lect. Notes

Comput. Sci., 162, (1983), 146-156.

19. M. Manubens, A. Montes, Improving the DisPGB Algorithm Using the Discriminant

Ideal, J. Symb. Comput., 41(11), (2006), 1245-1263.

20. M. Manubens, A. Montes, Minimal Canonical Comprehensive Gröbner Systems, J.

Symb. Comput., 44(5), (2009), 463-478.

21. A. Montes, A New Algorithm for Discussing Gröbner Bases with Parameters, J. Symb.

Comput., 33(2), (2002), 183-208.

22. A. Montes, The Gröbner Cover, 27, Cham: Springer, 2018.

23. A. Montes, J. Castro, Solving the Load Flow Problem Using the Gröbner Basis, SIGSAM

Bull., 29(1), (1995), 1-13.

24. A. Montes, M. Wimber, Gröbner Bases for Polynomial Systems with Parameters, J.

Symb. Comput., 45(12), (2010), 1391-1425.

25. K. Nabeshima, A Speed-up of the Algorithm for Computing Comprehensive Gröbner

Systems, In Proceedings of the 2007 international symposium on symbolic and algebraic

computation, ISSAC 2007, Waterloo, ON, Canada, July 29–August 1, 2007. New York,

NY: Association for Computing Machinery (ACM), (2007), 299-306.

26. W. Y. Sit, M. Wimber, An Algorithm for Solving Parametric Linear Systems, J. Symb.

Comput., 13(4), (1992), 353-394.

27. A. Suzuki, Y. Sato, A Simple Algorithm to Compute Comprehensive Gröbner Bases

Using Gröbner Bases, In Proceedings of the 2006 international symposium on symbolic

and algebraic computation, ISSAC 06, Genova, Italy, July 9–12, 2006. New York, NY:

Association for Computing Machinery (ACM), (2006), 326-331.

28. V. Weispfenning, Comprehensive Gröbner Bases, J. Symb. Comput., 14(1), (1992), 1-29.

29. V. Weispfenning, Canonical Comprehensive Gröbner Bases, J. Symb. Comput., 36(3-4),

(2003), 669-683.

30. M. Wimber, Gröbner Bases for Families of Affine or Projective Schemes, J. Symb. Com-

put., 42(8), (2007), 803-834.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

11
7

]
 [

 D
ow

nl
oa

de
d

fr
om

 ij
m

si
.c

om
 o

n
20

25
-1

1-
28

]

Powered by TCPDF (www.tcpdf.org)

 17 / 17

http://dx.doi.org/10.61186/ijmsi.19.1.117
http://ijmsi.com/article-1-1718-en.html
http://www.tcpdf.org

