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Abstract. Let R be a prime ring with center Z(R) and G be a general-

ized α-derivation of R for α ∈ Aut(R). Let a ∈ R be a nonzero element

and n be a fixed positive integer.

(i) If aG(x)n ∈ Z(R) for all x ∈ R then aG(x) = 0 for all x ∈ R unless

dimCRC = 4.

(ii) If aG(x)n ∈ Z(R) for all x ∈ L, where L is a noncommutative Lie

ideal of R then aG(x) = 0 for all x ∈ R unless dimCRC = 4.
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1. Introduction and Preliminaries

Let R be a prime ring with center Z(R) and Q be the two-sided Martindale

quotient ring of R, Qr the right Martindale quotient ring of R. It is known that

R ⊆ Q ⊆ Qr. The two overrings Q and Qr of R are still prime rings. They

have the same center, denoted by C which is a field and is called the extended

centroid of R (for details see [2]). An additive map d of R is called a derivation

if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Let α ∈ Aut(R) and f : R → R is

an additive map. If f(xy) = f(x)y + α(x)f(y) for all x, y ∈ R then f is called
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an α-derivation. For brevity we call an α-derivation a skew derivation. If the

derivation d : R → R assumes the form d(x) = [a, x] for all x ∈ R and for some

a ∈ R then d is called an X-inner derivation induced by a ∈ R and it is denoted

by da. A derivation is called X-outer if it is not X-inner. An additive map G

of R is said to be a generalized skew derivation or generalized α-derivation if

G(xy) = G(x)y+α(x)f(y) for all x, y ∈ R, here f is the associated α-derivation

of G. It is well known that generalized (α, β)-derivations are actually the same

with α−1β-derivations.

In recent years a number of authors had a line of investigation in behaviour

of the additive mappings of a ring. Particularly, they obtained many fascinating

results on derivations, generalized derivations, skew derivations and generalized

skew derivations. In many cases the results provide useful informations about

the structure of the ring and the map. In [18], I. N . Herstein proved that

there doesn’t exist any nonzero derivation which is nilpotent on a prime ring

R. Strictly he showed that if d is a derivation of R satisfying d(x)n = 0 for

all x ∈ R, where n is a fixed positive integer, then d = 0. Accordingly, in

[19] I. N. Herstein generalized this result to power central case. He proved

that if R is a prime ring with center Z(R) and a nonzero derivation d such

that d(x)n ∈ Z(R) for all x ∈ R where n is a fixed positive integer then R is

commutative or is an order in 4-dimensional simple algebra. Herstein’s results

have since been generalized by many authors. In [3], M. Brešar proved that if

R is a semiprime ring, a ∈ R and d is a derivation of R satisfying ad(x)n = 0

for all x ∈ R then ad(R) = 0 when R is a (n− 1)! torsion free ring. Laterly, T.

K. Lee and J. S. Lin improved M. Brešar’s result without the (n− 1)!-torsion

free assumption in [24]. They proved that if ad(x)n = 0 for all x ∈ L, where

L is a Lie ideal of R, then ad(L) = 0 unless charR = 2 and dimCRC = 4. In

addition if [L,L] ̸= 0 then ad(R) = 0.

In [6] J. C. Chang generalized I. N. Herstein’s result in [19] to generalized

(α, β)-derivations (that is, f(xy) = f(x)α(y) + β(x)f(y)). He showed that in

a prime ring R with center Z(R) and a nonzero generalized (α, β)-derivation f

of R, if f(x)n ∈ Z(R) for all x ∈ I, where I is a nonzero ideal of R, then either

R is commutative or R is an order in 4-dimensional simple algebra.

Afterwards, J. C. Chang handled the problem in which f is a generalized

(α, β)-derivation of R, af(x)n = 0 for all x ∈ R, where n is a fixed positive

integer and he concluded that af(x) = 0 for all x ∈ R in [7].

In [1], the authors proved the following result: Let R be a prime ring with

nonzero generalized skew derivation f and a ∈ R, if af(x)n = 0 for all x ∈ L,

where L is a noncommutative Lie ideal of R, then af(x) = 0 for all x ∈ R or

R is an order in 4-dimensional simple algebra.

Motivating the results above we will treat a generalized skew derivation G

of R, strictly we will prove the following theorems:
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Theorem 1.1. Let R be a prime ring with center Z(R) and G be a generalized

α-derivation, where α is an automorphism of R. Let 0 ̸= a ∈ R and n be a

fixed positive integer. If aG(x)n ∈ Z(R) for all x ∈ R then aG(x) = 0 for all

x ∈ R or dimCRC = 4.

Theorem 1.2. Let R be a prime ring with center Z(R), L be a noncommu-

tative Lie ideal of R and G be a generalized α-derivation of R, where α is an

automorphism of R. Let a ∈ R be a nonzero element and n be a fixed positive

integer. If aG(x)n ∈ Z(R) for all x ∈ L then aG(x) = 0 for all x ∈ R unless

dimCRC = 4.

We give the following conclusions related to the above theorems. Since

every α-derivation is a generalized α-derivation, the following two corollaries

are direct consequences of Theorem 1.1 and Theorem 1.2, respectively:

Corollary 1.3. Let R be a prime ring with center Z(R) and a ∈ R. Suppose

that α is an automorphism of R and f is a nonzero α-derivation of R such that

af(x)n ∈ Z(R) for all x ∈ R, where n is a fixed positive integer. Then a = 0

unless dimCRC = 4.

