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Abstract. A difference labeling of a graph G is an injective function

f : V (G)→ N ∪ {0} together with the weight function f∗ on E(G) given

by f∗(uv) = |f(u)− f(v)| for every edge uv in G. The collection of

subgraphs induced by the edges of the same weight is a decomposition of

G and is called the common weight decomposition of G induced by f . Let

ψf denote the collection of all the paths taken from each member of the

common weight decomposition induced by f . A difference labeling f of G

is said to be a graphoidal difference labeling if ψf is an acyclic graphoidal

decomposition of G. This paper initiates a study on this concepts.
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2000 Mathematics subject classification: 05C78.

1. Introduction

By a graph G = (V,E) we mean a non-trivial, finite, connected and

undirected graph without loops or multiple edges. For terms not defined here,
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we refer to [7]. Throughout the paper the order and size of G are denoted by

m and n respectively.

A decomposition of a graph G is a collection of its subgraphs such that

every edge of G lies in exactly one member of the collection. Various types of

decompositions have been introduced and studied by imposing conditions on

the members of the decomposition. For instance, Harary introduced the notion

of path decomposition [8] which demands each member of a decomposition to be

a path. Following Harary, several variations of decomposition have been intro-

duced and extensively studied. Unrestricted path decompositions [9], geodesic

path decompositions[5] and simple path decompositions[2] are some variations

of decomposition. In this direction Acharya and Sampathkumar[1] introduced

the concept of graphoidal decomposition of a graph. A graphoidal decomposi-

tion of a graph G is a decomposition ψ of G all of whose members are paths

or cycles such that every vertex of G is an internal vertex of at most one mem-

ber of ψ. A graphoidal decomposition wherein no member is a cycle is called

an acyclic graphoidal decomposition which was introduced by Arumugam and

Suresh Suseela [4]. The minimum cardinality of an acyclic graphoidal decom-

position of a graph G is called the acyclic graphoidal decomposition number

and is denoted by ηa(G).

Figure 1. An example of difference labeling.

The concept of difference labeling was introduced by Bloom and Ruiz [6]. A

difference labeling of a graph G is an injective function f : V (G) → N ∪ {0}
together with the weight function f∗ on E(G) given by f∗(uv) = |f(u)− f(v)|
for every edge uv in G. Let us denote the weight f∗(uv) of the edge uv by

wf (uv). Certainly, the collection of subgraphs induced by the edges with the

same weight is a decomposition of G; this is called the common weight decom-

position of G induced by f . For example, for the graph G given in Figure 1(a),

consider the difference labeling f : V (G)→ N ∪{0} defined by f(vi) = deg(vi),

for all i = 1, 2, 3, 4. Then, the common weight decomposition ψf of G induced

by f is given by ψf = {(v1, v2, v3), (v1, v3), (v2, v4)}. Now, consider the graph
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G given in Figure 1(b) together with a difference labeling f on V (G) defined by

f(vi) =
∑

w∈V (G)

d(vi, w), where d(vi, w) denotes the distance between vertices

vi and w. Then, the collection ψf associated with this labeling is given by

ψf = {(v1, v2, v3), (v1, v3), (v4, v2, v5)}.
Several graph theoretic concepts have been emerged by interrelating different

areas in graph theory. For example, the notion of graphoidal labeling is derived

by combining the major areas decompositions and labelings of graphs(For de-

tails on graphoidal labeling one can refer to [1], [3], [11] and [12]). A similar

study has been carried out in [10] where the notion of acyclic graphoidal de-

composition is linked with difference labeling. In this direction of research, this

paper introduces the concept of graphoidal difference labeling.

We need the following theorems which provide the ηa-value for trees and

complete bipartite graphs.

Definition 1.1. Let ψ be a collection of internally disjoint paths in G. A

vertex of G is said to ba an interior vertex of ψ if it is an internal vertex of

a path in ψ. Any vertex which is not an interior vertex of ψ is said to be an

exterior vertex of ψ.

Theorem 1.2. [4] If there exists a acyclic graphoidal decomposition ψ of a

graph G such that every vertex of G with degree at least two is interior to ψ,

then ψ is a minimum acyclic graphoidal decomposition of G.

Theorem 1.3. [4] For a tree T , ηa(T ) = n − 1, where n is the number of

pendant vertices in T .

Theorem 1.4. [4] For a complete bipartite graph Kr,s,

(i) ηa(K1,1) = 1, ηa(K1,s) = s− 1, for all s ≥ 2.

(ii) ηa(K2,2) = 2, ηa(K2,s) = s− 1, for all s ≥ 3.

