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ABSTRACT. A difference labeling of a graph G is an injective function
f:V(G) - NU{0} together with the weight function f* on E(G) given
by f*(uv) = |f(u) — f(v)| for every edge uv in G. The collection of
subgraphs induced by the edges of the same weight is a decomposition of
G and is called the common weight decomposition of G induced by f. Let
1 denote the collection of all the paths taken from each member of the
common weight decomposition induced by f. A difference labeling f of G
is said to be a graphoidal difference labeling if 1y is an acyclic graphoidal

decomposition of G. This paper initiates a study on this concepts.
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1. INTRODUCTION

By a graph G = (V,E) we mean a non-trivial, finite, connected and
undirected graph without loops or multiple edges. For terms not defined here,
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we refer to [7]. Throughout the paper the order and size of G are denoted by
m and n respectively.

A decomposition of a graph G is a collection of its subgraphs such that
every edge of G lies in exactly one member of the collection. Various types of
decompositions have been introduced and studied by imposing conditions on
the members of the decomposition. For instance, Harary introduced the notion
of path decomposition [8] which demands each member of a decomposition to be
a path. Following Harary, several variations of decomposition have been intro-
duced and extensively studied. Unrestricted path decompositions [9], geodesic
path decompositions[5] and simple path decompositions|2] are some variations
of decomposition. In this direction Acharya and Sampathkumar(1] introduced
the concept of graphoidal decomposition of a graph. A graphoidal decomposi-
tion of a graph G is a decomposition 1 of G all of whose members are paths
or cycles such that every vertex of GG is an internal vertex of at most one mem-
ber of 1. A graphoidal decomposition wherein no member is a cycle is called
an acyclic graphoidal decomposition which was introduced by Arumugam and
Suresh Suseela [4]. The minimum cardinality of an acyclic graphoidal decom-
position of a graph G is called the acyclic graphoidal decomposition number
and is denoted by 7,(G).

Uz

™
(a) (b)
FIGURE 1. An example of difference labeling.

The concept of difference labeling was introduced by Bloom and Ruiz [6]. A
difference labeling of a graph G is an injective function f : V(G) — N U {0}
together with the weight function f* on E(G) given by f*(uwv) = |f(u) — f(v)|
for every edge uv in G. Let us denote the weight f*(uv) of the edge uv by
wy(uv). Certainly, the collection of subgraphs induced by the edges with the
same weight is a decomposition of Gj this is called the common weight decom-
position of G induced by f. For example, for the graph G given in Figure 1(a),
consider the difference labeling f : V(G) — NU{0} defined by f(v;) = deg(v;),
for all i = 1,2,3,4. Then, the common weight decomposition ¢ of G' induced
by f is given by ¢ = {(v1, v2,v3), (v1, v3), (v2,v4)}. Now, consider the graph
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G given in Figure 1(b) together with a difference labeling f on V(@) defined by

flv) = Z d(v;,w), where d(v;, w) denotes the distance between vertices
weV (G)

v; and w. Then, the collection 9; associated with this labeling is given by

Yy = {(v1,v2,v3), (v1,v3), (va,v2,V5) }.

Several graph theoretic concepts have been emerged by interrelating different
areas in graph theory. For example, the notion of graphoidal labeling is derived
by combining the major areas decompositions and labelings of graphs(For de-
tails on graphoidal labeling one can refer to [1], [3], [11] and [12]). A similar
study has been carried out in [10] where the notion of acyclic graphoidal de-
composition is linked with difference labeling. In this direction of research, this
paper introduces the concept of graphoidal difference labeling.

We need the following theorems which provide the 7,-value for trees and
complete bipartite graphs.

Definition 1.1. Let @ be a collection of internally disjoint paths in G. A
vertex of G is said to ba an interior vertex of 1 if it is an internal vertex of
a path in 1. Any vertex which is not an interior vertex of 1 is said to be an
exterior vertex of 1.

Theorem 1.2. [4] If there exists a acyclic graphoidal decomposition ¥ of a
graph G such that every vertex of G with degree at least two is interior to 1,
then v is a minimum acyclic graphoidal decomposition of G.

Theorem 1.3. [4] For a tree T, no(T) = n — 1, where n is the number of
pendant vertices in T.

Theorem 1.4. [4] For a complete bipartite graph K, s,
(1) no(K11) =1, no(K1,5) =s—1, for all s > 2.
(i) 7o (K22) =2, na(Kas) =s—1, for all s > 3.
(iil) ne(Krs) =rs—r—s, ifr,s > 2.