Corollary 1.4. Let R be a prime ring with center Z(R), L be a noncommuta-

tive Lie ideal of R and a ∈ R. Suppose that α is an automorphism of R and f

is a nonzero α-derivation of R such that af(x)n ∈ Z(R) for all x ∈ L, where

n is a fixed positive integer. Then either a = 0 or dimCRC = 4.

If α is an automorphism of R such that α ̸= I, the identity automorphism

of R, then I − α is a skew derivation of R. Hence,

Corollary 1.5. Let R be a prime ring with center Z(R), L be a noncommu-

tative Lie ideal of R and a ∈ R. Suppose that α ̸= I is an automorphism of R

and such that a
(
x − α(x)

)n ∈ Z(R) for all x ∈ L, where n is a fixed positive

integer. Then either a = 0 or dimCRC = 4.

Let R be a unital ring and u ∈ R be an invertible element in R. If αu(x) =

uxu−1 for all x ∈ R and d is a nonzero derivation of R, then ud is an αu-

derivation of R. In this manner, if G is a nonzero generalized derivation with an

associated derivation d of R, then uG is a generalized αu-derivation associated

with the αu-derivation ud of R. Thereby we have following two conclusions:

Corollary 1.6. Let R be a unital ring and u ∈ R be an invertible element in

R. If d is a nonzero derivation of R such that a(ud(x))n ∈ Z(R) for all x ∈ L,

a noncommutative Lie ideal of R, then a = 0 or dimCRC = 4.

Corollary 1.7. Let R be a unital ring and u ∈ R be an invertible element in R.

Let G be a nonzero generalized derivation of R, associated with the derivation

d of R. If a(uG(x))n ∈ Z(R) for all x ∈ L, a noncommutative Lie ideal of R,

then a = 0 or G(x) = sx for all x ∈ R and some s ∈ Q, unless dimCRC = 4.
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We will frequently use the following facts in the proofs:

Fact 1 ([16]) Let R be a prime ring with char R ̸= 2 and L be a noncentral

Lie ideal of R. Then there exists a nonzero ideal I = R[L,L]R of R such that

0 ̸= [I,R] ⊆ L.

Fact 2 ([2]) Let R be a semiprime ring and X be a countable set of noncom-

muting indeterminates. The elements of the free product T = Q(R) ∗ C{X}
are called generalized polynomials. Let qi ∈ (R) and yi ∈ X, then the ele-

ments of the form m = q0y1q1y2q2y3 . . . are called monomials where qi ’s are

the coefficients. For all f ∈ T , f is the finite sum of the monomials and

uniquely determined. Let f = f(x1, . . . , xn) be generalized polynomial in T . If

f(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R then f is called a generalized polynomial

identity and R is called a generalized polynomial ring.

Fact 3. ([14]) Let R be a prime ring with an X-outer α-derivation δ. Then

any generalized polynomial identity of R in the form ϕ(xi, δ(xi)) = 0 yields

a generalized polynomial identity ϕ(xi, yi) = 0 of R, where xi, yi are distinct

indeterminates.

Fact 4. ([12]) Let R be a prime ring with an X-outer α-derivation δ.

Suppose that R satisfies a generalized polynomial identity ϕ(xi, α(xi)) = 0,

where ϕ(xi, yi) is a nontivial generalized polynomial in distinct indeterminates

xi, yi. Then R is a GPI-ring.

Fact 5. ([13]) Let R be a prime ring with an automorphism α and suppose

that α is not a Frobenius automorphism of R. Then any generalized polynomial

identity of R in the form ϕ(xi, α(xi)) = 0 yields the generalized polynomial

identity ϕ(xi, yi) = 0 of R, where xi, yi are distinct indeterminates.

Fact 6. ([30]) Let R be a prime ring, I be a nonzero ideal of R, a, b ∈ U/{0},
n a fixed positive integer and δ a nonzero generalized derivation of R.

(i) Suppose that a(δ(x)b)n = 0 for all x ∈ I. Then there exist a1, b1 ∈ U such

that δ(x) = a1x + xb1 for all x ∈ R and b1b = 0. Moreover, either ba1 = 0 or

aa1 = 0.

(ii) Suppose that a(δ(x)b)n ∈ C for all x ∈ R. If a(δ(x0)b)
n ̸= 0 for some

x0 ∈ I, then dimCRC = 4.

Fact 7.([21]) Let R be a ring with extended centroid C and α be an auto-

morphism of R. Let n be a fixed positive integer. If

α(λ) = λ for all λ ∈ C, when char R = 0,

α(λ) = λpn

for all λ ∈ C, when char R = p ≥ 2,

then α is called a Frobenius automorphism of R.

2. Results

Lemma 2.1. Let R be a noncommutative prime ring with center Z(R) and

a, b, c, q ∈ R with q ∈ R invertible. Suppose that a ̸= 0 . If a(bx− qxq−1c)n ∈
Z(R) for all x ∈ R then either q−1c ∈ Z(R) and a(b− c) = 0 or dimCRC = 4.
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Proof. Suppose that dimCRC > 4. If Z(R) = 0, then a(bx− qxq−1c)n = 0 for

all x ∈ R. By Lemma 3 in [7], a(bx − qxq−1c) = 0 for all x ∈ R. Applying

Martindale’s Lemma (Lemma 7.41 in [4]) we see that ab = λaq for some λ ∈ C.

So aqR(λ− q−1c) = 0 and by the primeness of R, we have aq = 0 or q−1c ∈ C.