(iii) ηa(Kr,s) = rs− r − s, if r, s > 2.

2. Difference graphoidal labeling

Bloom and Ruiz [6] proved that each member of a common weight

decomposition of G induced by a difference labeling of G is a linear forest.

That is, if ψf denotes the collection of all the paths taken from each member

of the common weight decomposition induced by f , then ψf is an acyclic path

decomposition of G. However this acyclic path decomposition ψf do not need

to be an acyclic graphoidal decomposition of G.

For example, for the graph given in Figure 2, consider the difference labeling

f : V (G) → N ∪ {0} defined by f(vi) = 2i, for all i = 1, 2, ..., 6, f(v7) = 1,

f(v8) = 7, f(v9) = 15 and f(v10) = 20. Then, the collection ψf is given by

ψf = {(v1, v2, v3, v4, v5, v6), (v7, v2, v8, v5), (v5, v9, v10)}. As, the vertex v2 is

an internal vertex of the paths (v1, v2, v3, v4, v5, v6) and (v7, v2, v8, v5), ψf is
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not an acyclic graphoidal decomposition of G. Motivated by this observation

we introduce the concept of graphoidal difference labeling of a graph which is

defined as follows.

Figure 2. A graph G.

Definition 2.1. A difference labeling f of a graph G is said to be a graphoidal

difference labeling(GDL) if ψf is an acyclic graphoidal decomposition ofG and if

G admits such a labeling f , then G is called a difference label graphoidal graph.

When f is a GDL, the collection ψf is called the difference label graphoidal

decomposition(DLGD) induced by f .

Example 2.2. A graph G together with a difference labeling f on V (G) defined

by f(vi) = i, for all i = 1, 2, ..., 6 and f(v7) = 8 is given in Figure 3(a). The

collection ψf associated with this labeling is given by ψf = {(v1, v2, v3, v4), (v5, v2),

(v2, v6), (v3, v7)}. Certainly ψf is an acyclic graphoidal decomposition of G. So,

Figure 3. (a): An example of GDL. (b): A difference label-

ing that is not a GDL.

the difference labeling f of G is a GDL of G. Now, for the same graph G, con-

sider the difference labeling f1 defined by f1(vi) = 4i − 3, for all i = 1, 2, 3, 4,
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f(v5) = 4, f(v6) = 6 and f(v7) = 11(see Figure 3(b)). It is certain that the col-

lection ψf1 = {(v1, v2, v3, v4), (v5, v2, v6), (v3, v7)} is not an acyclic graphoidal

decomposition of G as the vertex v2 is an internal vertex in two paths in ψf1 .

Hence the difference labeling f1 of G is not a GDL of G.

Theorem 2.3. Every graph admits a GDL.

Proof. Let G be a graph on n vertices with V (G) = {v1, v2, ..., vn}. Define

f : V (G) → N ∪ {0} by f(vi) = 2i, for all i = 1, 2, ..., n. We prove that

ψf (G) = E(G). For this it is enough to prove that different edges receive

different weights under the weight function f∗ on E(G). Suppose e = vivj and

e′ = vkvl are edges of G such that wf (e) = wf (e′). Assume without loss of

generality that i > j and k > l. So, wf (e) = wf (e′) implies that

2i − 2j = 2k − 2l · · · · · · · · · (1)

Then 2j(2i−j − 1) = 2l(2k−l − 1). As 2l divides 2l(2k−l − 1), it follows that 2l

divides 2j(2i−j − 1). This implies that 2l divides 2j as (2l, 2i−j − 1) = 1. In

a similar way, we can prove that 2j divides 2l. Hence j = l. Therefore, the

equation (1) now implies that i = k and thus e = e′. So, different edges receive

different weights which in turn implies that ψf = E(G), which is obviously an

acyclic graphoidal decomposition of G. Therefore f is a GDL of G. �

As proved in Theorem 2.3, every graph has at least one GDL. Indeed, a

graph can have infinitely many graphoidal difference labelings as shown below.

Theorem 2.4. Every graph admits infinitely many graphoidal difference

labelings.

Proof. Suppose f is a GDL of a graph G of size m (Note that the existence of a

GDL is guaranteed in view of Theorem 2.3). Consider the difference labelings

f1, f2 and f3 of G that are defined as follows.

(i) For a positive integer k, define f1(u) = f(u) + k, for all u ∈ V (G).

(ii) Define f2(u) = f(u) − m, for all u ∈ V (G), where m = Min{f(x) :

x ∈ V (G)}.
(iii) Define f3(u) = M − f(u), for all u ∈ V (G), where M = Max{f(w) :

w ∈ V (G)}.