2. DIFFERENCE GRAPHOIDAL LABELING

Bloom and Ruiz [6] proved that each member of a common weight
decomposition of G induced by a difference labeling of G is a linear forest.
That is, if 9y denotes the collection of all the paths taken from each member
of the common weight decomposition induced by f, then v; is an acyclic path
decomposition of G. However this acyclic path decomposition ¥y do not need
to be an acyclic graphoidal decomposition of G.

For example, for the graph given in Figure 2, consider the difference labeling
f: V(G) - N U{0} defined by f(v;) = 2i, for all i = 1,2,...,6, f(v7) = 1,
f(vs) =7, f(vg) = 15 and f(vi9) = 20. Then, the collection v is given by
vy = {(v1,v2,v3, 04,05, 06), (V7,V2,V8,05), (s, V9,v10) }. As, the vertex vy is
an internal vertex of the paths (v1, vs,vs,v4,v5,v6) and (v7, va,vs, vs), ¥y is


http://dx.doi.org/10.61186/ijmsi.18.2.153
http://ijmsi.com/article-1-1667-en.html

[ Downloaded from ijmsi.com on 2025-11-28 ]

[ DOI: 10.61186/ijmsi.18.2.153 ]

156 H. Shanmuga Priya, A. Anitha, I. Sahul Hamid

not an acyclic graphoidal decomposition of G. Motivated by this observation
we introduce the concept of graphoidal difference labeling of a graph which is
defined as follows.

o

Ui0

FIGURE 2. A graph G.

Definition 2.1. A difference labeling f of a graph G is said to be a graphoidal
difference labeling(GDL) if 1) ¢ is an acyclic graphoidal decomposition of G and if
G admits such a labeling f, then G is called a difference label graphoidal graph.
When f is a GDL, the collection v¢ is called the difference label graphoidal
decomposition(DLGD) induced by f.

Example 2.2. A graph G together with a difference labeling f on V(G) defined
by f(v;) =4, for alli =1,2,...,6 and f(v7) = 8 is given in Figure 3(a). The
collection ¢ associated with this labeling is given by vy = {(v1, v2,vs, v4), (v5,V2),
(v2,v6), (v3,v7)}. Certainly 5 is an acyclic graphoidal decomposition of G. So,

1 13

FIGURE 3. (a): An example of GDL. (b): A difference label-
ing that is not a GDL.

the difference labeling f of G is a GDL of G. Now, for the same graph G, con-
sider the difference labeling f1 defined by fi(v;) = 4i — 3, for alli =1,2,3,4,
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f(vs) =4, f(vs) =6 and f(vy) = 11(see Figure 3(b)). It is certain that the col-
lection ¥y, = {(v1, v2,vs,v4), (Us,v2,V6), (V3,v7)} is not an acyclic graphoidal
decomposition of G as the vertex vo is an internal vertex in two paths in 1y, .
Hence the difference labeling f1 of G is not a GDL of G.

Theorem 2.3. Every graph admits a GDL.

Proof. Let G be a graph on n vertices with V(G) = {v1,va,...,v,}. Define
f:V(G) - Nu{0} by f(v;) = 2% for all i = 1,2,....,n. We prove that
Y#(G) = E(G). For this it is enough to prove that different edges receive
different weights under the weight function f* on E(G). Suppose e = v;v; and
e’ = v, are edges of G such that wy(e) = wy(e’). Assume without loss of
generality that ¢ > j and k > [. So, wy(e) = wy(e’) implies that

9t _9i =9k _9ob (1)

Then 27 (277 — 1) = 2/(2F=1 — 1). As 2! divides 2!(2¥~! — 1), it follows that 2!
divides 27(2°=7 — 1). This implies that 2! divides 27 as (2/,2°"7 —1) = 1. In
a similar way, we can prove that 2/ divides 2'. Hence j = I. Therefore, the
equation (1) now implies that ¢ = k and thus e = ¢’. So, different edges receive
different weights which in turn implies that ¢y = E(G), which is obviously an
acyclic graphoidal decomposition of G. Therefore f is a GDL of G. (]

As proved in Theorem 2.3, every graph has at least one GDL. Indeed, a
graph can have infinitely many graphoidal difference labelings as shown below.

