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Abstract. : Let G be a group, R be a G-graded commutative ring

with identity, M be a unitary graded R-module, Specg(R) be the set

of graded prime ideals of R, and Cl.Specg(M) be the set of all graded

classical prime submodules of M . In this paper among other things, the

author studied the Zariski topology on both and Cl.Specg(M), and

investigate some properties of the Zariski topology on Cl.Specg(M)

and some conditions under which the graded classical prime spectrum of

M is a spectral for its Zariski topology.
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1. Introduction

The graded prime ideals were introduced and studied in [35, 37, 38]. The

graded prime submodules of a graded module over a graded commutative ring

were given in [8, 11, 12, 13, 32] as a generalization of graded prime ideals of a

graded ring. The graded classical prime submodules of a graded module over

a graded commutative ring were introduced in [19] and studied in [3, 6, 7, 8].

The Zariski topology on the spectrum of prime ideals for a ring is one of

the main tools in Algebraic Geometry (see [14, 24]). In the literature, there

are different generalizations of the Zariski topology over ring to module, (see

[1, 2, 9, 10, 15, 16, 20, 26, 27, 29, 33]). Also the Zariski topology on the graded
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14 M. Jaradat

prime spectrum of graded prime ideals for a graded ring in [35, 36, 37] is gener-

alized in different ways on the spectrum of graded prime submodules of graded

modules over graded commutative rings as in [18, 34] and on other type of

graded submodules as in [4]. In [6, 7, 19] the authors introduced and studied

some topologies on the spectrum of graded classical prime submodules of a

graded module over graded commutative rings.

Our main purpose is to study more properties of the Zariski topology on the

graded classical prime submodules of a graded module over a graded commu-

tative rings, where there is a wide variety of applications of graded algebras

in geometry and physics, (for example see [39, Introduction]). In the sequel,

in this article we investigate the topological properties of this topology and we

add more results about the relationship between algebraic properties of topo-

logical graded modules and topological properties of the Zariski topology on

the graded classical prime spectrum of them.

In Section 3, we introduce the Zariski topology on the set of graded prime

ideals Specg(R), in such a way that the Zariski topology was introduced in

[35, 37], indeed in Theorem 3.9 we show that the Zariski topology on Specg(R)

is a spectral space. In Section 4, we study some new properties of the Zariski

topology on Cl.Specg(M). Graded modules whose Zariski topology has T0-

space property, the injectivety of the natural map ψ, the topological properties

on the graded classical prime spectrum of graded modules such as connected-

ness property are studied, and several characterizations of such graded mod-

ules are given. We also show in Theorem 4.12, that if the natural map ψ is

surjective, then the quasi-compact open sets of Cl.Specg(M) are closed under

finite intersection and form an open base. In Section 5, we study the irreducible

closed subsets of the Zariski topology on Cl.Specg(M) and their generic points.

Also we obtain theorems related to the irreducible components of Cl.Specg(M)

and the combinatorial dimension of the graded prime classical spectrum, as

in Theorem 5.9 and Corollary 5.10. We show in Theorem 5.15 that for any

graded R-moduleM with surjective natural map ψ : Cl.Specg(M) → Specg(R)

which is given by ψ(P ) = (P :R M) for every P ∈ Cl.Specg(M), where

R = R/Ann(M), the set of all irreducible components of Cl.Specg(M) is of

the form Φ := {Vg(IM) | I is a minimal element of V gR(Ann(M)) with respect

to inclusion }. In Section 6, we present in Theorem 6.11, the conditions under

which a graded module is a spectral space. In particular, we show that every

g-Cl.Top R-module M with surjective natural map ψ is a spectral space, every

graded classical weak multiplication R-module M with surjective natural map

ψ is also a spectral space, and moreover, if Im(ψ) is closed with surjective

natural map ψ, then Cl.Specg(M) is a spectral space.
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The Zariski Topology on Cl.Specg(M) as a Spectral Space 15

2. Preliminaries

Throughout this paper all rings are commutative with identity and all mod-

ules are unitary. Before we state some results let us introduce some notation

and terminology. We refer to [21, 30, 31] for these basic properties and more

information on graded rings and modules.

Let G be a group and R be a commutative ring with identity 1R. Then R is a

G-graded ring if there exist additive subgroups Rg of R such that R = ⊕g∈GRg
and RgRh ⊆ Rgh for all g, h ∈ G. The nonzero elements of Rg are called to be

homogeneous of degree g. If x ∈ R, then x can be written uniquely as g∈Gxg,

where xg is the component of x in Rg. Moreover, h(R) = ∪g∈GRg. Let I be

an ideal of R. Then I is called a graded ideal of R if I = ⊕g∈G(I ∩Rg). Thus,
if x ∈ I, then x =g∈G xg with xg ∈ I.

Let R be a G-graded ring and M be a R-module. We say that M is a

graded R-module if there exists a family of subgroups {Mg}g∈G of M such

that M = ⊕g∈GMg as abelian groups and RgMh ⊆ Mgh for all g, h ∈ G.

Here, RgMh denotes the additive subgroup of M consisting of all finite sums

of elements rgsh with rg ∈ Rg and sh ∈ Mh. Also, we write h(M) = ∪g∈GMg

and the elements of h(M) are called to be homogeneous. Let M = ⊕g∈GMg

be a graded R-module and N a submodule of M . Then N is called a graded

submodule of M if N = ⊕g∈GNg where Ng = N ∩Mg for g ∈ G. In this case,

Ng is called the g-component of N .

Let R be a G-graded ring andM be a graded R-module. A proper graded ideal

I of R is said to be a graded prime ideal if whenever rs ∈ I, we have r ∈ I or

s ∈ I, where r, s ∈ h(R), (see [36]). Let Specg(R) denote the set of all graded

prime ideals of R. A proper graded submodule N of M is said to be a graded

prime submodule if whenever r ∈ h(R) and m ∈ h(M) with rm ∈ N , then

either r ∈ (N :R M) = {r ∈ R : rM ⊆ N} or m ∈ N , (see [36]). It is shown

in [36, Proposition 2.7] that if N is a graded prime submodule of M , then

p := (N :R M) is a graded prime ideal of R, and N is called a graded p-prime

submodule. Let Specg(M) denote the set of all graded prime submodules of

M . A proper graded submodule N of M is called a graded classical prime

submodule if whenever r, s ∈ h(R) and m ∈ h(M) with rsm ∈ N , then either

rm ∈ N or sm ∈ N , (see [8, 19]). Of course, every graded prime submodule

is a graded classical prime submodule, but the converse is not true in general,

(see [8, Example 2.3]). Let Cl.Specg(M) denote the set of all graded classical

prime submodules of M . Some graded R-modules have no graded classical

prime submodules, such modules are called g-Cl.primeless, for example, the

zero module is clearly g-Cl.primeless,(see [19, p. 162]).

Let R be a G-graded ring and M be a graded R-module. For each graded

ideal I of R, the graded variety of I is the set V gR(I) = {p ∈ Specg(R)|I ⊆ p}.
Then the set ξ(R) = {V gR(I)|I is a graded ideal of R} satisfies the axioms for the
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16 M. Jaradat

closed sets of a topology on Specg(R), called the Zariski topology on Specg(R),

(see [35, 36, 37]). For any r ∈ h(R), the set GXr = Specg(R)−V gR(rR) is open
in Specg(R) and the family 𭟋 = {GXr | r ∈ h(R)} form a base for the Zariski

topology on Specg(R), (see [37, Proposition 3.4]). Further more each GXr is

known to be a quasi-compact subset, (see [37, Proposition 3.8]).

In [19], Cl.Specg(M) has endowed with quasi-Zariski topology. For each

graded submodule N of M , let Vg∗(N) = {P ∈ Cl.Specg(M)|N ⊆ P}. In this

case, the set ηg∗(M) = {Vg∗(N)|N is a graded submodule of M} contains the

empty set and Cl.Specg(M), and it is closed under arbitrary intersections, but

it is not necessarily closed under finite unions. The graded R-moduleM is said

to be a g-Cl.Top module if ηg∗(M) is closed under finite unions. In this case

ηg∗(M) satisfies the axioms for the closed sets of a unique topology ϱg∗(M) on

Cl.Specg(M). In this case, the topology τg∗ (M) on Cl.Specg(M) is called the

quasi-Zariski topology.

In [7] another variety was defined for a graded submodule N of a graded R-

module M . They define the variety of N to be Vg(N) = {P ∈ Cl.Specg(M) :

(P :R M) ⊇ (N :R M)}. Then the set ηg(M) = {Vg(N)|N is a graded

submodule of M} contains the empty set and Cl.Specg(M) and it satisfies the

axioms for the closed sets of a topology on Cl.Specg(M). This topology is

called the Zariski topology on Cl.Specg(M) and denoted by ϱg. Also some

properties were studied on this topology as T1-space, spectral space.

We will study the Zariski topology in such a way that the Zariski topology

was introduced in [7], note that the case that Cl.Specg(M) = ϕ, is the trivial

case and we will not discuss it, so throughout the rest of the paper we assume

that Cl.Specg(M) ̸= ϕ. We first review some important remarks which will be

needed at the next sections.