Certainly, for any edge e = uv, we have |f1(u)− f1(v)| = |f(u)− f(v)| and so

ψf = ψf1 . As f is a GDL, ψf is an acyclic graphoidal decomposition of G and

so is ψf1 . Therefore f1 is a GDL. Note that f1 is different from f . In a similar

way, one can prove that both f2 and f3 are graphoidal difference labelings of

G distinct from f and f1. Thus infinitely many GDL can be constructed from

a GDL of G. �
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3. The parameter ηd

We have observed in Theorem 2.4 that there are infinitely many GDLs for

a graph. But one can note that all the GDLs for a graph G provided in the

proof of Theorem 2.4 give raise to the same DLGD. This is not the case always.

Indeed a graph may admit many graphoidal difference labelings such that the

respective DLGDs induced by them are of different cardinalities. For example,

Figure 4. A graph with two DLGDs of different cardinalities.

for the graph G of Figure 4, consider the difference labelings f1 and f2 defined

by f1(v1) = 2, f1(v2) = 5, f1(v3) = 3, f1(v4) = 1, f1(v5) = 8, f1(v6) = 4 and

f2(v1) = 4, f2(v2) = 7, f2(v3) = 6, f2(v4) = 2, f2(v5) = 15, f2(v6) = 5. Then

ψf1 = {(v4, v1, v3, v6), (v1, v2, v5), (v2, v3)} and
ψf2 = {(v4, v1, v3), (v6, v3, v2), (v1, v2), (v2, v5)}

Clearly, both ψf1 and ψf2 are distinct acyclic graphoidal decompositions and

so f1 and f2 are GDLs. Note that |ψf1 | 6= |ψf2 |.

While it is possible for a graph to have more than one DLGDs of different

cardinalities, it would be interesting to study the DLGD of minimum cardinal-

ity for a graph G. Motivated by this we define the notion of difference label

graphoidal decomposition number of a graph.

Definition 3.1. The difference label graphoidal decomposition number ηd(G)

of a graph G is defined to be the minimum cardinality of ψf where the minimum

is taken over all possible graphoidal difference labeling f of G. That is,

ηd(G) = Min{|ψf | : f is a GDL of G}
where |ψf | denotes the cardinality of ψf .

Example 3.2. (i). Consider the graph G given in Figure 5. Define f by

f(v1) = 1, f(v2) = 3, f(v3) = 5, f(v4) = 7, f(v5) = 9 and f(v6) = 2.

Then ψf = {(v1, v2, v3, v4, v5), (v1, v6, v2), (v3, v5)} is a DLGD of G.

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

8.
2.

15
3 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

                             6 / 16

http://dx.doi.org/10.61186/ijmsi.18.2.153
http://ijmsi.com/article-1-1667-en.html
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Hence ηd(G) ≤ 3. Since, any DLGD is also an acyclic graphoidal

decomposition and an acyclic graphoidal decomposition must have at

least 3 paths it follows that ηd(G) ≥ 3. Thus ηd(G) = 3.

Figure 5. A graph G with ηd(G) = 3.

(ii). For a path Pn = (v1, v2, ..., vn) on n vertices, the difference labeling

f defined by f(vi) = i, for each i ∈ {1, 2, ..., n} is a GDL with ψf =

{(v1, v2, ..., vn)} so that ηd(Pn) = 1.

(iii). For a cycle Cn = (v1, v2, ..., vn, v1), if f is defined by f(vi) = i, for each

i ∈ {1, 2, ..., n}, then ψf = {(v1, v2, ..., vn), (v1, vn)} which is obviously

an acyclic graphoidal decomposition of Cn so that ηd(Cn) ≤ 2. Further

at least two paths are required in order to cover the edges of Cn so that

ηd(Cn) = 2.

Let us now proceed to obtain a bound for ηd in terms of order and size which

will be more helpful in dertermining ηd for several families of graphs. To start

with, we prove the following lemmas.

Lemma 3.3. For a GDL f of a graph G, let tψf
denote the number of exterior

vertices to ψf and let t = min
f
tψf

. Then ηd(G) = m− n+ t.

Proof. Let f be any GDL of G and let ψf be the DLGD of G induced by f .

Then

m =
∑
P∈ψf

|E(P )|

=
∑
P∈ψf

(i(P ) + 1) , where i(P ) is the number of internal

vertices of P.

=
∑
P∈ψf

i(P ) + |ψf |

Therefore, |ψf | = m −
∑
P∈ψf

i(P ). Now, since ψf is an acyclic graphoidal

decomposition of G, every vertex of G is either an exterior vertex to ψf or
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an internal vertex of exactly one path in ψf and so n = tψf
+
∑
P∈ψf

i(P ).