Theorem 2.4. Fvery graph admits infinitely many graphoidal difference
labelings.

Proof. Suppose f is a GDL of a graph G of size m (Note that the existence of a
GDL is guaranteed in view of Theorem 2.3). Consider the difference labelings
f1, f2 and f3 of G that are defined as follows.

(i) For a positive integer k, define fi(u) = f(u) + k, for all u € V(G).
(ii) Define fa(u) = f(u) —m, for all u € V(G), where m = Min{f(z) :
z e V(G)}.
(iii) Define f3(u) = M — f(u), for all u € V(G), where M = Max{f(w) :
w e V(G)}.

Certainly, for any edge e = uv, we have |fi(u) — f1(v)| = |f(u) — f(v)| and so
vy =1yp. As fisa GDL, ¢y is an acyclic graphoidal decomposition of G and
so is ¢y, . Therefore f; is a GDL. Note that f; is different from f. In a similar
way, one can prove that both fo and f3 are graphoidal difference labelings of
G distinct from f and f;. Thus infinitely many GDL can be constructed from
a GDL of G. O
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3. THE PARAMETER 7)q

We have observed in Theorem 2.4 that there are infinitely many GDLs for
a graph. But one can note that all the GDLs for a graph G provided in the
proof of Theorem 2.4 give raise to the same DLGD. This is not the case always.
Indeed a graph may admit many graphoidal difference labelings such that the
respective DLGDs induced by them are of different cardinalities. For example,

T4

v Ve
FI1GURE 4. A graph with two DLGDs of different cardinalities.

for the graph G of Figure 4, consider the difference labelings f; and fo defined
by fi(vi) =2, fi(v2) =5, fi(vs) = 3, fi(va) = 1, fi(vs) = 8, fi(ve) = 4 and
f2(v1) =4, fa(v2) =7, fa(vs) =6, fa(va) =2, fa(vs) = 15, fa(vs) = 5. Then

¥y, = {(vs,v1,v3,06), (v1,02,05), (V2,v3)} and
,(/)fz = {(U4?’U17’U3)a (’116,’113,’112), (Ul7 U2)7 (’UQ,U5)}

Clearly, both 1, and 1y, are distinct acyclic graphoidal decompositions and
so f1 and fo are GDLs. Note that |¢y, | # |¥y, |.

While it is possible for a graph to have more than one DLGDs of different
cardinalities, it would be interesting to study the DLGD of minimum cardinal-
ity for a graph G. Motivated by this we define the notion of difference label
graphoidal decomposition number of a graph.

Definition 3.1. The difference label graphoidal decomposition number nqe(Q)
of a graph G is defined to be the minimum cardinality of ¢y where the minimum
is taken over all possible graphoidal difference labeling f of G. That is,

na(G) = Min{|¢s| : fisa GDL of G}
where |¢;| denotes the cardinality of ;.

Example 3.2. (i). Consider the graph G given in Figure 5. Define f by

f(v1) =1, f(v2) =3, f(vs) =5, f(va) =7, f(vs) =9 and f(vs) = 2.
Then ¢y = {(v1, v2,vs,v4,05), (v1,V6,V2), (v3,05)} is a DLGD of G.
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Hence ng(G) < 3. Since, any DLGD is also an acyclic graphoidal
decomposition and an acyclic graphoidal decomposition must have at
least 3 paths it follows that na(G) > 3. Thus n4(G) = 3.

M V4

Vg Us
FIGURE 5. A graph G with n4(G) = 3.

(ii). For a path P, = (v1,va,...,v,) on n vertices, the difference labeling
f defined by f(v;) =14, for each i € {1,2,...,n} is a GDL with ¢y =
{(v1,v2, ..., vn)} so that na(P,) = 1.

(iii). For a cycle Cp, = (v1,v2, ..., 0n,v1), if f is defined by f(v;) =i, for each
i€{1,2,..,n}, then vy = {(v1,v2,...,0p), (V1,v,)} which is obviously
an acyclic graphoidal decomposition of Cy, so that ny4(Cy,) < 2. Further
at least two paths are required in order to cover the edges of C,, so that

nd(Cn) =2.

Let us now proceed to obtain a bound for 74 in terms of order and size which
will be more helpful in dertermining 74 for several families of graphs. To start
with, we prove the following lemmas.

Lemma 3.3. For a GDL f of a graph G, let t;, denote the number of exterior
vertices to ¥y and let t = mfin ty,. Then ng(G) =m —n+t.