Since a ̸= 0 then q−1c ∈ C. By the initial assumption a((b− c)x)n = 0 for all

x ∈ R and we have a(b− c) = 0 via Lemma 1 in [7].

Thereby we may assume that Z(R) ̸= 0. If q−1c ∈ Z(R) then a((b− c)x)n ∈
Z(R) for all x ∈ R. In view of Fact 6, a(b − c) = 0. Now assume that

q−1c /∈ Z(R). In this case R satisfies the GPI a(bx − qxq−1)ny − ya(bx −
qxq−1c)n = 0. By Martindale’s result (for details see [2]), Q is a primitive

ring having nonzero socle H and its associated division ring D is finite over C.

Hence Q is isomorphic to a dense subring of End(DV ). If dimDV = ∞ then

H ∩ C = (0). Hence

a(bx− qxq−1c)n = 0 (2.1)

for all x ∈ H and (2.1) holds for all x ∈ Q. Using Lemma 3 in [7], a(bx −
qxq−1c) = 0 for all x ∈ R and there exists some λ ∈ C such that ab = λaq

by Martindale’s Lemma. Thus owing to the primeness of R we have a = 0 or

q−1c ∈ C, a contradiction.

Now suppose that dimDV < ∞. Hence Q is isomorphic to Dm, the matrix

ring over D for some positive integer m. If C is finite, then D (being finite

dimensional over C) is a finite ring and thus is a field by Wedderburn’s theorem.

In this case Q ∼= Cm. In the other hand if C is infinite and F is the maximal

subfield of D, then by a standard argument, a(bx− qxq−1c)n = 0 for all x, y ∈
Q ⊗C F (see, for instance proposition in [23]). But Q ⊗C F ∼= Dm ⊗C F ∼=
(D ⊗C F )m ∼= Fk for some k. In either case, we may suppose that R ∼= Fk for

some k > 1.

Suppose that k ≥ 3. If x is an element of Q, such that rank(x) = 1, then bx

and qxq−1 are of rank at most 1. Through using this we see that a(bx−xc) and

a(bx − xc)n are of rank at most 2. In connection with rank
(
a(bx − xc)n

)
≤ 2

and k ≥ 3, then a(bx− xc)n = 0 for any element x of rank 1. Since q−1c /∈ F

then there exists v ∈ V such that v and q−1cv are linearly independent over

F . Thus, xv = 0 and xq−1cv = q−1v for some x ∈ Q of rank 1. Therefore

0 = a(bx− qxq−1c)nv = (−1)nav

which implies a = 0, contradiction. So k = 2 and Q ∼= F2, that is, R is an

order in 4-dimensional simple algebra. □

Lemma 2.2. ([1], Lemma 3.1) Let R be a noncommutative prime ring, a, b, c ∈
R and n a fixed positive integer.

(i) If a([x, y]b)n = 0 for all x, y ∈ R then a = 0 or b = 0.

(ii) If a(b[x, y])n = 0 for all x, y ∈ R then ab = 0.
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Lemma 2.3. Let R be a noncommutative prime ring with dimCRC > 4,

a, b, c ∈ R and n is a fixed positive integer.

(i) If a([x, y]b)n ∈ Z(R) for all x, y ∈ R then a = 0 or b = 0.

(ii) If a(b[x, y])n ∈ Z(R) for all x, y ∈ R then ab = 0.

Proof. Suppose that a ̸= 0 and b ̸= 0. If R is not a PI-ring a (xb)
n ∈ Z(R)

for all x ∈ R by Lemma 2 in [27]. Since dimCRC > 4 then in view of Fact 6

a (xb)
n
= 0 for all x ∈ R. Hence we obtain either a = 0 or b = 0 by Lemma 2

in [7], a contradiction.

Now suppose that R is a PI-ring. Then RC is a finite dimensional central

simple algebra over C. Let C̄ be the central closure of C. We may take F = C̄

or F = C, in case C is infinite or finite respectively. So RC ⊗C F = Mk(F ) for

some k > 1 and

a ([x, y]b)
n ∈ C (2.2)

for all x, y ∈ RC⊗CF . If a ([x, y]b)
n
= 0 for all x, y ∈ RC⊗CF then by Lemma

2.2 we have a = 0 or b = 0, which leads a contradiction. Hence there exist

x0, y0 ∈ RC ⊗C F such that a ([x0, y0]b)
n ̸= 0. Since C is a field, a ([x0, y0]b)

n

is invertible and so is a.

Let e ∈ RC ⊗C F be an element of rank 1. Substituting x by e and y by

ey(1− e) in (2.2) we obtain

a (ey(1− e)b)
n ∈ C

for all y ∈ RC ⊗C F and

rank (a(eyb(1− e))n) ≤ 2.

Since dimCRC > 4 then

a (ey(1− e)b)
n
= 0 (2.3)

for all y ∈ RC ⊗C F . Right multiplying (2.3) by e we have

ae (y(1− e)be)
n
= 0.