Hence |ψf | = m− n+ tψf
. Thus ηd(G) = min

f
{|ψf |} = (m− n) + min

f
{tψf
}=

m− n+ t. �

Lemma 3.4. Let G be a graph and let f be any GDL of G. Then the vertices

with maximum and minimum labels with respect to f are exterior to ψf .

Proof. Let u be the vertex of G with minimum label under f . Suppose u is an

internal vertex of a path P in ψf . Let x and y be the vertices on P that are

adjacent to the vertex u. Therefore |f(u)− f(x)| = |f(u)− f(y)|. As f(u) is

minimum, f(x) > f(u) and f(y) > f(u). So, the above equation implies that

f(x) − f(u) = f(y) − f(u) and so f(x) = f(y), a contradiction. Hence the

vertex u cannot be an internal vertex of any path in ψf . That is, u is exterior

to ψf . In a similar way, we can prove that v is also exterior to ψf . �

As a consequence of the above two lemmas, we now obtain a bound for ηd
in terms of order and size of G.

Theorem 3.5. For any graph G, we have ηd(G) ≥ m − n + 2. Further, the

equality holds if and only if there exists a DLGD ψf induced by a difference

labeling f such that all the vertices other than the vertices with maximum and

minimum labels under f are interior to ψf .

Proof. For any GDL f of G, by Lemma 3.4, at least two vertices of G would

be exterior to ψf so that tψf
≥ 2. Hence t ≥ 2 and so Lemma 3.3 implies that

ηd(G) ≥ m− n+ 2. Now, suppose ηd(G) = m− n+ 2. By Lemma 3.3, t = 2.

That is, there is a difference labeling f of G such that exactly two vertices of

G are exterior to ψf . Now, in view of Lemma 3.4, those two exterior vertices

are the vertices with minimum and maximum labels under f . Conversely, if

there is a difference labeling f with the given property, then t ≤ 2 so that

ηd(G) = m− n+ t ≤ m− n+ 2. The other inequality is always true and thus

ηd(G) = m− n+ 2. �

Corollary 3.6. A DLGD ψf of a graph G with the property that all the vertices

other than the vertices with maximum and minimum labels under f are interior

to ψf , is a minimum DLGD.

Proof. Follows from Theorem 3.5. �

The Corollary 3.6 will be very useful to determine the value of ηd for several

graphs. For example, ηd for the Petersen graph is determined with the aid of

the corollary.

Example 3.7. For the Petersen graph G, ηd(G) = 7.
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Proof. Let the vertices of the Petersen graph G be labeled as in Figure 6.

Then the labeling f on G defined by f(vi) = i, for all i, is a GDL as ψf =

{(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10), (v5, v1), (v1, v9), (v2, v7), (v6, v10), (v3, v10),

(v4, v8)} is an acyclic graphoidal decomposition of G. Certainly, v1 and v10

are the vertices with minimum and maximum labels and they are the only ver-

tices exterior to ψf . Therefore, by Corollary 3.6, ψf is a minimum DLGD of

G so that ηd(G) = |ψf | = 7. �

Figure 6. The Petersen graph.

Let us now proceed to determine the value of ηd for some common classes

of graphs. For this purpose we prove the following lemma.

Lemma 3.8. For any graph G, we have ηd(G) ≤ m − l + 1, where l is the

length of a longest path. Further, the bound is sharp.

Proof. Let V (G) = {v1, v2, ..., vn}. Let P be a longest path in G, say P =

(v1, v2, ..., vl+1). Now, define a difference labeling f on G by

f(vi) =

{
i if 1 ≤ i ≤ l + 1

2i elsewhere

As discussed in the proof of Theorem 2.3,
∣∣2i − 2j

∣∣ 6= ∣∣2k − 2l
∣∣ when i, j, k and

l are distinct integers greater than l + 1. That is, no two edges of G lying

outside P have the same weight. Further, if vi is a vertex lying outside P

Figure 7. A graph G with ηd(G) = m− l + 1.

adjacent to a vertex vj that lies on P , then i > l + 1 and 1 < j < l + 1. So,

wf (vivj) = |f(vi)− f(vj)| =
∣∣2i − j∣∣ = 2i− j. Certainly, 2i− j is neither 1 nor
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|2r − 2s|, for any r, s > l + 1. Hence ψf = {P} ∪ (E(G) − E(P )), which is an

acyclic graphoidal decomposition of G and hence ψf is a DLGD of G. Thus

ηd(G) ≤ |ψf | = m− l + 1. For the sharpness of the bound, consider the graph

G given in Figure 7. Here, m = 8 and l = 7. Define f by f(vi) = i for all

i. Then ψf = {(v1, v2, v3, v4, v5, v6, v7, v8), (v4, v6)} is a minimum DLGD of G.