Remark 2.1. For a topological space W , we recall:

(i) W is quasi compact if it satisfies one of the following two equivalent condi-

tions:

(a) Every collection of open subsets whose union is W contains a finite subcol-

lection whose union is W .

(b) Every collection of closed subsets whose intersection is empty contains a

finite subcollection whose intersection is empty, (see [23, Definition 2.135]).

(ii) W is said to be irreducible if W is not the union of two proper closed

subsets. For W
′ ⊆ W, W

′
is irreducible if it is irreducible as a space with the

relative topology. This is equivalent to say that, if X, Y are closed subsets of

W such that W
′ ⊆ X ∪Y , then W

′ ⊆ X or W
′ ⊆ Y , (see [17, Ch. II, p. 119]).

(iii) A maximal irreducible subset of W is called an irreducible component of

W . It is well known that every irreducible component of W is closed in W ,

and W is the union of its irreducible components, (see [17, Ch. II, p. 119]).

(iv) Let A and B be subsets of W such that A ⊆ B ⊆ W , where B is closed
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The Zariski Topology on Cl.Specg(M) as a Spectral Space 17

in W and equipped with the relative topology. Then A is an irreducible closed

subset of B if and only if A is an irreducible closed subset of W . The proof is

straightforward from (ii) and the fact that A is closed in B if and only if A is

closed in W .

(v)W is said to be connected if it is not the unionW =W0∪W1 of two disjoint

closed non-empty subsets W0 and W1, (see [23, Definition 2.105]).

(vi) Closed subspaces of quasi compact topological spaces are quasi compact,

(see [23, Theorem 2.137]).

(vii) Let f be a continuous mapping from a topological space W to a topolog-

ical space T :

(a) If W is a connected (resp. quasi compact) topological space, then f(W ) is

a connected (resp. quasi compact) topological space, (see [23, Theorem 2.107

and Theorem 2.138]).

(b) For every irreducible subset E of W , f(E) is an irreducible subset of T ,

(see [17, Ch. II]).

Remark 2.2. Let W be a topological space and let x and y be points in W . We

say that x and y can be separated if each lies in an open set which does not

contain the other point. W is a T1- space if any two distinct points in W can

be separated. A topological space W is a T1-space if and only if all points of

W are closed in W , that is, given any x in W , the singleton set {x} is a closed

set, (see [28]).

Remark 2.3. A Spectral space is a topological space homomorphic to the prime

spectrum of a commutative ring equipped with the Zariski topology. Spectral

spaces have been characterized by Hochster [22, Proposition 4] as the topolog-

ical spaces W which satisfy the following conditions:

(i) W is a T0-space.

(ii) W is quasi-compact.

(iii) The quasi-compact open subsets of W are closed under finite intersection

and form an open base.

(iv) Each irreducible closed subset of W has a generic point.

The following Lemma is known (see [25, Lemma 1.2 and Lemma 2.7]), but

we write be it here for the sake of references.

Lemma 2.4. Let R be a G-graded ring and M be a graded R-module. Then

the the following hold:

(1) If N is a graded submodule of M , then (N :R M) = {r ∈ R : rM ⊆ N} is

a graded ideal of R.

(2) If N is a graded submodule of M , r ∈ h(R), x ∈ h(M) and I is a graded

ideal of R, then Rx, IN and rN are graded submodules of M .

(3) If N and K are graded submodules of M , then N +K and N ∩K are also

graded submodules of M .
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18 M. Jaradat

(4) If {Ni}i∈I is a collection of graded submodules of M , then N = ∩i∈INi is
a graded submodule of M .

3. The Zariski topology on Specg(R) as a spectral space

The Zariski topology on the prime spectrum of prime ideals were studied

in [14, 24] and it was generalized to the Zariski topology on the graded prime

spectrum of graded prime ideals of a graded ring in [35, 36, 37].

In this section, we observe Specg(R) from the point of view of spectral topo-

logical spaces; we will follow Hochster’s characterization closely, (see Remark

2.3).

The next theorem gives an important characterization of the Zariski topol-

ogy on Specg(R) and will be needed at the end of this section.

Theorem 3.1. Let R be a G-graded ring. Then the quasi-compact open sets

of Specg(R) are closed under finite intersection and form an open base.

Proof. It suffices to show that the intersection U = U1∩U2 of two quasi-compact

open sets U1 and U2 of Specg(R) is a quasi-compact set. Note that U is open;

so U is a finite union of members of the open base 𭟋 = {GXr | r ∈ h(R)}.
Put U = ∪ni=1GXri and let Γ be any open cover of U . Then Γ also covers each

GXri which is quasi-compact by [37, Proposition 3.8]. Hence, each GXri has

a finite subcover and so does U . The other part of the theorem is trivially true

due to the existence of the open base B, (see [37, Proposition 3.4]). □

For a topological spaceW , if Y is a nonempty subset ofW , then we let ℑ(Y )

denote the intersection of the members of Y . Thus, if Y1 and Y2 are subsets of

W , then ℑ(Y1 ∪ Y2) = ℑ(Y1) ∩ ℑ(Y2), and we will denote the closure of Y in

W with respect to the Zariski topology by Cl(Y ). Let Y be a closed subset of

W . An element y ∈ Y is called a generic point of Y if Y = Cl({y}).

Theorem 3.2. Let R be a G-graded ring. Let Y be a subset of V gR(I). Then

V gR(ℑ(Y )) = Cl(Y ). In particular Cl({p}} = V gR(p) for any graded ideal p of

R. Hence, Y is closed if and only if V gR(ℑ(Y )) = Y .

Proof. Since Y ⊆ V gR(I), I ⊆ J , for every J ∈ Y . This implies I ⊆ ∩J∈Y J =

ℑ(Y ), so I ⊆ ℑ(Y ) ⊆ K, for every K ∈ V gR(ℑ(Y )). Thus V gR(ℑ(Y )) ⊆ V gR(I).

Therefore V gR(ℑ(Y )) is the smallest closed subset of Specg(R) including Y , so

V gR(ℑ(Y )) = Cl(Y ). □

Corollary 3.3. Let R be a G-graded ring. Then V gR(p) is an irreducible closed

subset of Specg(R) for every graded prime ideal p of R.

Proof. Both of a singleton subset and its closure in Specg(R) are irreducible.

Now, apply Theorem 3.2. □
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The Zariski Topology on Cl.Specg(M) as a Spectral Space 19

The following theorem characterizes the irreducible subset of Specg(R) for

a G-graded ring R.

Theorem 3.4. Let R be a G-graded ring and Y be a subset of Specg(R). Then,

Y is an irreducible subset of Specg(R) if and only if ℑ(Y ) is a graded prime

ideal of R.

Proof. Suppose that Y is an irreducible subset of Specg(R). Let I, J be graded

ideals of R such that I ∩J ⊆ ℑ(Y ) and suppose that I ⊈ ℑ(Y ) and J ⊈ ℑ(Y ),

Then ℑ(Y ) ⊈ V gR(I) and ℑ(Y ) ⊈ V gR(J). Let p ∈ Y , then I ∩ J ⊆ ℑ(Y ) ⊆ p.

So, p ∈ V gR(I ∩ J) = V gR(I) ∪ V
g
R(J). Therefore, Y ⊆ V gR(I) ∪ V

g
R(J) which is

a contradiction to the irreducibility of Y . Therefore I ⊆ ℑ(Y ) or J ⊆ ℑ(Y ).

Thus ℑ(Y ) is a graded prime ideal by [37, Proposition 1.2]. Conversely suppose

that Y ⊆ Specg(R) such that ℑ(Y ) is a graded prime ideal of R. Suppose

that Y ⊆ Y1 ∪ Y2, where Y1, Y2 are closed subset of Specg(R), so there exist

graded ideals I, J of R, such that Y1 = V gR(I) and Y2 = V gR(J). Hence Y ⊆
V gR(I) ∪ V

g
R(J) = V gR(I ∩ J). So, I ∩ J ⊆ p, for all p in Y . Thus I ∩ J ⊆ ℑ(Y ),

but ℑ(Y ) is graded prime, so by [37, Proposition 1.2] we have I ⊆ ℑ(Y ) or

J ⊆ ℑ(Y ). This means that either ℑ(Y ) ∈ V gR(I) or ℑ(Y ) ∈ V gR(J). So,

Y ⊆ V gR(I) = Y1 or Y ⊆ V gR(J) = Y2. Therefore, Y is irreducible by Remark

2.1(ii). □

Recall that a generic point of an irreducible closed subset Y of a topological

space is unique if the topological space is a T0-space, (see [22]).

Theorem 3.5. Let R be a G-graded ring. Let Y be a nonempty subset of

Specg(R). Then, Y is an irreducible subset of Specg(R) if and only if Y =

V gR(p) for some graded prime ideal p of R. Hence every nonempty irreducible

closed subset of Specg(R) has a generic point; namely p := ℑ(Y ).