Hence either ae = 0 or (1− e)be = 0. Since a is invertible then ae = 0 implies

e = 0. Therefore (1−e)be = 0 for any idempotent element e ∈ RC⊗C F . Then

eb(1− e) = 0 for 1− e ∈ RC ⊗C F . In this case we have eb = ebe = be. Let E

be the additive subgroup of R generated by all idempotent elements in R. It

is well known that E is a noncommutative Lie ideal of R. Then [b, E] = 0 and

hence b ∈ C. Since we assume b ̸= 0 then b ∈ C is invertible. So

a ([x, y]b)
n
= bna ([x, y])

n ∈ C

for all x, y ∈ RC ⊗C F and we have a ([x, y])
n ∈ C. Then a ([x, y0])

n ∈ C for

y0 ∈ RC ⊗C F and we have

ad (x)
n ∈ C
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for all x ∈ RC ⊗C F where d = [−, y0] is a derivation. In that case we obtain

a = 0 or d = 0 by Theorem 2 in [5]. Since we assume a ̸= 0 then d = 0 and

y0 ∈ C. Repeating this process for any y ∈ RC ⊗C F we conclude that RC is

commutative and hence R is commutative, a contradiction. Analogously, (ii)

is obtained. □

Lemma 2.4. Let R be a noncommutative prime ring with center Z(R) and

a, b, c, q ∈ R with q invertible. Suppose that a is not zero. If a(bx− qxq−1c)n ∈
Z(R) for all x ∈ [R,R] then either q−1c ∈ Z(R) and a(b−c) = 0 or dimCRC =

4.

Proof. Suppose that dimCRC > 4. If R is not a PI-ring, then a(bc−qxq−1c)n ∈
Z(R) for all x ∈ R by Lemma 2 in [27] . In this case, we are done by Lemma

2.1. If R is a PI-ring then RC is a finite dimensional central simple C-algebra

and the ring of all linear transformations of a k-dimensional vector space V

over a division ring D, for k > 1. In the light of [12],

a(bx− qxq−1c)n ∈ C (2.4)

for all x ∈
[
RC,RC

]
. Let e ∈ RC be an idempotent such that rank(e) = 1.

Substituting
[
q−1(1− e)xe, q−1(1− e)ye

]
into x in (2.4), we obtain

a
(
b
[
q−1(1− e)xe, q−1(1− e)ye

]
− q

[
q−1(1− e)xe, q−1(1− e)ye

]
q−1c

)n ∈ C

for all x, y ∈ RC. It is clear that

rank
(
a
(
b
[
q−1(1−e)xe, q−1(1−e)ye

]
−q

[
q−1(1−e)xe, q−1(1−e)ye

]
q−1c

)n) ≤ 4.

Since we assume that dimCRC > 4, then

a
(
b
[
q−1(1− e)xe, q−1(1− e)ye

]
− q

[
q−1(1− e)xe, q−1(1− e)ye

]
q−1c

)n
= 0

for all x, y ∈ RC. Multipliying on the right by (1− e) we obtain

a(1− e)
(
(yeq−1(1− e)x− xeq−1(1− e)y)eq−1c(1− e)

)n
= 0 (2.5)

for all x, y ∈ RC. In view of Fact 6 one of the following holds:

(i) a(1− e) = 0,

(ii) eq−1c(1− e),

(iii) eq−1(1− e)yeq−1c(1− e) = −λeq−1c(1− e) and

eq−1c(1− e)yeq−1(1− e) = −λeq−1c(1− e),

(iv) eq−1(1− e)yeq−1c(1− e) = −λeq−1c(1− e) and a(1− e)yeq−1(1− e) =

−λa(1− e)

for all y ∈ RC and some λ ∈ C. Using (iii) in (2.5) we have

λna(1− e)
(
(x− y)eq−1c(1− e)

)n
= 0

for all x, y ∈ RC. In particular

λna(1− e)
(
xeq−1c(1− e)

)n
= 0
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for all x ∈ RC. Since RC is a prime ring then either λ = 0 or a(1− e) = 0 or

eq−1c(1− e) = 0. If λ = 0 then eq−1(1− e) = 0. In like manner, using (iv) in

(2.5) we obtain either a(1− e) = 0 or eq−1(1− e) = 0 or eq−1c(1− e) = 0 for

any idempotent of rank 1. Now assume that e ∈ RC is an idempotent of rank

1 such that eq−1(1− e) = 0. Substituting
[
q−1(1− e)xe, ye

]
into x in (2.4), we

have

a
(
b
[
q−1(1− e)xe, ye

]
− q

[
q−1(1− e)xe, ye

]
q−1c

)n ∈ C

which implies

a
(
bq−1(1− e)xeye− (1− e)xeyeq−1c

)n
= 0 (2.6)

for all x, y ∈ RC, by familiar calculations. Right multipliying (2.6) by (1− e)

we have

a(1− e)
(
xeyeq−1c(1− e)

)n
= 0

for all x, y ∈ RC. In light of [15], a(1− e) = 0 or eyeq−1c(1− e) = 0 for all y ∈
RC which yields eq−1c(1− e) = 0 owing to the primeness of RC. Hence either

a(1− e) = 0 or eq−1c(1− e) = 0. Assume that a(1− e) = 0 for some nontrivial

idempotent e ∈ RC. Since (1−e)+ex(1−e) is also an idempotent for all x ∈ RC

and a(e− ex(1− e)) ̸= 0, then
(
(1− e) + ex(1− e)

)
q−1c

(
e− ex(1− e)

)
for all

x ∈ RC. In particular (1−e)q−1ce = 0. Hence eq−1c = eq−1ce = q−1ce for any

idempotent e ∈ RC of rank 1. Let E be the additive subgroup of idempotents

of R generated by all idempotents of rank 1 in R. Hence
[
e, q−1c

]
= 0 for all

e ∈ E. Since E is a noncommutative Lie ideal of R and q−1c ∈ C by Lemma

1 in [8]. Eventually, a
(
(b− c)x

)n ∈ C for all x ∈ [RC,RC] and we are done by

Lemma 2.3 (ii). □

Lemma 2.5. Let R be a prime ring with center Z(R), a, b, c ∈ R and a ̸= 0.