Hence ηd(G) = m− l + 1 = 2. �

With the aid of Lemma 3.8 we determine ηd for Hamiltonian graphs and in

particular for complete graphs and wheels.

Theorem 3.9. For a Hamiltonian graph G, ηd(G) = m− n+ 2.

Proof. As G is Hamiltonian, the length l of a detour path is n − 1 and so by

Lemma 3.8 we have ηd(G) ≤ m− n+ 2. The other inequality is always true as

seen in Theorem 3.5. Thus ηd(G) = m− n+ 2. �

Corollary 3.10. (i) For a complete graph Kn, where n ≥ 2,

ηd(Kn) = n2−3n+4
2 .

(ii) For a wheel Wn, where n ≥ 4 , ηd(Wn) = n.

Proof. As Kn and Wn are Hamiltonian, the result follows from Theorem 3.9.

�

In the following theorems, we determine the value of ηd for trees and

complete bipartite graphs.

Theorem 3.11. For a tree T , ηd(T ) = n−1, where n is the number of pendant

vertices in T .

Proof. It has been proved in [10] that every minimum acyclic graphoidal de-

composition of a tree T can be realized as a DLGD ψf by a suitable differ-

ence labeling f of T so that ηd(T ) = ηa(T ). Now Theorem 1.3 completes the

proof. �

Theorem 3.12. Let r and s be positive integers with r ≤ s. Then

ηd(Kr,s) =


s− 1 if r = 1

r(s− 1)− r + 2 if r ≥ 2 and s ≤ rC2 + 2

r(s− 1)− rC2 if r ≥ 2 and s > rC2 + 2

where rC2 = r(r−1)
2 .

Proof. Let X = {x1, x2, ..., xr} and Y = {y1, y2, ..., ys} be the bipartition of

Kr,s. If r = 1, then K1,s is the star with s pendant vertices and so it follows

from Theorem 3.11 that ηd(K1,s) = s− 1. Assume r ≥ 2.

Case 1. s ≤ rC2 + 2 .

Define f on V (Kr,s) by f(x1) = 4, f(x2) = 10, f(y1) = 1, f(y2) = 7,

f(y3) = 13,
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f(yi+3) = 3f(yi+2)− 8 : i = 1, 2, 3, ..., r − 2

f(xi+2) = 2f(yi+2)− 4 : i = 1, 2, 3, ..., r − 2 and

f(yt) =
f(xj+1) + f(xi+j+1)

2
: 1 ≤ j ≤ r − 2, 1 ≤ i ≤ r − j − 1,

where t = jr − (j−1)(j+2)
2 + 1 + i. Now, it is not difficult to verify that the

collection ψf induced by f is given by ψf = {P(1), Q(1), Q(2), ..., Q(r−2)}∪{Rj(i) :

1 ≤ j ≤ r − 2 and 1 ≤ i ≤ r − j − 1} ∪X , where

P(1) = (y1, x1, y2, x2, y3)

Q(i) = (x1, yi+2, xi+2, yi+3)

Rj(i) = (xj+1, yt, x(i+j+1)) and

X is the set of all edges of Kr,s not covered by the above paths in ψf , is DLGD
of Kr,s. Clearly, all the vertices of Kr,s other than the vertices y1 and yr+1

with minimum and maximum labels respectively, are interior to ψf so that

by Corollary 3.6, ψf is a minimum DLGD of Kr,s. Hence, by Theorem 3.5,

ηd(Kr,s) = rs− (r + s) + 2.

Case 2. s > rC2 + 2 .

In this case, we define a difference labeling f1 on V (Kr,s) using the labeling

f defined in the Case 1 as follows. Let

f1(xi) = f(xi) : i = 1, 2, 3, ..., r

f1(yi) = f(yi) : i = 1, 2, 3, ..., rC2 + 2 and

f1(yi) = f(yr+1) + i : i = rC2 + 3, rC2 + 4, ..., s

Then ψf1 = ψf∪X1, where X1 is the set of all edges not covered by the paths in

ψf , is a DLGD of Kr,s with |ψf1 | = |ψf |+|X1| = (1+(r−2)+ (r−2)(r−1)
2 )+(rs−

(4+3(r−2)+2 (r−2)(r−1)
2 )) = (r−1+ (r−2)(r−1)

2 )+(rs−(4+3r−6+r2−3r+2)) =
r(r−1)

2 +(rs−r2) = 2rs−r2−r
2 = r(s−1)−rC2. Hence ηd(Kr,s) ≤ r(s−1)−rC2.