Proof. It is clear that Y = V gR(p) is an irreducible closed subset of Specg(R)

for any p ∈ Specg(R) by Corollary 3.3. Conversely if Y is an irreducible

closed subset of Specg(R), then Y = V gR(I) for some graded ideal I of R and

p := ℑ(Y ) = ℑ(V gR(I)) is a graded prime ideal of R by Theorem 3.4. Hence

Y = V gR(I) = V gR(ℑ(V
g
R(I))) = V gR(p) as desired. □

Let R be a G-graded ring. Since Specg(R) is a T0-space by [37, Proposition

3.10], so by Theorem 3.5 every nonempty irreducible closed subset of Specg(R)

has a unique generic point; namely p := ℑ(Y ).

Corollary 3.6. Let R be a G-graded ring. The mapping θ : p → V gR(p) is a

surjection of Specg(R) onto the set of irreducible closed subsets of Specg(R).

Proof. Follows directly from Theorem 3.5. □
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20 M. Jaradat

Let R be a G-graded ring. Then a graded prime I of R is called a graded

minimal prime ideal of R, if for any graded prime ideal J of R such that J ⊆ I,

we have I = J .

Theorem 3.7. Let R be a G-graded ring. Then the irreducible components of

Specg(R) are the closed subset V gR(p), where p is a graded minimal prime ideal

of R.

Proof. Let Y be an irreducible component of Specg(R). By Remark 2.1(iii) and

Theorem 3.5, the irreducible component of Specg(R) is a maximal element of

the set {V gR(p), where p ∈ Specg(R)}. Thus Y = V gR(p) for some p ∈ Specg(R).

Obviously, p is a graded minimal prime ideal, for if q ∈ Specg(R) with q ⊆ p,

then V gR(p) ⊆ V gR(q). So p = q due to the maximality of V gR(p) and the property

that if V gR(I) = V gR(J), then I = J , for any I, J ∈ Specg(R). □

The graded dimension, dimg(R) of R was defined in [12] as the supremum

of all numbers n for which there exists a chain of graded prime ideals p0 ⊆
p1 ⊆ ... ⊆ pn in R, where dimg(R) = −1 if Specg(R) = ϕ and dimg(R) = 0 if

every graded prime ideal is maximal. A proper graded ideal J of R is said to

be a graded maximum prime ideal if whenever I ⊆ J , we have I = J , where

J ∈ Specg(R), (see [36]), we will denote the set of graded maximum prime

ideals of R by Maxpg(R). In the next theorem we study the relation between

the T1-space property and the graded dimension of a graded ring R.

Theorem 3.8. Let R be a G-graded ring. Then, Specg(R) is a T1-space if and

only if Specg(R) =Maxpg(R) if and only if dimg(R) ≤ 0.

Proof. First assume that Specg(R) is T1-space. If Specg(R) = ϕ, then dimg(R) =

−1. Also, if Specg(R) has one element, clearly dimg(R) = 0. So we can assume

that Specg(R) has more than two elements. Then by [37, Proposition 3.13],

Specg(R) is a T1-space if and only if every graded prime ideal of R is a graded

maximal prime ideal if and only if dimg(R) = 0. □

The next theorem gives an important result about a G-graded ring R, for

which the Zariski topology on Specg(R) is a spectral space. We remark that

any closed subset of a spectral space is spectral for the induced topology.

Theorem 3.9. Let R be a G-graded ring. Then Specg(R) is a spectral space.

Proof. Every subset of Specg(R) is quasi-compact by [37, Proposition 3.8].

Hence the quasi-compact open sets of Specg(R) are closed under finite inter-

section and form an open basis by Theorem 3.1. Also by [37, Proposition 3.10],

Specg(R) is a T0-space. Moreover, every irreducible closed subset of Specg(R)

has a generic point by Theorem 3.5. Therefore Specg(R) is a spectral space by

Remark 2.3. □

 [
 D

O
I:

 1
0.

61
18

6/
ijm

si
.1

9.
2.

13
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

si
.c

om
 o

n 
20

25
-1

1-
28

 ]
 

                             8 / 27

http://dx.doi.org/10.61186/ijmsi.19.2.13
http://ijmsi.com/article-1-1638-en.html
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4. Some topological properties of the Zariski topology on

Cl.Specg(M)

In this section we review some preliminary results and study new properties

about the Zariski topology on Cl.Specg(M), which will be needed at next

sections.

The assertions in the following proposition are straightforward to prove.

Proposition 4.1. Let R be a G-graded ring, M be a graded R-module and N

a graded R-submodule of M . Then we have the following:

(i) Vg(N) = ∪p∈V g
R((N :RM))Cl.Spec

p
g(M), where Cl.Specpg(M) = {P ∈ Cl.Specg

(M) | (P :R M} = p}.
(ii) Let Y be a subset of Cl.Specg(M). Then Y ⊆ Vg(N) if and only if

(N :R M) ⊆ (ℑ(Y ) :R M).

(iii) If P is a graded classical prime submodule of M , then (N :R M) ⊆ (P :R
M) if and only if Vg(N) ⊇ Vg(P ); consequently, (N :R M) = (P :R M) if and

only if Vg(N) = Vg(P ).

Proposition 4.2. Let R be a G-graded ring, M be a graded R-module, and

p ∈ Specg(R). Then we have the following statements:

(i) If P ∈ Cl.Specpg(M), then (P :R M)M ∈ Cl.Specpg(M).

(ii) If {Pλ}λ∈Λ is a family of graded classical prime submodules of M with

(Pλ :R M) = p for each λ ∈ Λ, then ∩λ∈ΛPλ ∈ Cl.Specpg(M).

Proof. (i) Since P ∈ Cl.Specpg(M) we have (P :R M) = p. Clearly, p ⊆ (pM :R
M). On the other hand, (pM :R M)M ⊆ pM . So that (pM :R M) ⊆ p. Thus

p = (pM :R M).

(ii) By the fact that if {Nλ}λ∈Λ is an arbitrary family of graded submodules

in M , then (∩λ∈ΛNλ :R M) = ∩λ∈Λ(Nλ :R M). □

Proposition 4.3. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then, for every p ∈ V gR(Ann(M)) in Specg(R), there exists a P ∈ Cl.Specg(M)

with (P :R M) = p. Hence Cl.Specg(M) and Cl.Specpg(M) are nonempty for

every graded prime ideal p ∈ V gR(Ann(M)).

Proof. Suppose that p ∈ V gR(Ann(M)), thus Ann(M) ⊂ p. Since the natural

map ψ is surjective, there exists P ∈ Cl.Specg(M) such that ψ(P ) = p, where

p = (P :R M). Thus (P :R M) = p. □

For a G-graded ring R, a graded ideal I of R is called a graded radical ideal

if I = Gr(I), where Gr(I) = ℑ(V gR(I)), (see [37]).

Proposition 4.4. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then we have the following statements:
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22 M. Jaradat

(i) Let I be a graded radical ideal of R. Then (IM :R M) = I if and only if

Ann(M) ⊆ I.

(ii) pM ∈ Cl.Specpg(M) for every p ∈ V gR(Ann(M)) ∩Maxg(R).

Proof. (i) The necessity is clear. For sufficiency, we note that Ann(M) ⊆ I =

∩ipi, where pi runs through V gR(I) since I is a graded radical ideal. On the

other hand, M has surjective natural map ψ and pi ∈ V gR(Ann(M)) so by

Proposition 4.3, there exists a graded classical prime submodule Pi such that

(Pi :R M) = pi. Now, we obtain that I ⊆ (IM :R M) = ((∩ipi)M :R M) ⊆
∩i(piM :R M) = ∩ipi = I. Thus (IM :R M) = I.

(ii) Follows from part (i) and [12, Proposition 2.4(i)], since every graded prime

submodule is a graded classical prime submodule. □

Let M be a graded R-module. A graded classical prime submodule P of M

is called a graded maximal classical prime submodule of M whenever P ⊆ Q,

where Q is a graded classical prime submodule of M , implies that P = Q, (see

[6]). We will denote the set of graded maximal classical prime submodules of

M by Maxclg (M). The following theorem is one of the important theorems in

this article, where we characterize the injectivety of the natural map ψ.

Theorem 4.5. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Suppose that dimg(R) = 0. Then the following are equivalent:

(i) ψ is injective.

(ii) | Cl.Specpg(M) |≤ 1 for every p ∈ Cl.Specg(M).

(iii) Cl.Specg(M) is a T0-Space.

(iv) For every p ∈ V gR(Ann(M)), Cl.Specpg(M) ⊆Maxclg (M).

(v) For every p ∈ V gR(Ann(M)), P ∈ Cl.Specpg(M) ⇒ P = pM .

(vi) Maxclg (M) = {pM | p ∈ V gR(Ann(M)), pM ̸=M}.

Proof. (i)⇔(ii)⇔(iii) By [7, Theorem 4.10].