Let α be an automorphism of R. If a
(
bx−α(x)c

)n ∈ Z(R) for all x ∈ R, where

n is a fixed positive integer then either dimCRC = 4 or a
(
bx− α(x)c

)
= 0 for

all x ∈ R .

Proof. Assume that dimCRC > 4 and a
(
bx − α(x)c

)n ∈ Z(R) for all x ∈ R.

If b = 0 or c = 0 then we are done by Fact 6. So we may assume that b ̸= 0

and c ̸= 0. If Z(R) = 0 then a
(
bx − α(x)c

)n
= 0 for all x ∈ R and the

proof is completed by Lemma 4 in [7]. Suppose that Z(R) ̸= 0. If α is an

X-inner automorphism of R, then there exists an invertible element q ∈ Q

such that α(x) = qxq−1 for all x ∈ R. Through the hypothesis, we have

a
(
bx − qxq−1c

)n ∈ Z(R) for all x ∈ R. In view of Lemma 2.1, we obtain

q−1c ∈ C and a(b− c) = 0. Hence we are done for this case.

Now suppose that α is an X-outer derivation of R. Since a
(
bx− α(x)c

)n ∈
Z(R) for all x ∈ R then

a
(
bx− α(x)c

)n
y − ya

(
bx− α(x)c

)n
= 0 (2.7)

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

35
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

                             8 / 15

http://dx.doi.org/10.61186/ijmsi.19.1.35
http://ijmsi.com/article-1-1700-en.html


Annihilators of Power Central Values of Generalized Skew Derivations on Lie Ideals 43

for all x, y ∈ R. By Theorem 1 in [12], (2.7) holds for all x, y ∈ Q and is a GPI

for Q. Hence Q is a primitive ring with nonzero socle H and Q is isomorphic

to a dense subring of EndD(V ), where V is a vector space over the division

ring D.

First suppose that dimDV = ∞. Since H contains finite rank elements,

then

a
(
bx− α(x)c

)n
= 0

for all x ∈ H and thereby for all x ∈ Q. Hence using Lemma 4 in [7], we

have a
(
bx − α(x)c

)
= 0 for all x ∈ R. So we may consider that dimDV < ∞.

Thus, Q ∼= End(DV ) and it is isomorphic to the k× k matrix ring Dk over the

division ring D. In the light of [20] there exists a semi-linear automorphism

T ∈ End(DV ) such that α(x) = TxT−1 for all x ∈ Q. Thus a(bx−TxT−1c)n ∈
C for all x ∈ Q.

Suppose that k > 2. First assume that v and T−1cv are D-dependent for

all v ∈ V . In this manner, there exists some λ ∈ C such that

T−1cv = λv.

This yields (
bx− α(x)c

)
v =

(
bx− TxT−1c

)
v

=bxv − TxT−1cv

=bxv − Txλv

=bxv − TT−1cxv

=(b− c)xv

for all x ∈ Q and v ∈ V . Since the action of Q on V is faithful, then bx −
TxT−1c = (b− c)x for all x ∈ Q. Using this in the initial assumption we have

a
(
(b− c)x

)n ∈ C for all x ∈ Q. By Fact 6, we see that a(b− c) = 0 and

a
(
bx− α(x)c

)
v = a

(
bx− TxT−1c

)
v = a(b− c)xv = 0.

Hence a
(
bx− α(x)c

)
= 0 for all x ∈ R.

Now consider that there exists v0 ∈ V such that v0 and T−1cv0 are D-

independent. Then there exists some x ∈ Q of rank 1 such that

xv0 = 0

xT−1cv0 = T−1v0

by the density of Q. Thus, a
(
bx− TxT−1c

)
v0 = a(bxv0 − TxT−1cv0) = −av0

and a
(
bx− TxT−1c

)n
v0 = (−1)nav0. It is easy to see that a(bx− TxT−1)n is

of rank at most 2. Since we assume k > 2, then a(bx − TxT−1)n = 0 for all

x ∈ Q. Eventually, av0 = 0 implies a = 0, which is a contradiction. Therefore

dimDV ≤ 2.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

35
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

                             9 / 15

http://dx.doi.org/10.61186/ijmsi.19.1.35
http://ijmsi.com/article-1-1700-en.html


44 N. Baydar Yarbil, N. Argaç

If C is finite then D is finite (being finite dimensional over C). By Wedder-

burn’s Theorem in [20], D is a field. Hence, Q is commutative, a contradiction.

If C is infinite then we need to consider two cases of the automorphism α,

for being Frobenius or not. If α is not a Frobenius automorphism of R then

a
(
bx−yc

)n ∈ C for all x, y ∈ Q by [13]. In particular we have a
(
bx−xc

)n ∈ C

for all x ∈ Q. In that case a
(
bx − xc

)n
= 0 and hence c = 0 and either b = 0

or ab = 0 by Fact 6, a contradiction.