Further, let g be any GDL of Kr,s. Then, for a vertex yi ∈ Y that is interior to

ψg, there corresponds a pair of vertices in X and hence at most rC2 vertices of

Kr,s belonging to Y can be interior to ψg which implies that at least s − rC2

vertices of Kr,s are exterior to ψg so that t ≥ s− rC2. Hence, by Lemma 3.3,

we have ηd(Kr,s) ≥ rs− (r + s) + s− rC2 = r(s− 1)− rC2. �

The GDL f for Kr,s defined in the above theorem and the respective DLGD
ψf are illustrated in the following example.

Example 3.13. For the complete bipartite graph K4,8 with bipartition X =

{x1, x2, x3, x4} and Y = {yi : 1 ≤ i ≤ 8}, the GDL f defined in the proof of

Theorem 3.12 is given by f(x1) = 4, f(x2) = 10, f(x3) = 22, f(x4) = 58,

f(y1) = 1, f(y2) = 7, f(y3) = 13, f(y4) = 31, f(y5) = 85, f(y6) = 16,
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f(y7) = 34 and f(y8) = 40. Further, the DLGD ψf of K4,6 is given by ψf =

{P(1), Q(1), Q(2), R
1
(1), R

1
(2), R

2
(1)} ∪X, where

P(1) = (y1, x1, y2, x2, y3)

Q(1) = (x1, y3, x3, y4)

Q(2) = (x1, y4, x4, y5)

R1
(1) = (x2, y6, x3)

R1
(2) = (x2, y7, x4)

R2
(1) = (x3, y8, x4)

and X is the set of all edges of K4,6 not covered by the above paths. Further,

for the complete bipartite graph K4,12 with bipartition X = {x1, x2, x3, x4}
and Y = {yi : 1 ≤ i ≤ 12}, the GDL f1 is given by f1(xi) = f(xi), for

all i ∈ {1, 2, 3, 4} and for each i ∈ {1, 2, ..., 8}, f1(yi) = f(yi), f1(y9) = 94,

f1(y10) = 95, f1(y11) = 96 and f1(y12) = 97. The DLGD ψf1 of K4,12 is given

by ψf1 = ψf ∪X1, where X1 is the set of all edges of K4,12 not covered by the

paths in ψf .

4. Relation between ηd and ηa

In this section, we discuss the relationship of ηd with the acyclic graphoidal

decomposition number ηa. Certainly, ηa(G) ≤ ηd(G) as every difference label

graphoidal decomposition of G is an acyclic path decomposition of G. The

following theorem shows that the absolute difference between the parameters

ηd and ηa can be made arbitrarily large.

Theorem 4.1. For a given positive integer k, there exists a graph G such that

ηd(G)− ηa(G) = k.

Proof. Consider a path P on 5k vertices, say P = (v1, v2, ..., v5k). Introduce k

vertices namely w1, w2,..., wk. Join the vertex wi to the vertices v5i−3 and

v5i−1 for each i ∈ {1, 2, ..., k}. Let G be the resultant graph(see Figure 8).

We prove that ηd(G) = 2k + 1 and ηa(G) = k + 1. It is clear that ψa =

{P} ∪ {(v5i−3, wi, v5i−1) : 1 ≤ i ≤ k} is an acyclic graphoidal decomposition

of G such that every vertex of G with degree at least two is interior to ψa so

that by Theorem 1.2, ψa is a minimum acyclic graphoidal decomposition of G.

Hence ηa(G) = |ψa| = k + 1.

We next prove that ηd(G) = 2k + 1. For this consider the difference

labeling f defined by f(vi) = i, for all i = 1, 2, 3, ..., 5k and f(wj) = 5k + j,

for each j = 1, 2, 3, ..., k. Now, for each i ∈ {1, 2, ..., 5k − 1}, the weight of

the edge vivi+1 is given by wf (vivi+1) = |f(vi)− f(vi+1)| = |i− (i+ 1)| = 1.

Further, for each i ∈ {1, 2, ..., k}, the weight of the edge v5i−3wi is given by

wf (v5i−3wi) = |f(v5i−3)− f(wi)| = |(5i− 3)− (5k + i)| = |4i− 3− 5k| and

the weight of the edge wiv5i−1 is wf (wiv5i−1) = |f(wi)− f(v5i−1)| = |(5k +
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i)−(5i−1)| = |5k−4i+1|. We need to verify that wf (v5i−3wi) 6= wf (wiv5i−1),

for all i = 1, 2, ..., k. Suppose wf (v5i−3wi) = wf (wiv5i−1), for at least one i.