Proof. Let f be any GDL of G and let ©¢ be the DLGD of G induced by f.
Then

m= ) |EP)

Peyy
= Z (i(P) + 1) ,where i(P) is the number of internal
Péwf

vertices of P.

Y i(P) + [yl

Peyy

Therefore, || = m — Z i(P). Now, since vy is an acyclic graphoidal
Peyy
decomposition of G, every vertex of G is either an exterior vertex to vy or
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an internal vertex of exactly one path in ¢y and so n = ty, + Z i(P).
Pevyy
Hence [¢y| = m —n +ty,. Thus n4(G) = mfin{\wf|} =(m-—n)+ mfin {ty,}=

m—n+t. O

Lemma 3.4. Let G be a graph and let f be any GDL of G. Then the vertices
with mazimum and minimum labels with respect to f are exterior to y.

Proof. Let u be the vertex of G with minimum label under f. Suppose u is an
internal vertex of a path P in ¢y. Let  and y be the vertices on P that are
adjacent to the vertex u. Therefore |f(u) — f(x)] = |f(u) — f(y)|. As f(u) is
minimum, f(z) > f(u) and f(y) > f(u). So, the above equation implies that
f@) = f(u) = f(y) — f(u) and so f(xz) = f(y), a contradiction. Hence the
vertex u cannot be an internal vertex of any path in ¢y. That is, u is exterior
to ¢y. In a similar way, we can prove that v is also exterior to 1)y. O

As a consequence of the above two lemmas, we now obtain a bound for 7y
in terms of order and size of G.

Theorem 3.5. For any graph G, we have n4(G) > m — n + 2. Further, the
equality holds if and only if there exists a DLGD 1y induced by a difference
labeling f such that all the vertices other than the vertices with mazimum and
minimum labels under f are interior to Yy.

Proof. For any GDL f of G, by Lemma 3.4, at least two vertices of G would
be exterior to ¢y so that ¢,, > 2. Hence ¢ > 2 and so Lemma 3.3 implies that
1a(G) > m —n + 2. Now, suppose 7¢(G) = m —n + 2. By Lemma 3.3, t = 2.
That is, there is a difference labeling f of G such that exactly two vertices of
G are exterior to 1. Now, in view of Lemma 3.4, those two exterior vertices
are the vertices with minimum and maximum labels under f. Conversely, if
there is a difference labeling f with the given property, then ¢ < 2 so that
14(G) =m —n+t < m —n+ 2. The other inequality is always true and thus
na(G) =m—n+2. O

Corollary 3.6. A DLGD ¢ of a graph G with the property that all the vertices
other than the vertices with mazimum and minimum labels under f are interior
to Yy, is a minimum DLGD.

Proof. Follows from Theorem 3.5. (]

The Corollary 3.6 will be very useful to determine the value of ny for several
graphs. For example, 74 for the Petersen graph is determined with the aid of
the corollary.

Example 3.7. For the Petersen graph G, nq(G) =17.
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Proof. Let the vertices of the Petersen graph G be labeled as in Figure 6.
Then the labeling f on G defined by f(v;) = 4, for all 4, is a GDL as ¢y =
{(v1,v2,v3,v4, 05,06, V7, V8, V9, V10), (U5, V1), (V1,V9), (V2,v7), V6, V10), (v3, V10),

(vq4,vs)} is an acyclic graphoidal decomposition of G. Certainly, v and vig
are the vertices with minimum and maximum labels and they are the only ver-
tices exterior to 1y. Therefore, by Corollary 3.6, ¥y is a minimum DLGD of
G so that ng(G) = || = 7. O

FI1GURE 6. The Petersen graph.

Let us now proceed to determine the value of 14 for some common classes
of graphs. For this purpose we prove the following lemma.

Lemma 3.8. For any graph G, we have n4(G) < m — 1+ 1, where [ is the
length of a longest path. Further, the bound is sharp.