Now suppose that α is a Frobenius automorphism of R. If char Q = 0 then

by the definition of the Frobenius automorphism, α(λ) = λ for all λ ∈ C. In

the light of Theorem 4.7.4 in [2], α is an inner automorphism, which leads a

contradiction. Hence, char Q = p ≥ 2 and α(λ) = λpk

for all λ ∈ C and some

k ̸= 0. Substituting λx into x in the main identity with λ ̸= 0, we obtain

a
(
λbx− α(λx)c

)n
= λna

(
bx− λpk−1α(x)c

)n ∈ C

for all x ∈ Q. Thus we have

a
(
bx− λpk−1α(x)c

)n ∈ C (2.8)

for all x ∈ Q. Expanding (2.8) we obtain

n∑
i=0

( ∑
(i,n−i)

z1z2 . . . zn
)
λi(pk−1) ∈ C (2.9)

in which each term of this summation has n − i (bx)’s and i
(
α(x)c

)
’s in

permutational order. Set t = λpk−1 and

yi = a
( ∑
(i,n−i)

z1z2 . . . zn
)

for i ∈ {0, 1, . . . , n}. Then we can reinscribe (2.9) as

y0 + ty1 + · · ·+ tnyn ∈ C. (2.10)

Substituting λ into 1, λ, · · ·λn respectively in (2.10), leads us to the system of

equations

y0 + y1 + · · ·+ yn = γ0

y0 + ty1 + · · ·+ tnyn = γ1

... (2.11)

y0 + tny1 + · · ·+ tn
2

yn = γn

where γi ∈ C for all i = 0, 1, . . . , n. In this case there exist infinitely many

λ ∈ C such that λm(pk−1) ̸= 1 for m = 1, 2, . . . , n, due to the fact that C is

infinite. Thus the Van der Monde determinant
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∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

1 t . . . tn

...
...

...

1 t . . . tn
2

∣∣∣∣∣∣∣∣∣∣
=

n∏
i,j=0
i<j

(ti − tj) =

n∏
i,j=0
i<j

(
λi(pk − 1)− λj(pk − 1)

)

is not zero. Particularly, using y0 = a
(
bx

)n ∈ C and yn = a
(
α(x)c

)n ∈ C for

all x ∈ Q, in view of Fact 6 we see that ab = 0 and either a = 0 or c = 0, a

contradiction.

□

Lemma 2.6. ([1], Lemma 3.4) Let R be a prime ring and L be a noncom-

mutative Lie ideal of R. Let a, b, c ∈ R and α ∈ Aut(R). Suppose that

a(bx − α(x)c)n = 0 for all x ∈ L, where n is a fixed positive integer. Then

either a = 0 or a(bx− α(x)c) = 0 for all x ∈ R.

Lemma 2.7. Let R be a prime ring with center Z(R) and a, b, c ∈ R with

a ̸= 0. Suppose that

a(bx− α(x)c)n ∈ Z(R) (2.12)

for all x ∈ [R,R] where α is an automorphism of R and n is a fixed positive

integer. Then either a(bx− α(x)c) = 0 for all x ∈ R or dimCRC = 4.

Proof. Assume that dimCRC > 4. If b = 0 or c = 0 then we are done by

Lemma 2.3. So we may assume that b ̸= 0 and c ̸= 0. Suppose first that α is

an X-inner automorphism of R, then there exists an invertible element q ∈ Q

such that α(x) = qxq−1 for all x ∈ R. Hence a
(
bx − qxq−1c

)n ∈ Z(R) for all

x ∈
[
R,R

]
and the proof is completed by Lemma 2.4. Now suppose that α is

an X-outer automorphism of R. Since b ̸= 0 and c ̸= 0 then by [11], R is a

GPI-ring. Thus RC is a primitive ring with nonzero socle H. If H∩Z(R) = (0)

then

a
(
bx− α(x)c

)n
= 0 (2.13)

for all x ∈
[
H,H

]
and in view of Lemma 2.6 we see that a

(
bx − α(x)c

)
= 0

for all x ∈ H. The last identity holds for all x ∈ R and in that case we are

done by Lemma 2.6. In turn we may assume that H ∩ Z(R) ̸= (0). Hence H

is a central simple Z(R)-algebra and so is R. Therefore we may consider that

H = R = Q is a finite dimensional central simple Z(R)-algebra by Wedderburn-

Artin Theorem and R is the ring of all linear transformations of a k-dimensional

vector space V over a division ring D, for k > 1. Let e be an idempotent of R

such that rank(e) = 1 and x, y ∈ R. Substituting
[
α−1(1− e)xe, α−1(1− e)ye

]
into x in (2.12) we have

a
(
b
[
α−1(1− e)xe, α−1(1− e)ye

]
− α

([
α−1(1− e)xe, α−1(1− e)ye

])]
c
)n ∈ Z(R).

(2.14)
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The rank of (2.14) is at most 4 and since we assume dimCRC > 4 then

a
(
b
[
α−1(1− e)xe, α−1(1− e)ye

]
− α

([
α−1(1− e)xe, α−1(1− e)ye

])]
c
)n

= 0

for all x, y ∈ R. Multiplying by (1− e) on the right we obtain

a(1−e)
(
α(y)α(e)(1−e)α(x)α(e)c(1−e)−α(x)α(e)(1−e)α(y)α(e)c(1−e)

)n
= 0

and since α is an X-outer derivation of R then

a(1− e)
(
xα(e)(1− e)yα(e)c(1− e)− yα(e)(1− e)xα(e)c(1− e)

)n
= 0 (2.15)

for all x, y ∈ R . By virtue of Fact 6, we see that one of the following holds:

(i) a(1− e) = 0,

(ii) α(e)c(1− e),

(iii)
(
α(e)(1− e)yα(e)c(1− e)

)
= −λα(e)c(1− e) and

α(e)c(1− e)yα(e)(1− e) = −λα(e)c(1− e)

(iv)
(
α(e)(1−e)yα(e)c(1−e)