(i)⇒(iv) For every p ∈ V gR(Ann(M)) consider Cl.Specpg(M). Let P ∈ Cl.Specpg(

M), then (P :R M) = p implies pM ⊆ P . Suppose that there exist a graded

classical prime submodule Q of M such that P ⊆ Q, then (P :R M) = p ⊆
(Q :R M). But p is a graded maximal ideal of R by Theorem 3.8, so we

have (P :R M) = p = (Q :R M). Since ψ is injective, by [7, Theorem 4.10]

we have P = Q, so P is a graded maximal classical prime submodule. Thus

Cl.Specpg(M) ⊆Maxclg (M).

(iv)⇒(i) Let P,Q ∈ Cl.Specg(M) such that ψ(P ) = ψ(Q). So (P :R M) =

(Q :R M) = p ∈ Specg(R). Then p ⊆ (pM :R M) ⊆ (P :R M) = p,

thus (pM :R M) = p ∈ V gR(Ann(M)). Now by Proposition 4.4(ii) we get

pM ∈ Cl.Specpg(M) ⊆Maxclg (M), but pM ⊆ P and pM ⊆ Q, so pM = P = Q.

Therefore ψ is injective.
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(iv)⇒(v) Let p ∈ V gR(Ann(M)) and P ∈ Cl.Specpg(M). Then we have p =

(pM :R M) = (P :R M), and by Proposition 4.4(ii), we get pM ∈ Cl.Specpg(M).

Since pM ⊆ P we have pM = P .

(v)⇒(vi) Set T := {pM | p ∈ V gR(Ann(M)), pM ̸= M}. Let Q ∈ Maxclg (M).

Then (Q :R M) = q ⊇ V gR(Ann(M)). Thus Q ∈ Cl.Specqg(M) and by assump-

tion Q = qM . Thus Q ∈ T . To prove the converse assume q ∈ V gR(Ann(M))

and qM ̸= M . Let K be a graded classical prime submodule of M such that

qM ⊆ K ⊂ M . Now by Theorem 3.8, we have (qM :R M) = (K :R M) = q .

Hence by assumption we have K = qM , that is qM ∈Maxclg (M).

(vi)⇒(iv) Let p ∈ V gR(Ann(M)) and P ∈ Cl.Specpg(M). Thus (P :R M) =

p⇒ pM ⊆ P , but by our assumption pM ∈Maxclg (M) ⇒ pM = P . Therefore

P ∈Maxclg (M). □

Now we introduce the definition of the classical weak multiplication module

and then we study the relationship between this algebraic property and the

injectivety of the natural map ψ : Cl.Specg(M) −→ Specg(R), where R =

R/Ann(M).

Definition 4.6. Let R be a G-graded ring. A graded R-module M is called

graded classical weak multiplication if Cl.Specg(M) = ϕ or for every graded

classical prime submodule P of M , we have P = IM for some graded ideal I

of R.

One can easily show that if M is a graded classical weak multiplication

module, then P = (P :R M)M for every graded classical prime submodule P

of M . It is clear that if P is a graded classical prime submodule of M , then

p := (P :R M) is a graded prime ideal of R, (see [8, Lemma 3.1]); and P is

called a graded p-classical prime submodule.

Theorem 4.7. Let R be a G-graded ring and M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). Then

the following are equivalent:

(i) ψ is injective.

(ii) M is graded classical weak multiplication R-module.

(iii) |Cl.Specpg(M)| ≤ 1 for every graded prime ideal p of R.

Proof. (i)⇒(ii) Let P be a graded p-classical prime submodule ofM . By Propo-

sition 4.2(i), (P :R M)M ∈ Cl.Specpg(M). Combining this fact with [7, Theo-

rem 4.10], we obtain that P = (P :R M)M . Thus M is graded classical weak

multiplication.

(ii)⇒(iii) The case Cl.Specpg(M) = ϕ is trivially true. LetQ1, Q2 ∈ Cl.Specpg(M)

for some graded prime ideal p of R, with (Q1 :R M) = (Q2 :R M). Therefore

Q1 = (Q1 :R M)M = (Q2 :R M)M = Q2.

(iii)⇔(i) By [7, Theorem 4.10]. □
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A graded submodule of R-graded module M is said to be a graded classical

semiprime submodule of M , if it is an intersection of graded classical prime

submodules of M , (see [19]). A graded R-module M is called a fully graded

classical semiprime module, if all the graded submodules of M are graded

classical semiprime submodules.

Theorem 4.8. Let R be a G-graded ring and M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). Then

the following are equivalent:

(i) ψ is injective.

(ii) For any graded submodules N1, N2 of M, if Vg(N1) = Vg(N2), then N1 =

N2.

(iii) M is a fully graded classical semiprime R-module.

Proof. (i)⇔(ii) By [7, Theorem 4.10].

(ii)⇒(iii) Assume N be a proper graded submodule of M . We claim that

Vg(N) ̸= ϕ , for if not, then Vg(N) = Vg(M) = ϕ and so N = M , a con-

tradiction. By [7, Lemma 3.3 (vi)] Vg(N) = Vg(ℑ(Vg(N))) and so by our

hypothesis N = ℑ(Vg(N)). It follows that N is an intersection of graded clas-

sical prime submodules.

(iii)⇒(ii) It is clear that a graded submodule N of M is an intersection of

graded classical prime submodules if and only if N = ∩P∈Vg(N)P . Thus the

proof is completed. □

From the definition of the Zariski topology on Cl.Specg(M) for every graded

R-module M , it is evident that the topological space Cl.Specg(M) is closely

related to Specg(R), where R = R/Ann(M), particularly under the natural

map ψ : Cl.Specg(M) −→ Specg(R). The surjectivity of the natural map of

Cl.Specg(M) is particularly important in studying properties of the Zariski

topology on Cl.Specg(M). The next theorem can be obtained by [7, Theorem

3.7], [7, Theorem 3.8 ] and [7, Theorem 3.9].

Theorem 4.9. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then ψ is bijective if and only if ψ is homeomorphic.

Theorem 4.10. Let R be a G-graded ring, M and M
′
be graded R-modules,

and f be an epimorphism of M to M
′
. Then the mapping ν : P

′ → f−1(P
′
)

from Cl.Specg(M
′
) to Cl.Specg(M) is continuous.

Proof. For any P
′ ∈ Cl.Specg(M

′
) and any closed set Vg(N) in Cl.Specg(M),

where N is a graded submoduleM , we have P
′ ∈ ν−1(Vg(N)) = ν−1(Vg∗((N :R

M)M)) if and only if ν(P
′
) = f−1(P

′
) ⊇ (N :R M)M if and only if P

′ ⊇
f((N :R M)M) = (N :R M)M

′
if and only if P

′ ∈ Vg∗((N :R M)M
′
) =

 [
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Vg((N :M)M
′
). Hence ν−1(Vg(N)) = Vg((N :R M)M

′
), so ν is continuous.

□

Theorem 4.11. Let R be a G-graded ring andM be a graded R-module with the

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then we have the following statements:

(i) Cl.Specg(M) is connected if and only if Specg(R) is connected.

(ii) If the intersection of all graded classical prime submodules of M is equal

to zero, then Cl.Specg(M) is connected.

(iii) If Y is a subset of Cl.Specg(M) such that (0) ∈ Y , Then Y is dense in

Cl.Specg(M).

Proof. (i) The first direction follows from that ψ is surjective and by [6, The-

orem 3.7] ψ is a continuous map of the connected space Cl.Specg(M) onto

Specg(R). Conversely assume that Specg(R) is connected. If Cl.Specg(M)

is disconnected, then Cl.Specg(M) must contain a nonempty proper subset

Y that is both open and closed. Accordingly, ψ(Y ) is a nonempty subset

of Specg(R) that is both open and closed by [7, Theorem 4.8]. To com-

plete the proof, it suffices to show that ψ(Y ) is a proper subset of Specg(R)

so that Specg(R) is disconnected, a contradiction. Since Y is open, Y =

Cl.Specg(M) − Vg(N) for some graded submodule N of M whence ψ(Y ) =

Specg(R) − V g
R
((N :R M)) by [7, Theorem 4.8] again. Therefore, if ψ(Y ) =

Specg(R), then V
g

R
((N :R M)) = ϕ so that (N :R M) = R, i.e., N =M . It fol-

lows that Y = Cl.Specg(M)−Vg(N) = Cl.Specg(M)−Vg(M) = Cl.Specg(M)

which is impossible since Y is a proper subset of Cl.Specg(M). Thus ψ(Y ) is

a proper subset of Specg(R).

(ii) By [7, Theorem 4.4], we have Cl(Cl.Specg(M)) = Vg(ℑ(Cl.Specg(M))) =

Vg(0) = Cl.Specg(M). Therefore, Cl.Specg(M) is connected by [23, Theorem

23.4].

(iii) Is clear by [7, Theorem 4.4] and [7, Theorem 4.5(i)]. □

The following theorems provides important characterizations about the quasi-

compact open sets of the Zariski topology on Cl.Specg(M).

In Theorem 3.1, we show that for a G-graded ring R, the quasi-compact

open sets of Specg(R) are closed under finite intersection and form an open

base. The next theorem is a generalization of this fact for topological graded

modules.