Proof. Let V(G) = {v1,ve,...,u,}. Let P be a longest path in G, say P =

(v1,v2, ..., v141). Now, define a difference labeling f on G by
i if1<i<I+1
27 elsewhere

fv) =

As discussed in the proof of Theorem 2.3, |27 — 27| # 2% — 2!| when i, j, k and
l are distinct integers greater than [ 4+ 1. That is, no two edges of G lying
outside P have the same weight. Further, if v; is a vertex lying outside P

FIGURE 7. A graph G with n4(G) =m — 1+ 1.

adjacent to a vertex v; that lies on P, then ¢ >{+1and 1 < j <1+ 1. So,
wy(vivy) = | f(v;) = f(v;)| = |2" — j| = 2°—j. Certainly, 2° — j is neither 1 nor
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|27 — 2%|, for any r,s > 1+ 1. Hence ¢y = {P} U (E(G) — E(P)), which is an
acyclic graphoidal decomposition of G and hence 9; is a DLGD of G. Thus
na(G) < |¥y| = m — 1+ 1. For the sharpness of the bound, consider the graph
G given in Figure 7. Here, m = 8 and | = 7. Define f by f(v;) = i for all
i. Then ¢y = {(v1, v2,v3,v4, V5, Vs, U7, Us), (U4, V6) } is & minimum DLGD of G.
Hence nq(G) =m—1+1=2. O

With the aid of Lemma 3.8 we determine 7, for Hamiltonian graphs and in
particular for complete graphs and wheels.

Theorem 3.9. For a Hamiltonian graph G, nq(G) = m —n + 2.

Proof. As G is Hamiltonian, the length [ of a detour path is n — 1 and so by
Lemma 3.8 we have 14(G) < m —n+ 2. The other inequality is always true as
seen in Theorem 3.5. Thus 74(G) =m —n + 2. O

Corollary 3.10. (i) For a complete graph K,, where n > 2,
n®—3n44
na(K,) = =42,
(ii) For a wheel W, where n >4 , na(W,,) = n.

Proof. As K,, and W,, are Hamiltonian, the result follows from Theorem 3.9.
O

In the following theorems, we determine the value of 7y for trees and
complete bipartite graphs.

Theorem 3.11. For a tree T, nqa(T) = n—1, where n is the number of pendant
vertices in T

Proof. Tt has been proved in [10] that every minimum acyclic graphoidal de-
composition of a tree T can be realized as a DLGD vy by a suitable differ-
ence labeling f of T so that 74(T) = 1,(T"). Now Theorem 1.3 completes the

proof. O
Theorem 3.12. Let r and s be positive integers with r < s. Then
s—1 ifr=1
Na(Krs)=9 r(s—1)—r+2 ifr>2ands<rCy+2

r(s—1) —rCsy if r>2and s>rCy+2

where rCoy = @

Proof. Let X = {x1,29,...,2,} and Y = {y1,y2,...,ys} be the bipartition of
K, s. If r =1, then K s is the star with s pendant vertices and so it follows
from Theorem 3.11 that ng(K7 ) = s — 1. Assume r > 2.

Case 1. s<rCy+2.

Define f o1 V(Kns) by f(xl) =4, f(l'z) = 10, f(yl) =1, f(yQ) =1,
f(y3) = 135
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f(yiJrS) = 3f(yi+2) -8 1= 17273, O 2
f(@ive) =2f(Yiye) —4 : 1 =1,2,3,...,7 —2 and

Fly) = f(j41) +2f($i+j+1)

P 1<j<r—21<i<r—j -1,

where t = jr — % 4+ 1+ 4. Now, it is not difficult to verify that the

collection vy induced by f is given by ¥y = {P1), Q(1), Q(2), ---» Q(T,Q)}U{R{i) :
1<j<r—2and1<i<r—j—1}UX  where
Pay = (y1, 21,92, T2, y3)
Q(i) = (21, Yit2, Tiv2, Yit3)
R%i) = ($j+1ayt>x(i+j+1)) and
X is the set of all edges of K, s not covered by the above paths in ¢, is DLGD
of K, ;. Clearly, all the vertices of K, ; other than the vertices y; and y,4;
with minimum and maximum labels respectively, are interior to vy so that
by Corollary 3.6, ¢¢ is a minimum DLGD of K, ;. Hence, by Theorem 3.5,
NalEpg) =5 — (1 + 5) + 2.
Case 2. s>rCy+ 2.
In this case, we define a difference labeling f; on V(K ;) using the labeling
f defined in the Case 1 as follows. Let
fl(l‘i) f(.TZ) = 1,2,3,...,7“
) =fyi) + i=1,2,3,...,7Ca+2 and
fl(yz) = f(yr+1) +i :i=rCo+3,7rCy+4,..,s