)
= −λα(e)c(1−e) and a(1−e)yα(e)(1−e) =

−λa(1− e)

for all y ∈ R and some λ ∈ C. Using (iii) in (2.15) we have

λna(1− e)
(
(x− y)α(e)c(1− e)

)n
= 0

for all x, y ∈ R. In particular,

λna(1− e)
(
xα(e)c(1− e)

)n
= 0

for all x ∈ R. By the primeness of R, either λ = 0 or a(1 − e) = 0 or

α(e)c(1 − e) = 0. If λ = 0 then α(e)(1 − e) = 0. Accordingly, using (iv) in

(2.15) we get either a(1−e) = 0 or α(e)(1−e) = 0 or α(e)c(1−e) = 0. Consider

that there exists an idempotent e ∈ R such that α(e)(1− e) = 0. Substituting[
α−1(1− e)xe, ye

]
into x in (2.12), we see that

a
(
b
[
α−1(1− e)xe, ye

]
− α

([
α−1(1− e)xe, ye

])
c
)n ∈ Z(R) (2.16)

for all x, y ∈ R. Since we assume dimCRC > 4 and the rank of (2.16) is at most

3, then a
(
b
[
α−1(1− e)xe, ye

]
− α

([
α−1(1− e)xe, ye

])
c
)n

= 0 for all x, y ∈ R.

Right multiplying by (1− e) in the last equation, we have

a(1− e)
(
α(x)α(e)α(y)α(e)c(1− e)

)n
= 0

for all x, y ∈ R. In view of [15], a(1 − e) = 0 or α(e)Rα(e)c(1 − e) = 0. By

the primeness of R, a(1 − e) = 0 or α(e)c(1 − e) = 0. Analogously, we have

α(1− e)ce = 0. Thus ce = α(e)ce = α(e)c for any idempotent e of rank 1. Let

E be the additive subgroup of idempotents of R generated by all idempotents of

rank 1 in R. Eventually ce = α(e)c for all e ∈ E. Since E is a noncommutative

Lie ideal of R then cx− α(x)c = 0 for all x ∈ [R,R], by the proof of Lemma 1

in [8]. Hence c[x, y]−
[
α(x), α(y)

]
c = 0 for all x, y ∈ R. Since α is an X-outer

automorphism of R then c[x, y] −
[
r, s

]
c = 0 for all x, y, r, s ∈ R which means

c = 0 or R is commutative, a contradiction. □
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Now we give the proofs for Theorem 1.1 and Theorem 1.2 in the sequel.

Proof of Theorem 1.1. Assume dimCRC > 4. The generalized α-derivation

G is of the form G(x) = sx + δ(x) for all x ∈ R and some s ∈ Q in view of

[10]. By assumption we have a
(
sx + δ(x)

)n ∈ Z(R) for all x ∈ R. If δ is an

X-inner derivation of R then there exists b ∈ R such that δ(x) = bx − α(x)b

for all x ∈ R. Thus a
(
(s + b)x − α(x)b

)n ∈ Z(R) for all x ∈ R and we are

done by Lemma 2.5. Now suppose that δ is an X-outer derivation of R and[
a
(
sx+ δ(x)

)n
, y
]
= 0 for all x, y ∈ R. By Theorem 1 in [14][

a
(
sx+ w

)n
, y
]
= 0 (2.17)

for all x, y, w ∈ R. In particular,
[
awn, y

]
= 0 for all w, y ∈ R, that is,

awn ∈ Z(R) for all w ∈ R and thereby a = 0 or R is commutative, a contra-

diction. □

Proof of Theorem 1.2. Assume dimCRC > 4. Set I = R
[
L,L

]
R. Then

0 ̸=
[
I,R

]
⊂ L by Fact 1. There exists s = f(1) ∈ Q such that G(x) = sx+δ(x)

for all x ∈ R where δ is an α-derivation of R in view of [10]. By the hypothesis

a
(
sx+ δ(x)

)n ∈ Z(R) (2.18)

for all x ∈ L and thus for all x ∈ [I,R]. In view of Theorem 2 in [14], I,R and

Q satisfy the same GPI’s with single skew derivation. So (2.18) holds for all

x ∈ [Q,Q]. In turn we may assume that I = R = Q.

If δ is an X-inner α-derivation of R, then there exists b ∈ R such that δ(x) =

bx−α(x)b for all x ∈ R. In this case (2.18) becomes a
(
(s+b)x−α(x)b

)n ∈ Z(R)

for all x ∈
[
R,R

]
and we are done by Lemma 2.7.

Now consider the case that δ is an X-outer derivation of R. Then

a
(
s[x, y] + δ

(
[x, y]

))n ∈ Z(R)

for all x, y ∈ R. Thus[
a
(
s[x, y] + δ(x)y + α(x)δ(y)− δ(y)x− α(y)δ(x)

)n
, z
]
= 0

for all x, y, z ∈ R. In view of Theorem 1 in [14][
a
(
s[x, y] + wy + α(x)u− ux− α(y)w

)n
, z
]
= 0 (2.19)

for all x, y, u, w, z ∈ R. In particular,
[
a
(
s[x, y]

)n
, z
]
= 0 which means a

(
s[x, y]

)n ∈
Z(R) for all x, y ∈ R and so we have as = 0 by Lemma 2.3 (ii). Hence

aG(x)n = a(sx+ δ(x))n = aδ(x)n ∈ C

for all x ∈ R. By virtue of Corollary 1 we obtain a = 0, a contradiction. □
The condition of primeness can not be omitted, as we see in the following

example:
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Example 2.8. Let F be a field of characteristic 2 and q =