Let r ∈ h(R), we define GXcl
r = Cl.Specg(M)−Vg(rM). Then every GXcl

r

is an open set of Cl.Specg(M), GXcl
0 = ϕ, and GXcl

1 = Cl.Specg(M), (see [7,

p. 7]).

Theorem 4.12. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),
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26 M. Jaradat

of Cl.Specg(M). Then the quasi-compact open sets of Cl.Specg(M) are closed

under finite intersection and form an open base.

Proof. It suffices to show that the intersection D = D1 ∩ D2 of two quasi-

compact open sets D1 and D2 of Cl.Specg(M) is a quasi-compact set. Each Dj ,

j = 1 or 2, is a finite union of members of the open base B = {GXcl
r | r ∈ R},

hence so is D due to [7, Proposition 4.2]. Put D = ∪ni=1GX
cl
ri and let ζ be any

open cover of D. Then ζ also covers each GXcl
ri which is quasi-compact by [7,

Theorem 4.3]. Hence, each GXcl
ri has a finite subcover of ζ and so does D. The

other part of the theorem is trivially true due to the existence of the open base

B. □

Theorem 4.13. Let R be a G-graded ring, M be a graded R-module and N

be a graded submodule of M . Let T (N) := {L | L ⊆ N and L is a finitely

generated submodule of M}. Then we have Vg(N) = ∩L∈T (N)Vg(L), and hence

Ug(N) = Cl.Specg(M)− Vg(N) = ∪L∈T (N) Ug(L).

Proof. Let P ∈ Vg(N). If L ∈ T (N), then (L :R M) ⊆ (N :R M) ⊆ (P :R M).

Hence P ∈ Vg(L), thus Vg(N) ⊆ ∩L∈T (N)Vg(L). Now suppose P ∈ Vg(L) for
every L ∈ T (N). If x ∈ N , then xR ∈ T (N), and hence P ∈ Vg(xR). Hence

x ∈ xR ⊆ P . Thus N ⊆ P . □

Theorem 4.14. Let R be a G-graded ring and M be a graded R-module. Then

every quasi-compact open subset of Cl.Specg(M) is of the form Ug(N) for some

finitely generated graded submodule N of M .

Proof. Let N be a finitely generated R-submodule of M . Suppose Ug(N) =

Cl.Specg(M) − Vg(N) is a quasi-compact open subset of Cl.Specg(M). By

Theorem 4.13, we have Ug(N) = ∪L∈T (N)Ug(L). Since Ug(N) is quasi-compact

by [6, Theorem 4.3], every open covering of Ug(N) has a finite subcovering, thus

Ug(N) = Ug(L1) ∪ ... ∪ Ug(Ln) = Ug(
∑n
i=1 Li). This completes the proof. □

Theorem 4.15. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M).

Cl.Specg(M) is a quasi-compact topological space if and only if Specg(R) is a

quasi-compact topological space.

Proof. Suppose that Cl.Specg(M) is a quasi compact topological space. Then

it follows from [7, Theorem 3.7] and Remark 2.1(vii) that Specg(R) is quasi

compact. To show the converse, let {Vg(Nα) : α ∈ Λ} be a family of closed sub-

sets of Cl.Specg(M) such that ∩α∈ΛVg(Nα) = ϕ, whereNα is a graded submod-

ule ofM for every α ∈ Λ. Then {ψ(Vg(Nα)) : α ∈ Λ} is a family of closed subset

of Specg(R) because ψ is closed by [7, Theorem 3.9]. Since ψ is surjective, it is

easy to see that ∩α∈Λψ(Vg(Nα)) = ϕ. As Specg(R) is quasi compact by Theo-

rem 3.8, there exists a finite subset Γof Λ such that ∩α∈Γψ(Vg(Nα)) = ϕ. This

implies that ∩α∈ΓVg(Nα) = ϕ, and hence Cl.Specg(M) is quasi compact. □
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5. Irreducible closed subsets and irreducible components of the

Zariski topology on Cl.Specg(M)

In this section, we study the irreducibility of a subset of the Zariski topology

on Cl.Specg(M), and their generic points.

The next theorem shows that the irreducible subsets of the topological space

Cl.Specg(M) have a close relationship to the graded classical prime submodules

of the graded R-module M .

Theorem 5.1. Let R be a G-graded ring, M be a graded R-module and Y be

a subset of Cl.Specg(M). If ℑ(Y ) is a graded classical prime submodule of M ,

then Y is irreducible. Conversely, if Y is irreducible, then H := {(P :R M) |
P ∈ Y } is an irreducible subset of Specg(R), i.e., ℑ(H) = (ℑ(Y ) :R M) is a

graded prime ideal of R.

Proof. By [7, Corollary 4.6], Vg(ℑ(Y )) = Cl(Y ) is irreducible whence Y is

irreducible. Conversely, if Y is irreducible, then the image ψ(Y ) = Y
′
of Y

under the natural map ψ of Cl.Specg(M) is an irreducible subset of Specg(R)

because ψ is continuous by [7, Theorem 3.7]. Consequently, we have that

ℑ(Y ′
) = (ℑ(Y ) :R M) is a graded prime ideal of R by Theorem 3.4. Therefore,

ℑ(H) = (ℑ(Y ) :R M) is a graded prime ideal of R so that H is an irreducible

subset of Specg(R). □

Corollary 5.2. Let R be a G-graded ring and M be a graded R-module. Then

Cl.Specg(M) is an irreducible space if and only if ℑ(Cl.Specg(M)) is a graded

classical prime of M . In particular, if (0) ∈ Cl.Specg(M), then Cl.Specg(M)

is an irreducible space.

Proof. This follows from Theorem 5.1 and the fact that Cl.Specg(M) = Vg(ℑ(C
l.Specg(M))). □

Corollary 5.3. Let R be a G-graded ring, M be a graded R-module and Y be

an irreducible closed subset of Cl.Specg(M). Then Y = Vg((ℑ(Y ) :R M)M).

Proof. By [7], Y = Vg(N) for some graded submodule N of M . By Theorem

5.1, p := (ℑ(Y ) :R M) is a graded prime ideal of R. Due to [7, Lemma 3.3(vi)]

and [7, Lemma 3.6(iii)], it follows that Vg(pM) = Vg((ℑ(Vg(N)) :R M)M) =

Vg(ℑ(Vg(N))) = Vg(N) = Y . □

In Theorem 3.4, we see that in a G-graded ring R, a subset Y of Specg(R) is

irreducible if and only if ℑ(Y ) is a graded prime ideal of R. The next theorem

is a generalization of this fact to topological graded modules, and in the same

time it is a modification for [7, Theorem 4.7].

Theorem 5.4. Let R be a G-graded ring, M be a graded R-module and Y

be a subset of Cl.Specg(M). Y is irreducible if and only if ℑ(Y ) is a graded

classical prime submodule. Hence (ℑ(Y ) :R M) is a graded prime ideal of R.
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Proof. If ℑ(Y ) is a graded classical prime submodule, then by [7, Theorem 4.7],

Y is an irreducible. Conversely, assume that Y is irreducible. Then it is clear

that ℑ(Y ) = ∩P∈Y P is a graded submodule of M and Y ⊆ Vg(ℑ(Y )). Let I,

J be graded ideals of R and K be a graded submodule of M such that IJK ⊆
ℑ(Y ). Then by [7, Theorem 3.4], Y ⊆ Vg(ℑ(Y )) ⊆ Vg(IJK) = Vg(IK) ∪
Vg(JK). Since Y is irreducible we get that Y ⊆ Vg(IK) or Y ⊆ Vg(JK),

thus ℑ(Y ) ⊇ ℑ(Vg(IK)) ⊇ IK or ℑ(Y ) ⊇ ℑ(Vg(JK)) ⊇ JK. Therefore by

[8, Theorem 2.1 and Lemma 3.1], ℑ(Y ) is a graded classical prime submodule

and (ℑ(Y ) :R M) is a graded prime ideal of R. □

In the next theorem, we show that the irreducibility of Cl.Specg(M), which

is a topological property, implies that Gr(Ann(M)) is a graded prime ideal of

R, which is an algebraic property.

Theorem 5.5. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M).

Suppose that dimg(R) = 0. Then following statements are equivalent:

(i) Cl.Specg(M) is an irreducible space.

(ii) Specg(R) is an irreducible space.

(iii) V gR(Ann(M)) is an irreducible space.

(iv) Gr(Ann(M)) is a graded prime ideal of R.

(v) Cl.Specg(M) = Vg(IM) for some I ∈ V gR(Ann(M)).

Proof. (i) ⇒ (ii) By [7, Theorem 3.7], the natural map ψ is continuous and by

assumption ψ is surjective. Hence Im(ψ) = Specg(R) is also irreducible.

(ii) ⇒ (iii) It is well-known that the mapping µ : Specg(R) → Specg(R)

given by J/Ann(M) → J is a graded R-homeomorphism. This implies that

V gR(Ann(M)) is an irreducible space.

(iii) ⇒ (iv) By Theorem 3.4, ℑ(V gR(Ann(M))) = Gr(Ann(M)) is a prime ideal

of R.