Then v, =1 UX;, where X; is the set of all edges not covered by the paths in
Wy, is a DLGD of K, with 1y, | = [1hy|+]X1| = (14 (r—2)+ 2D (s —
(4+3(r—2) 4202021 yy — (o RO | (g (44376412 —3r+2)) =
w +(rs—r?) = 72”_2’”2_’“ =r(s—1)—rCs. Hence ng(Kys) <r(s—1)—rCs.
Further, let g be any GDL of K, ;. Then, for a vertex y; € Y that is interior to
14, there corresponds a pair of vertices in X and hence at most rC vertices of
K, s belonging to Y can be interior to 4 which implies that at least s — rCs
vertices of K, ; are exterior to 14 so that ¢t > s — rCs. Hence, by Lemma 3.3,
we have ng(K,s) >rs—(r+s)+s—rCo=1r(s—1) —rCs. O

The GDL f for K, ¢ defined in the above theorem and the respective DLGD
1y are illustrated in the following example.

Example 3.13. For the complete bipartite graph K4 g with bipartition X =
{z1,29,23,24} and Y = {y; : 1 < i < 8}, the GDL [ defined in the proof of
Theorem 8.12 is given by f(x1) = 4, f(xz) = 10, f(xz) = 22, f(x4) = 58,
fln) =1, fly2) =7, flys) = 13, flya) = 31, f(ys) = 85, f(ys) = 16,
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flyz) = 34 and f(yg) = 40. Further the DLGD )y of Kag is given by ¢y =
{P1),Qa), Q) R 1), R(2 } U X, where
Pay = (y1, 71, Y2, 72, Y3)
Qu)y = (z1,y3,23,v4)
Q(Q (1, Y4, T4, Ys5)
1) = (x2,Y6,23)
R(z) = (22, Y7, T4)
R(1) = (3, ¥s,24)

and X is the set of all edges of K46 not covered by the above paths. Further,
for the complete bipartite graph Kyi12 with bipartition X = {x1,22, 23,24}
and Y = {y; : 1 < i < 12}, the GDL fy is given by fi(x;) = f(a;), for
all i € {1,2,3,4} and for each i € {1,2,...,8}, f1(yi) = f(yi), f1(ys) = 94,
f1 (yl()) = 95, f1 (y11) =96 and f1 (y12) =97. The DEQD d)fl Of K4,12 8 given
by vy, = U Xy, where X, is the set of all edges of K412 not covered by the
paths in py.

4. RELATION BETWEEN 7)q AND 7),

In this section, we discuss the relationship of 1y with the acyclic graphoidal
decomposition number 7,. Certainly, 1,(G) < 74(G) as every difference label
graphoidal decomposition of G is an acyclic path decomposition of G. The
following theorem shows that the absolute difference between the parameters
14 and n, can be made arbitrarily large.

Theorem 4.1. For a given positive integer k, there exists a graph G such that
14(G) — 1.(G) = k.

Proof. Consider a path P on 5k vertices, say P = (v1,va, ..., Usg). Introduce k
vertices namely wi, ws,..., wg. Join the vertex w; to the vertices vs;_3 and
vsi—1 for each i € {1,2,...,k}. Let G be the resultant graph(see Figure 8).
We prove that 1n4(G) = 2k + 1 and 7,(G) = k 4+ 1. Tt is clear that ¢, =
{P} U {(vsi—3,w;,v5i—1) : 1 < i < k} is an acyclic graphoidal decomposition
of G such that every vertex of G with degree at least two is interior to v, so
that by Theorem 1.2, v, is a minimum acyclic graphoidal decomposition of G.
Hence 14(G) = [9q] =k + 1.