Then |4i− 3− 5k| = |5k − 4i+ 1|. If both 4i − 3 − 5k and 5k − 4i + 1 are

positive, then 4i − 3 − 5k = 5k − 4i + 1 so that 5i − 2 = 5k + i which im-

plies that f(v5i−2) = f(wi), a contradiction. Similarly, one can prove the

other cases. Therefore, wf (v5i−3wi) 6= wf (wiv5i−1), for all i = 1, 2, ..., k. Also,

wf (v5i−3wi) 6= 1 and wf (wiv5i−1) 6= 1. Hence ψf = {P} ∪ {(v5i−3, wi) : 1 ≤
i ≤ k} ∪ {(v5i−1, wi) : 1 ≤ i ≤ k}, which is certainly an acyclic graphoidal

decomposition of G so that f is GDL of G and hence ηd(G) ≤ |ψf | = 2k + 1.

Figure 8. A graph G with ηd(G)− ηa(G) = k.

Further, for any DLGD ψg of G, at least one vertex lying on the cycle

C(i) = (v5i−3, v5i−2, v5i−1, wi, v5i−3), for all i = 1, 2, ..., k, is exterior to ψg. On

the contrary, suppose all the vertices of the cycle C(j) = (v5j−3, v5j−2, v5j−1, wj ,

v5j−3), for some j ∈ {1, 2, ..., k}, are interior to ψg. Then the path (v5j−3, wj ,

v5j−1) would be a section of the path in ψg having wj as an internal vertex.

So |g(v5j−3)− g(wj)| = |g(v5j−1)− g(wj)|. Now, if for instance g(v5j−3) <

g(v5j−2) < g(v5j−1) and g(v5j−3) < g(wj) < g(v5j−1), then g(wj) =
g(v5j−1)+g(v5j−3)

2 = g(v5j−2), a contradiction. In a similar way, the remain-

ing cases can be discussed. Hence, for any DLGD ψg of G, the two pendant

vertices of G and at least k vertices of degree greater than one of G are exterior

to ψg and so t ≥ k+2. By Lemma 3.3, ηd(G) ≥ (7k−1)−6k+(k+2) = 2k+1.

Therefore ηd(G) = 2k + 1. Hence ηd(G)− ηa(G) = k. �

Even if the above theorem asserts that the absolute difference between the

parameters ηd and ηa can be made arbitrarily large, they do not assume ar-

bitrary values. That is, given positive integers a and b with a ≤ b, it is not

always possible to find a graph G for which ηa(G) = a and ηd(G) = b. For

example, when ηa(G) = 1, G is a path to which the value of ηd(G) is also 1. In

this connection we pose the following conjecture.

Conjecture 4.2. For any graph G, ηd(G) ≤ 2ηa(G)− 1.

We find some classes of graphs that support the Conjecture 4.2. For example,

the common classes of graphs such as complete graphs, complete bipartite
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graphs, wheels and trees support the Conjecture 4.2 as shown below. For the

value of ηa to these common class graphs, one may refer to [4].

Theorem 4.3. Complete bipartite graphs, complete graphs, wheels and trees

support the Conjecture 4.2.

Proof. For a tree T , by Theorem 3.11 that ηd(T ) = n − 1, where n is the

number of pendant vertices of T . By Theorem 1.3, ηa(T ) = n − 1 and so

ηd(T ) = ηa(T ). Now, for a wheel Wn on n vertices, ηa(Wn) = n − 2 and by

Corollary 3.10, ηd(Wn) = n. Hence ηd(Wn) ≤ 2ηa(Wn) − 1. For a complete

graph Kn, ηa(Kn) = n2−3n
2 and by Corollary 3.10, ηd(Kn) = n2−3n+4

2 . Hence

ηd(Kn) ≤ 2ηa(Kn)− 1. Again one can verify from Theorem 3.12 and Theorem

1.4 that complete bipartite graphs support the Conjecture 4.2. �

We conclude this section with the following realization theorem in connection

with the Conjecture 4.2

Theorem 4.4. For any two positive integers a and b with 1 < a ≤ b ≤ 2a− 1,

there exists a graph G for which ηa(G) = a and ηd(G) = b.

Proof. Suppose a and b are two positive integers with 1 < a ≤ b ≤ 2a− 1. We

construct a graph G with ηa(G) = a and ηd(G) = b as follows. Let b = a + r,

where 0 ≤ r ≤ a− 1. Consider a path P = (v1, v2, ..., v2a+r) on 2a+ r vertices.