(iv) ⇒ (v) By Proposition 4.4(ii), Gr(Ann(M))M is a graded classical prime

submodule ofM . Now, let P ∈ Cl.Specg(M). Then Gr(Ann(M)) ⊆ (P :R M),

and so Gr(Ann(M))M ⊆ P . Therefore Cl.Specg(M) = V gR(Gr(Ann(M)))M ,

where Gr(Ann(M)) ∈ V gR(Ann(M)).

(v) ⇒ (i) By Proposition 4.4(ii), IM is a graded classical prime submodule of

M . By [7, Corollary 4.6], Vg(IM) = Cl.Specg(M) is irreducible. □

Proposition 5.6. Let R be a G-graded ring and M be a graded R-module.

Then we have the following:

(i) If Y = {Pi | i ∈ Λ} is a non-empty family of graded classical prime submod-

ules of M , which is linearly ordered by inclusion, then Y is irreducible subset

in Cl.Specg(M).

(ii) Assume that the natural map ψ : Cl.Specg(M) → Specg(R), where R =
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R/Ann(M) is surjective and Cl.Specpg(M) ̸= ϕ for some p ∈ Specg(R). If p is

a graded maximal ideal of R, then Cl.Specpg(M) is an irreducible closed subset

of Cl.Specg(M).

Proof. (i) Let ℑ(Y ) = ∩i∈ΛPi = P . P is a graded submodule of M . Sup-

pose that rsm ∈ P but sm /∈ P where r, s ∈ h(R) and m ∈ h(M). Then

sm /∈ Pi for some i ∈ Λ. Since Pi is a graded classical prime submodule, we

get rm ∈ Pi. Let j be any element of Λ such that j ̸= i. Since Y is linearly

ordered by inclusion, we have eitherPi ⊆ Pj or Pj ⊆ Pi. If Pi ⊆ Pj , then we

obtain rm ∈ Pi ⊆ Pj . If Pj ⊆ Pi, then since sm /∈ Pi and Pj is a graded

classical prime submodule, we have rm ∈ Pj . Hence rm ∈ P and ℑ(Y ) is a

graded classical prime submodule, so Y is irreducible on Cl.Specg(M) by [7,

Proposition 4.7].

(ii) Since p is a graded maximal ideal of R, so by Proposition 4.4(ii), pM ∈
Cl.Specg(M). Now using [7, Corollary 4.6], it suffices to show that Cl.Specpg(M)

= Vg(pM) for the graded maximal ideal p. Let Q ∈ Vg(pM), that is, (Q :R
M) ⊇ (pM :R M) ⊇ p. Since p is a graded maximal ideal, (Q :R M) = p.

So, Q ∈ Cl.Specpg(M). Conversely, let P ∈ Cl.Specpg(M). Then (P :R M) =

p ⊆ (pM :R M) and because of maximality of p, we obtain p = (pM :R M)

and so P ∈ Vg(pM). Therefore Cl.Specpg(M) = Vg(pM) so Cl.Specpg(M) is

closed. □

In [7, Theorem 4.9], we have seen that every graded classical prime submod-

ule P of a graded module M is a generic point of the irreducible closed subset

Vg(P ) of Cl.Specg(M).

The next results are a good application of the Zariski topology on mod-

ules. Indeed, the next theorem show that there is a correspondence between

the irreducible closed subsets of Cl.Specg(M) and the graded classical prime

submodules of the graded R-module M .

Theorem 5.7. Let R be a G-graded ring, M be a graded R-module with sur-

jective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),

and Y be a subset of Cl.Specg(M). Then Y is an irreducible closed subset of

Cl.Specg(M) if and only if Y = Vg(P ) for some P ∈ Cl.Specg(M). Thus

every irreducible closed subset of Cl.Specg(M) has a generic point.

Proof. Clearly, Y = Vg(P ) is an irreducible closed subset of Cl.Specg(M) for

any P ∈ Cl.Specg(M) by [6, Corollary 4.6]. Conversely, if Y is an irreducible

closed subset of Cl.Specg(M), then Y = Vg(N) for some graded submodule

N of M such that (ℑ(Vg(N)) :R M) = (ℑ(Y ) :R M) = p is a graded prime

ideal of R by Theorem 5.4. Since ψ is surjective, there must exist a graded

classical prime submodule P ∈ Cl.Specg(M) such that (P :R M) = p. Now,

we have that Y = Vg(N) = Vg(P ), for p = (ℑ(Vg(N)) :R M) = (P :R M)
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implies Vg(ℑ(Vg(N))) = Vg(P ) by [7, Lemma 3.6(i)], whence Vg(N) = Vg(P )
as Vg(N) is closed. Thus P is a generic point of Y . □

A generic point P of an irreducible closed subset Y = Vg(P ) may not be

unique. However, all generic points P of Y have the same residual (P :R M).

More exactly, Vg(P ) = Vg(Q) if and only if (P :R M) = (Q :R M).

Lemma 5.8. Let R be a G-graded ring,M be a graded R-module with surjective

natural ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M), and N be a

graded submodule M . Let Cl.Specg(M) be equipped with the Zariski topology

and Y be a nonempty subset of the closed set Vg(N). Then Y is an irreducible

closed subset of Vg(N) if and only if Y = Vg(P ) for some P ∈ Vg(N).

Proof. Since Y ⊆ Vg(P ) ⊆ Cl.Specg(M) and Vg(P ) is closed in Cl.Specg(M),

by applying Remark 2.1(iv) we have that Y is an irreducible closed subset of

Vg(N) if and only if Y is an irreducible closed subset of Cl.Specg(M) if and

only if Y = Vg(P ) for some P ∈ Cl.Specg(M) by Theorem 5.7 if and only if

Y = Vg(P ) for some P ∈ Vg(N) as P ∈ Vg(P ) ⊆ Vg(N). □

Let W be a topological space. We consider strictly decreasing chain Z0 ⊇
Z1 ⊇ ... ⊇ Zr of length r of irreducible closed subsets Zi of W . The supremum

of the lengths, taken over all such chains, is called the combinatorial dimen-

sion of W and denoted by dim(W ). For the empty set, ϕ, the combinatorial

dimension of ϕ is defined to be −1.

Theorem 5.9. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M).

Then the following hold:

(i) dim(Cl.Specg(M)) = dim(Specg(R)).

(ii) Cl.Specg(M) is an irreducible topological space if and only if Specg(R) is

an irreducible topological space.

Proof. (i) Let Z0 ⊃ Z1 ⊃ ... ⊃ Zs be a descending chain of irreducible closed

subsets of Cl.Specg(M). Then by Theorem 5.7, for i(1 ≤ i ≤ s), there exists a

graded submodule Pi ofM such that (Pi :R M) is a graded prime ideal of R and

Zi = Vg(Pi). By Theorem 3.5, there exists a one to one correspondence between

the graded prime ideals of R and the irreducible closed subsets of Specg(R),

it follows that V g
R
((P0 :R M)) ⊃ V g

R
((P1 :R M)) ⊃ ... ⊃ V g

R
((Ps :R M)) is a

descending chain of irreducible closed subsets of Specg(R) by Theorem 3.4.

Hence dim(Cl.Specg(M)) ≤ dim(Specg(R)). Now let W0 ⊃ W1 ⊃ ... ⊃ Wt

be a descending chain of irreducible closed subsets of Specg(R). By Theorem

3.4, for each j(1 ≤ j ≤ t), there exists a graded prime ideal qi of R such that

Wj = V g
R
(qj). This yields that q0 ⊃ q1 ⊃ ... ⊃ qt is an ascending chain of graded

prime ideal of R. Since M has a surjective natural map ψ, by Proposition 4.3,
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for every pj i(1 ≤ i ≤ t), there exists a graded submodule Qj of M such that

qj = (Qj :R M). Hence by Theorem 5.7, Vg(Q0) ⊃ Vg(Q1) ⊃ ... ⊃ Vg(Qt) is a
descending chain of irreducible closed subsets of Cl.Specg(M). It follows that

dim(Cl.Specg(M)) ≥ dim(Specg(R)) and the proof is completed.

(ii) We have a similar argument as in part (i) of Theorem 4.11. □

Corollary 5.10. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),

such that Cl.Specg(M) has combinatorial dimension zero. Then:

(i) Every irreducible closed subset of Cl.Spec(M) is an irreducible component

of Cl.Specg(M).

(ii) For every p ∈ V gR(Ann(M)) and for every graded p-classical prime sub-

module P of M , Cl.Specpg(M) = {p-graded classical prime submodules of

M} = Vg(P ).

Proof. (i) Is clear because dim(Cl.Specg(M)) = 0.

(ii) Since by Theorem 5.9(iii) dim(Cl.Specg(M)) = 0 = dim(Spec(R)), ev-

ery irreducible closed subset of Specg(R) is an irreducible component, that is

Specg(R) = { graded maximal ideals of R}. Hence p = (P :R M) is a graded

maximal ideal of R. If Q ∈ Cl.Specg(M), then (Q :R M) is also a graded

maximal ideal. Therefore, Q ∈ Vg(P ) if and only if (Q :R M) = (P :R M) = p

if and only if Q ∈ Cl.Specpg(M). Thus Vg(P ) = Cl.Specpg(M). □

Theorem 5.11. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M).