We next prove that n4(G) = 2k + 1. For this consider the difference
labeling f defined by f(v;) =4, for all i = 1,2,3,...,5k and f(w;) = 5k + j,
for each j = 1,2,3,...,k. Now, for each i € {1,2,...,5k — 1}, the weight of
the edge vivit1 is given by wy(viviyr) = [f(vi) = f(vigr)| = [i = (i +1)] = 1.
Further, for each ¢ € {1,2,...,k}, the weight of the edge vs;,_3zw; is given by
w(vsi—sw;) = |f(vsi—3) — f(wi)| = [(5i —3) — (5k +i)| = |4i — 3 — 5k| and
the weight of the edge w;vs;—1 is wy(w;vsi—1) = |f(wi) — f(vsi—1)| = |(Bk +
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i) —(5i—1)| = |5k —4i+1|. We need to verify that wy(vs;—sw;) # ws(w;vsi—1),
for all ¢+ = 1,2,...,k. Suppose wy(vs;—sw;) = wy(w;vs;—1), for at least one i.
Then |4i — 3 — 5k| = |5k — 4i + 1|. If both 4i — 3 — 5k and 5k — 4i + 1 are
positive, then 4i — 3 — 5k = 5k — 44 + 1 so that 5¢ — 2 = 5k + ¢ which im-
plies that f(vsi—2) = f(w;), a contradiction. Similarly, one can prove the
other cases. Therefore, wy(vs;—3w;) # ws(w;vsi—1), for all i =1,2,..., k. Also,
wy(vsi—gw;) # 1 and wy(w;vsi—1) # 1. Hence ¢y = {P} U {(vsi—3,w;) : 1 <
1 < k} U{(vsi—1,w;) : 1 < i < k}, which is certainly an acyclic graphoidal
decomposition of G so that f is GDL of G and hence nq(G) < || = 2k + 1.

Ut vy v s U Upoyy T U Usk

0 W Wy,

FIGURE 8. A graph G with 7¢(G) — 1,(G) = k.

Further, for any DLGD 14 of G, at least one vertex lying on the cycle
C(z) = (U5i_3, V5i—92, Usi—1, Wi, 1}51'_3), for all i = 1,2, ..., k, is exterior to ’(bg. On
the contrary, suppose all the vertices of the cycle C ;) = (vs;_3, 552, V51, Wy,
vsj—3), for some j € {1,2,...,k}, are interior to ¢4. Then the path (vs;_3,w;,
v5j—1) would be a section of the path in 1, having w; as an internal vertex.
So |g(vsj—3) — g(w;)| = |g(vsj—1) — g(w;)|. Now, if for instance g(vs;_3) <
9(vsj—2) < glvsj—1) and g(vsj—3) < g(w;) < g(vsj-1), then g(w;) =
W = g(vsj—2), a contradiction. In a similar way, the remain-
ing cases can be discussed. Hence, for any DLGD 1, of G, the two pendant
vertices of G and at least k vertices of degree greater than one of G are exterior
to 1y and so t > k+2. By Lemma 3.3, nq(G) > (Tk—1) —6k+ (k+2) = 2k+1.
Therefore 14(G) = 2k + 1. Hence n4(G) — n.(G) = k. O

Even if the above theorem asserts that the absolute difference between the
parameters 71y and 7, can be made arbitrarily large, they do not assume ar-
bitrary values. That is, given positive integers a and b with a < b, it is not
always possible to find a graph G for which 7,(G) = @ and 74(G) = b. For
example, when 7,(G) = 1, G is a path to which the value of 74(G) is also 1. In
this connection we pose the following conjecture.

Conjecture 4.2. For any graph G, nq(G) < 2n,(G) — 1.

We find some classes of graphs that support the Conjecture 4.2. For example,
the common classes of graphs such as complete graphs, complete bipartite
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graphs, wheels and trees support the Conjecture 4.2 as shown below. For the
value of 7, to these common class graphs, one may refer to [4].

Theorem 4.3. Complete bipartite graphs, complete graphs, wheels and trees
support the Conjecture 4.2.

Proof. For a tree T, by Theorem 3.11 that n4(T) = n — 1, where n is the
number of pendant vertices of T. By Theorem 1.3, 7,(7T) = n — 1 and so
Na(T) = ne(T). Now, for a wheel W,, on n vertices, 1,(W,) = n — 2 and by
Corollary 3.10, ng(W,) = n. Hence ng(W,) < 2n,(W,) — 1. For a complete
graph K, n,(K,) = @ and by Corollary 3.10, n4(K,) = %. Hence
Na(Kn) < 2n,(K,) — 1. Again one can verify from Theorem 3.12 and Theorem
1.4 that complete bipartite graphs support the Conjecture 4.2. (]

We conclude this section with the following realization theorem in connection
with the Conjecture 4.2

Theorem 4.4. For any two positive integers a and b with 1 < a <b < 2a—1,
there exists a graph G for which 1,(G) = a and n4(G) = b.