Introduce a−1 vertices namely w1, w2, ... , wa−1. Now, join wi to the vertices

v3i−1 and v3i+1, for all i = 1, 2, ..., r and for each i ∈ {r + 1, r + 2, ..., a − 1},
join wi to the vertices v2i+r and v2i+r+1. Let G be the resultant graph. For

a = 6 and b = 8, the graph G is given in the Figure 9. We prove that

ηa(G) = a and ηd(G) = b. It is clear that ψ1 = {P} ∪ {(v3i−1, wi, v3i+1) :

1 ≤ i ≤ r} ∪ {(v2i+r, wi, v2i+r+1) : r + 1 ≤ i ≤ a − 1} is an acyclic graphoidal

decomposition of G such that every vertex of G with degree at least two is

interior to ψa so that by Theorem 1.2, ψ1 is a minimum acyclic graphoidal

decomposition of G and hence ηa(G) = |ψ1| = 1 + r + ((a − 1) − r) = a. We

now prove that ηd(G) = b. For this consider the difference labeling f defined

by

f(vi) = 2i : i = 1, 2, ..., 2a+ r

f(wi) = 2(2a+ r) + i : i = 1, 2, ..., r and

f(wi) = 2r + 4i+ 1 : i = r + 1, r + 2, ..., a− 1.

Now, for each i ∈ {1, 2, ..., 2a + r − 1}, the weight of the edge vivi+1 is

given by wf (vivi+1) = |f(vi)− f(vi+1)| = |2i− 2(i+ 1)| = 2. Further, for

each i ∈ {r + 1, r + 2, ..., a − 1}, the weight of the edge v2i+rwi is given by

wf (v2i+rwi) = |f(v2i+r)− f(wi)| = |2(2i+ r)− (2r + 4i+ 1)| = |−1| = 1

and the weight of the edge wiv2i+r+1 is given by wf (wiv2i+r+1) = |f(wi) −
f(v2i+r+1)| = |2r + 4i+ 1− 2(2i+ r + 1)| = | − 1| = 1. Hence wf (v2i+rwi) =
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wf (wiv2i+r+1), for all i ∈ {r + 1, r + 2, ..., a− 1}. Now, the weight of the edge

v3i−1wi, where 1 ≤ i ≤ r, is given by wf (v3i−1wi) = |f(v3i−1)− f(wi)| =

|2(3i− 1)− (2(2a+ r) + i)| = |5i − 4a − 2r − 2| and the weight of the edge

wiv3i+1, where 1 ≤ i ≤ r, is wf (wi, v3i+1) = |f(wi)− f(v3i+1)| = |(2(2a+ r) +

i)− 2(3i+ 1)| = |4a+ 2r − 5i− 2|. Also, it can be proved that wf (v3i−1wi) 6=
wf (wiv3i+1), for all i = 1, 2, ..., r. Hence, ψf = {P} ∪ {(v3i−1, wi) : 1 ≤ i ≤
r} ∪ {(wi, v3i+1) : 1 ≤ i ≤ r} ∪ {(v2i+r, wi, v2i+r+1) : r + 1 ≤ i ≤ a− 1}, which

is certainly an acyclic graphoidal decomposition of G so that f is GDL of G

and hence ηd(G) ≤ |ψf | = 1 + r + r + ((a− 1)− r) = a+ r = b.

Figure 9. A graph G with ηa(G) = 6 and ηd(G) = 8.

Further, let ψg be an arbitrary DLGD of G. Suppose all the vertices of the

cycle C(j) = (v3j−1, v3j , v3j+1, wj , v3j−1), for some j ∈ {1, 2, ..., r}, are interior

to ψg. Then the path (v3j−1, wj , v3j+1) would be a section of the path in ψg
with wj as an internal vertex. So |g(wj)− g(v3j−1)| = |g(v3j+1)− g(wj)|. Now,

if g(v3j−1) < g(v3j) < g(v3i+1) and g(v3j−1) < g(wj) < g(v3i+1) then g(wj) =
g(v3j−1)+g(v3i+1)

2 = g(v3j), a contradiction. In a similar way, the remaining cases

can be discussed. So, what we have proved is that at least one vertex lying on

the cycle C(i) = (v3i−1, v3i, v3i+1, wj , v3i−1), for all i = 1, 2, ..., r, is exterior to

ψg. Hence, for any DLGD ψg, the two pendant vertices of G and at least r

vertices of degree greater than one of G are exterior to ψg and so t ≥ r + 2.

By Lemma 3.3 that ηd(G) ≥ (4a+ r − 3)− (3a+ r − 1) + (r + 2) = a+ r = b.

Hence ηd(G) = b. �
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