Then for any P ∈ Cl.Specg(M) we have the following statements:

(i) The correspondence ρ : P → Vg(P ) is a surjection of Cl.Specg(M) onto

the set of irreducible closed subsets of Cl.Specg(M).

(ii) The correspondence φ : Vg(P ) → (P :R M) is a bijection of the set of

irreducible components of Cl.Specg(M) onto the set of graded minimal prime

ideals of R.

Proof. (i) Follows from Theorem 5.7.

(ii) Since each irreducible component of Cl.Specg(M) is a maximal element of

the set {Vg(Q) | Q ∈ Cl.Specg(M)}, by Theorem 5.7. Now we get the result

by applying [7, Theorem 4.5(ii)]. □

Let R be a G-graded ring and I be a graded ideal of R. If V gR(I) has at least

one minimal member with respect to inclusion, then every minimal member

in this form is called a graded minimal prime divisors of I, (see [36, Corollary

2.3]).

Corollary 5.12. Let R be a G-graded ring, M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),
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and N be a graded submodule of M . Then we have the following statements:

(i) The mapping ρ∗ : P → Vg(P ) is a surjection of Vg(N) onto the set of

irreducible closed subsets of Vg(N).

(ii) The mapping φ∗ : Vg(P ) → (P :R M) is a bijection of the set of irre-

ducible components of Vg(N) onto the set of graded minimal prime divisors of

(N :R M) in R = R/Ann(M).

Proof. (i) Follows directly from Theorem 5.11.

(ii) Applying Lemma 5.8 and Theorem 5.11 implies that φ∗ is a well defined

injective mapping. We show that φ∗ is surjective. Let p be a graded minimal

prime divisor of (N :R M) in R and let p be the graded prime ideal of R such

that p/Ann(M) = p. Then p ⊇ (N :R M) ⊇ Ann(M). SinceM has a surjective

natural map ψ, thus by Proposition 4.3, there exists a graded p-classical prime

submodule P ∈ Cl.Specg(M). Now (P :R M) = p ⊇ (N :R M) implies

that P ∈ Vg(N), and so Vg(P ) ⊆ Vg(N). Thus Vg(P ) is an irreducible closed

subset of Vg(N) by Lemma 5.8. Note that the minimality of p ∈ V g
R
((N :R M))

implies the maximality of Vg(P ) among all irreducible closed subsets Vg(Q) of

Vg(N) where Q ∈ Vg(N), as (Q :R M) ⊇ (N :R M). Therefore, Vg(P ) is an

irreducible component of Vg(N). This proves that φ∗ is surjective. □

Let R be a G-graded ring and M be a graded R-module. A graded sub-

module P of M is called a graded minimal classical prime submodule of M if

whenever Q ⊆ P , where Q is a graded classical prime submodule of M , implies

that P = Q.

Theorem 5.13. Let R be a G-graded ring, M be a graded R-module with

bijective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),

and Y be a subset of Cl.Specg(M), then the correspondence π : Vg(P ) → P is

a bijection of the set of irreducible components of Cl.Specg(M) onto the set of

minimal elements of Cl.Specg(M) with respect to inclusion.

Proof. Let Y be an irreducible component of Cl.Specg(M). Since each irre-

ducible component of Cl.Specg(M) is a maximal element of the set {Vg(P ) |
P ∈ Cl.Specg(M)} by Theorem 5.7, we have Y = Vg(P ) for some P ∈
Cl.Specg(M). Obviously, P is a minimal element of Cl.Specg(M), for if

Q ∈ Cl.Specg(M) with Q ⊆ P , then Vg(P ) ⊆ Vg(Q). So P = Q due to

the maximality of Vg(P ) and [7, Theorem 4.10]. Let P be a minimal element

of Cl.Specg(M) with Vg(P ) ⊆ Vg(K) for some K ∈ Cl.Specg(M). Then

P ∈ Vg(K) whence (K :R M)M ⊆ P . By Proposition 4.2(i), (K :R M)M

belongs to Cl.Spec
(K:RM)
g (M). Hence, P = (K :R M)M due to the minimality

of P . By [7, Lemma 3.6(iii)], Vg(K) = Vg((K :R M)M) = Vg(P ). This implies

that Vg(P ) is an irreducible component of Cl.Specg(M), as desired. □
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Corollary 5.14. Let R be a G-graded ring, M be a graded R-module with

bijective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),

and N be a graded submodule of M . Then the mapping π∗ : Vg(P ) → P is a

bijection of the set of irreducible components of Vg(N) onto the set of graded

minimal classical prime submodule of N .

Proof. Directly from Theorem 5.13. □

Theorem 5.15. Let R be a G-graded ring, M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M),

and Y be a subset of Cl.Specg(M). Then the set of all irreducible components

of Cl.Specg(M) is of the form Φ := {Vg(IM) | I is a minimal element of

V gR(Ann(M)) with respect to inclusion}.

Proof. Let Y be an irreducible component of Cl.Specg(M). By [7, Theorem

4.7], Y = Vg(P ) for some P ∈ Cl.Specg(M). Hence, Y = Vg(P ) = Vg((P :R
M)M) by [7, Lemma 3.6(iii)]. So, we have p := (P :R M) ∈ V gR(Ann(M)).

We must show that p is a minimal element of V gR(Ann(M)) with respect to

inclusion. To see this let q ∈ V gR(Ann(M)) and q ⊆ p. Then q/Ann(M) = q ∈
Specg(R), and because M has surjective natural map ψ, by Proposition 4.3

there exists an element Q ∈ Cl.Specg(M) such that (Q :R M) = q . So, Y =

Vg(P ) ⊆ Vg(Q). Hence, Y = Vg(P ) = Vg(Q) due to the maximality of Vg(P ).
By [7, Theorem 4.5(ii)], we have that p = q. For the reverse containment,

let Y = Vg(IM) for some minimal element I in V gR(Ann(M)). Since M has

surjective natural map ψ, then by Proposition 4.3, there exists an element

K ∈ Cl.Specg(M) such that (K :R M) = I. So using [7, Lemma 3.6(iii)] we

have Y = Vg(IM) = Vg((K :R M)M) = Vg(K), and so Y is irreducible by

Theorem 5.7. Suppose that Y = Vg(K) ⊆ Vg(Q), where Q is an element of

Cl.Specg(M). Since K ∈ Vg(Q) and I is minimal, it follows that (K :R M) =

(Q :R M). Now, by [7, Lemma 3.6(iii)], Y = Vg(K) = Vg((K :R M)M) =

Vg((Q :R M)M) = Vg(Q). □

6. The Zariski topology on Cl.Specg(M) as a spectral space

Unlike the case of Specg(R), Cl.Specg(M) is not a T0-space in general. We

consider now some conditions for which Cl.Specg(M) has the T0, T1, and T2-

space properties and we give a characterization for the graded classical prime

spectrum of a graded modules over a graded commutative ring.

The classical prime dimension of a graded R-module M , dimcl
g (M) was de-

fined in [5], as dimcl
g (M) = sup{ht(P ) | P ∈ Cl.Specg(M)}, where ht(P ) is the

greatest non-negative integer n such that there exists a chain of graded classical

prime submodules of M , P0 ⊂ P1 ⊂ ..... ⊂ Pn = P , and ht(P ) = ∞ if no such

n exists. The next theorem is a generalization of Theorem 3.8, for topological

graded modules which is studying the relation between the T1-space property

and the graded classical prime dimension of a graded R-module M .
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Theorem 6.1. Let R be a G-graded ring and M be a graded R-module. Then

Cl.Specg(M) is a T1-space if and only if Cl.Specg(M) = Maxclg (M) if and

only if dimcl
g (M) ≤ 0.

Proof. By [7, Theorem 4.13] Cl.Specg(M) is a T1-space if and only if every

graded classical prime submodule is a graded maximal. Therefore Cl.Specg(M)

is a T1-space if and only if Cl.Specg(M) =Maxclg (M) if and only if dimcl
g (M) ≤

0. □

Suppose that W is a topological space. Let x and y be points in W . We say

that x and y can be separated by neighborhoods if there exists a neighborhood

U of x and a neighborhood V of y such that U and V are disjoint (U ∩ V =

ϕ). W is a T2-spaces if any two distinct points of W can be separated by

neighborhoods, (see [28]).

It is well-known that if W is a finite space, then W is a T1-space if and

only if W is the discrete space. The cofinite topology is the smallest topology

satisfying the T1 axiom; i.e., it is the smallest topology for which every singleton

set is closed. In fact, an arbitrary topology on W satisfies the T1 axiom if and

only if it contains the cofinite topology. If W is not finite, then this topology is

not T2, since no two open sets in this topology are disjoint, (See [28]). Thus the

next corollary can be obtained by Remark 2.2, [7, Theorem 4.14], and Theorem

6.1.