1 0 0

0 1 1

0 0 1

 is

an invertible element of the ring R =

F 0 0

0 F F
0 0 F

. Let α(x) = qxq−1 =

u 0 0

0 v v + w + z

0 0 z

 for all x =

u 0 0

0 v w

0 0 z

 ∈ R. For the elements c =

1 0 0

0 1 1

0 0 1

 , d =

1 0 0

0 1 0

0 0 1

 ∈ R, it is easy to check that G(x) = cx − α(x)d =

0 0 0

0 0 z

0 0 0

.
Hence for a =

0 0 0

0 1 0

0 0 0

 ∈ R we have aG(x)n ∈ Z(R) where n is a fixed

positive integer but aG(x) =

0 0 0

0 0 z

0 0 0

 ̸= 0 unless z = 0.
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4. M. Brešar, Introduction to Noncommutative Algebra, Springer International Publishing

Switzerland, 2014.

5. C. M. Chang, T. K. Lee, Annihilators of Power Values of Derivations in Prime Rings,

Communications in Algebra, 26(7), (1998), 2091-2113.

6. J. C. Chang, Right Generalized (α, β)-derivations Having Power Central Values, Tai-

wanese J. Math., 13(4), (2009), 1111–1120.

7. J. C. Chang, Annihilators of Power Values of a Right Generalized (α, β)−derivation,

Bull. Inst. Math. Acad. Sin. (N.S.), 4(1), (2009), 67–73.

8. J. C. Chang, Generalized Skew Derivations with Power Central Values on Lie Ideals,

Comm. Algebra, 39, (2011), 2241–2248.

9. J. C. Chang, Generalized Skew Derivations with Nilpotent Values on Lie Ideals, Monatsh.

Math., 161, (2010), 155–160.

10. J. C. Chang, On the Identity h(x) = af(x) + g(x)b, Taiwanese J. of Math. Soc., 7(1),

(2003), 103-113.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

35
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

                            14 / 15

http://dx.doi.org/10.61186/ijmsi.19.1.35
http://ijmsi.com/article-1-1700-en.html


Annihilators of Power Central Values of Generalized Skew Derivations on Lie Ideals 49

11. C. L. Chuang, GPI’s Having Coefficients in Utumi Quotient Rings, Proc. Amer. Math.

Soc., 103(3), (1988), 723–728.

12. C. L. Chuang, Differential Identities with Automorphisms and Anti-automorphisms I, J.

Algebra, 149, (1992), 371–404.

13. C. L. Chuang, Differential Identities with Automorphisms and Anti-automorphisms II,

J. Algebra, 160, (1993), 292–335.

14. C. L. Chuang, T. K. Lee, Identities with Single Skew Derivation, J. of Algebra, 288,

(2005), 59–77.

15. B. Felzenswalb, On Result of Levitzki, Canad. Math. Bull., 21, (1978), 241–241.

16. I. N. Herstein, Topics in Ring Theory, Univ. Chicago Press, 1969.

17. A. Giambruno, I. N. Herstein, Derivations with Nilpotent Values, Rend. Circ. Mat.

Palermo, (2)30, (1981), 199-206.

18. I. N. Herstein, Center-like Elements in Prime Rings, J. Algebra, 60, (1979), 567–574.

19. I. N. Herstein, Derivations of Prime Rings Having Power Central Values, Contemp.

Math., Amer. Math. Soc., Providence, R.I., 13, (1982), 163-171.

20. N. Jacobson, Structure of Rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island,

1964.

21. V. K. Kharchenko, Generalized Identities with Automorphisms, Algebra i Logika, 14(2),

(1975) 215-237; Engl. Transl: Algebra and Logic, 14(2), (1975), 132–148.

22. T. K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad. Sinica,

20(1), (1992), 27–38.

23. P. H. Lee, T. L. Wong, Derivations Cocentralizing Lie Ideals, Bull. Ins. Math. Acad.

Sinica, 23, (1995),1–5.

24. T. K. Lee, J. S. Lin, A Result on Derivations, Proc. Amer. Math. Soc., 124, (1996),

1687–1691.

25. T. C. Lee, A result of Levitzki Type with Annihilator Conditions on Multilinear Poly-

nomials, Algebra Colloq., 4(3), (1996), 347–354.

26. T. K. Lee, Generalized Derivations of Left Faithful Rings, Comm. Algebra, 27, (1999),

4057–4073.

27. T. K. Lee, Differential Identities of Lie Ideals or large Right Ideals in Prime Rings,

Comm. Algebra, 27, (1999), 793–810.

28. T. K. Lee, K. S. Liu, Generalized Skew Derivations with Algebraic Values of Bounded

Degree, Houston J. Math., 39(3), (2013), 733–740.

29. W. S. Martindale III, Prime Rings Satisfying a Generalized Polynomial Identity, J. Al-

gebra, 12, (1969), 576–584.

30. X. W. Xu, J. Ma, F.W. Niu, Annihilators of Power Central Values of Generalized Deriva-

tion(Chinese), Chin. Ann. Math. Ser. A, 28, (2007), 131–140.

31. T. L. Wong, Derivations with Power Central Values on Multilinear Poynomials, Algebra

Colloq., 3(4), (1996), 369–378.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
1.

35
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

Powered by TCPDF (www.tcpdf.org)

                            15 / 15

http://dx.doi.org/10.61186/ijmsi.19.1.35
http://ijmsi.com/article-1-1700-en.html
http://www.tcpdf.org