Proof. Suppose a and b are two positive integers with 1 < a < b < 2a — 1. We
construct a graph G with 1,(G) = a and 14(G) = b as follows. Let b=a +r,
where 0 < r < a—1. Consider a path P = (v1,vg,...,0244+) On 2a + r vertices.
Introduce a — 1 vertices namely wy, wo, ... , we_1. Now, join w; to the vertices
v3i—1 and vg;y1, for all ¢ = 1,2,...,r and for each i € {r + 1,7 +2,...,a — 1},
join w; to the vertices vo;4, and ve;4,41. Let G be the resultant graph. For
a = 6 and b = 8, the graph G is given in the Figure 9. We prove that
1.(G) = a and n¢(G) = b. It is clear that ¢y = {P} U {(vsi—1,w;, v3i41) :
1 <i<r}U{(voigr, wi,vai4r+1) : 7+ 1 < i <a—1} is an acyclic graphoidal
decomposition of G such that every vertex of G with degree at least two is
interior to 1, so that by Theorem 1.2, t; is a minimum acyclic graphoidal
decomposition of G and hence 7,(G) = |¢1| =14+ r+ ((a—1) —r) = a. We
now prove that 73(G) = b. For this consider the difference labeling f defined
by

fvi) =2i cio= 1,2,...,2a+r
flw)=22a+7r)+¢ : i = 1,2,....,7 and
flw)=2r+4i+1 4 =7r+1,r+2,...,a—1.

Now, for each i € {1,2,....,2a + r — 1}, the weight of the edge v;v;11 is

given by ws(viviy1) = |f(vi) — f(vig1)| = |20 —2(i +1)| = 2. Further, for
each i € {r + 1,7 +2,...,a — 1}, the weight of the edge vg;4,w; is given by

W (V2iprw;) = |f(v2igr) — flws)] = [2(2i+7)— 2r+4i+1)] = |[-1] = 1
and the weight of the edge w;va;qr41 is given by wy(w;viqri1) = |f(w;) —
fvaigrs1)| = 12r +4i+1—-22i+r+1)] = | — 1] = 1. Hence wy(vojyrw;) =
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wg(wviqri1), forall i € {r+1,7+2,...,a — 1}. Now, the weight of the edge
v3;—1w;, where 1 < ¢ < r, is given by wy(vgi—1w;) = |f(vsi—1) — f(wi)| =
[2(3i — 1) — (2(2a + 1) +1)| = |5 — 4a — 2r — 2| and the weight of the edge
W; V34415 where 1 S ) S r, is wf(wi,v3i+1) = \f(wl) — f(v3i+1)| = |(2(2£l + T‘) +
1) —2(3i + 1)| = [4a + 2r — 5¢ — 2|. Also, it can be proved that wy(vs,—1w;) #
wy(wivsiq1), for all i = 1,2,...,r. Hence, ¢y = {P} U {(v3i—1,w;) : 1 < <
r}U{(ws,vzi41) 0 1 < i <r}U{(v2i4r, Wi, V2i4p41) i 7+ 1 <i < a— 1}, which
is certainly an acyclic graphoidal decomposition of G so that f is GDL of G
and hence nq(G) < |¢¢| =1+r+r+((a—1)—r)=a+7r =0

(] Wy

s To v Vit vy Vi Uy

L] Wy wy

FIGURE 9. A graph G with 7,(G) = 6 and 74(G) = 8.

Further, let 1, be an arbitrary DLGD of G. Suppose all the vertices of the
cycle C(jy = (v3j-1, V35, V3541, Wy, v3;5-1), for some j € {1,2,...,r}, are interior
to 14. Then the path (vsj_1,w;,vs;41) would be a section of the path in 9,
with w; as an internal vertex. So |g(w;) — g(vs;—1)| = |g(v3+1) — g(w;)|. Now,
if g(vsj—1) < g(vs;) < g(vsit1) and g(vsj—1) < g(w;) < g(vsi+1) then g(w;) =
W = g(vs;), a contradiction. In a similar way, the remaining cases
can be discussed. So, what we have proved is that at least one vertex lying on
the cycle O(z) = (’031‘_1, U35, U3i4+1, wj,’Ugi_l), for all i = 1,2,...,r, is exterior to
4. Hence, for any DLGD 14, the two pendant vertices of G and at least r
vertices of degree greater than one of G are exterior to 1, and so ¢t > r + 2.
By Lemma 3.3 that nq(G) > (da+r—3)— Ba+r—1)+(r+2)=a+r=h.
Hence nq(G) = b. O
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