Corollary 6.2. Let R be a G-graded ring and M be a graded R-module such

that Cl.Specg(M) is finite. Then the following statements are equivalent:

(i) Cl.Specg(M) is a T1-space.

(ii) Cl.Specg(M) is the cofinite topology.

(iii) Cl.Specg(M) is discrete.

(iv) dimcl
g (M) ≤ 0.

In the next proposition, we show that if the topological space Cl.Specg(M)

is a T1-space, then we can obtain some properties of the graded classical prime

submodules of M .

Theorem 6.3. Let R be a G-graded ring, M be a graded R-module, Y be a

subset of Cl.Specg(M) and P ∈ Cl.Specpg(M).

(i) If {P} is closed in Cl.Specg(M), then P is a maximal element of Cl.Specg(M)

and Cl.Specpg(M) = {P}.
(ii) Cl.Specg(M) is a T1-space if and only if Cl.Specg(M) is a T0-space and for

every element Q ∈ Cl.Specg(M), (Q :R M) is a maximal element in {(L :R M)

| L ∈ Cl.Specg(M)}.
(iii) If Cl.Specg(M) is a T1-space, then Cl.Specg(M) is a T0-space and every

graded classical prime submodule is a maximal element of Cl.Specg(M). The

converse is also true, when M is finitely generated.
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(iv) Let (0) ∈ Cl.Specg(M). Then Cl.Specg(M) is a T1-space if and only if

(0) is the only graded classical prime submodule of M .

Proof. (i) Let Q ∈ Cl.Specg(M) such that P ⊆ Q. Then (P :R M) ⊆ (Q :R
M). Now by [7, Theorem 4.4] we have Q ∈ Vg(P ) = Cl({P}) = {P}. Hence,

Q = P , and so P is a maximal element of Cl.Specg(M).

(ii) The result follows from Remark 2.2, [7, Theorem 4.10] and [7, Theorem

4.12].

(iii) Trivially, Cl.Specg(M) is a T0-space and every singleton subset of Cl.Specg(M)

is closed. Every graded classical prime submodule is a maximal element of

Cl.Specg(M) by [7, Theorem 4.13]. Now, we suppose that M is finitely gen-

erated. Thus, every graded classical prime submodule is maximal. Let Q ∈
Cl.Specg(M) such that Q ∈ Cl({P}) = Vg(P ). Since P is maximal, (P :R
M) = (Q :R M). By [7, Theorem 4.10], Q = P . Hence, every singleton subset

of Cl.Specg(M) is closed. So, Cl.Specg(M) is a T1-space.

(iv) Use part (i). □

Theorem 6.4. Let R be a G-graded ring and M be a graded classical weak

multiplication R-module. Then Cl.Specg(M) is a T1-space if and only if it is

a T2-space.

Proof. Assume that Cl.Specg(M) is a T2 -space. Then it is a T1-space. Con-

versely assume that Cl.Specg(M) is a T1 -space. If | Cl.Specg(M) |= 1 or

| Cl.Specg(M) |= 2, then Cl.Specg(M) is a T2-space. Now assume that

| Cl.Specg(M) |> 2. Then we can take three distinct elements in Cl.Specg(M),

say P1, P2, and P3. SinceM is graded classical weak multiplication, Vg(P1P3) =

{P1, P3} = Cl.Specg(M) − Vg(P2), Vg(P2P3) = {P2, P3} = Cl.Specg(M) −
Vg(P1) and Vg(P2) = {P2} = Cl.Specg(M) − Vg(P1P3) are open sets in

Cl.Specg(M). This implies that P1 ∈ Vg(P1P3) and P2 ∈ Vg(P2). Moreover,

Vg(P1P3) ∩ Vg(P2) = ϕ. □

In the sequel, we present conditions under which the Zariski topology on

Cl.Specg(M) is a spectral space. We recall that any closed subset of a spectral

space is spectral for the induced topology.

Theorem 6.5. Let R be a G-graded ring and M be a graded R-module with

bijective natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then Cl.Specg(M) is a spectral space.

Proof. Since ψ is surjective then, by [7, Theorem 4.3] the open set GXcl
r in

Cl.Specg(M) for each r ∈ h(R) is quasi-compact, and by Theorem 4.12 and

[7, Theorem 4.2] the quasi-compact open sets of Cl.Specg(M) are closed under

finite intersection and form an open base, and by [7, Proposition 4.9] and

Theorem 5.7 each irreducible closed subset has a generic point, and since ψ is

injective then by [7, Theorem 4.10], Cl.Specg(M) is a T0-space. It follows from

Remark 2.3, Cl.Specg(M) is a spectral space. □
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Theorem 6.6. Let R be a G-graded ring and M be a graded R-module. If

the natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M), is

surjective, then the following statements are equivalent:

(i) Cl.Specg(M) is a spectral space.

(ii) Cl.Specg(M) is a T0-space.

(iii) | Cl.Specpg(M) |≤ 1 for every p ∈ Specg(R).

(iv) ψ is injective.

(v) Cl.Specg(M) is homeomorphic to Specg(R) under ψ.

Proof. (i)⇒(ii) Is trivial

(ii)⇒(i) is by [7, Theorem 4.10] and Theorem 6.5.

(ii)⇔(iii)⇔(iv) The equivalence is due to [7, Theorem 4.10].

(iv)⇔(v) Follows from Theorem 4.9. □

Although the surjectivity of the natural map of Cl.Specg(M) is an important

condition for Cl.Specg(M) to be spectral, it is not a necessary condition. Some

Cl.Specg(M) is a spectral space without being surjective.

Theorem 6.7. Let R be a G-graded ring and M be a graded R-module with

natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M), such that

the image Im(ψ) of ψ is a closed subset of Specg(R). Then Cl.Specg(M) is a

spectral space if and only if ψ is injective.

Proof. By Theorem 3.9, Specg(R) is a spectral space, so since Im(ψ) is a closed

subset of the spectral space Specg(R), Im(ψ) is spectral for the induced topol-

ogy. Assume that ψ is injective. Then the bijection ψ : Cl.Specg(M) −→
Im(ψ) is continuous by [7, Theorem 3.7]. To show that ψ is also closed,

let N be a graded submodule of M . Then Y = Im(ψ) ∩ V g
R
((N :R M))

is a closed subset of Im(ψ) and ψ−1(Y ) = ψ−1(Im(ψ) ∩ V g
R
((N :R M))) =

ψ−1(Im(ψ)) ∩ ψ−1(V g
R
((N :R M))) = Cl.Specg(M) ∩ ψ−1(V g

R
((N :R M))) =

Vg((N :R M)M) = Vg(N) by [7, Theorem 3.7] and [7, Lemma 3.6(iii)]. Since

ψ : Cl.Specg(M) −→ Im(ψ) is surjective, ψ(Vg(N)) = ψ(ψ−1(Y )) = Y , a

closed subset of Y
′
. Now, we can conclude that ψ : Cl.Specg(M) −→ Im(ψ)

is a homeomorphism, whence Cl.Specg(M) is a spectral space. Conversely, if

Cl.Specg(M) is a spectral space, then Cl.Specg(M) is a a T0-space so that ψ

is injective due to [7, Theorem 4.10]. □

Theorem 6.8. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Suppose that dimg(R) = 0. The following statements are equivalent:

(i) Cl.Specg(M) is a spectral space.

(ii) ψ is injective and Im(ψ) is closed.

(iii) ψ is injective and for any q ∈ V gR(Ann(M)), we have ∩p∈Im(ψ)p ⊆ q ⇒
qM ̸=M .
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Proof. (i)⇔(ii) By Theorem 6.7.

(ii)⇔(iii) Im(ψ) is closed if and only if Im(ψ) ⊇ Cl(Im(ψ)) = V gR(∩p∈Im(ψ)p)

by Theorem 3.2. But by Theorem 4.5, Theorem 6.1, we have Im(ψ) = {p|p ∈
V gR(Ann(M)), pM ̸= M}. Therefore Im(ψ) is closed if and only if for any

q ∈ V gR(Ann(M)), we have ∩p∈Im(ψ)p ⊆ q ⇒ qM ̸=M . □

As a corollary to [7, Lemma 3.6(iii)], we have that ηg(M) ⊆ ηg∗(M) which

will be used for the next results.

Theorem 6.9. Let R be a G-graded ring and M be a g-Cl.Top R-module.

Then the quasi-Zariski topology ϱg∗(M) on Cl.Specg(M) is finer than the Zariski

topology ϱg(M). That is ϱg(M) ≤ ϱg∗(M).

Theorem 6.10. Let R be a G-graded ring and M be a g-Cl.Top R-module.

Then Cl.Specg(M) is a T0-space for both the Zariski topology and the quasi-

Zariski topology. Hence if M is a g-Cl.Top R-module, then M has an injective

natural map ψ.

Proof. Let P1, P2 ∈ Cl.Specg(M). Then by [6, Corollary 2.2(i)], Cl({P1}) =

Cl({P2}) if and only if P1 = P2. Now by the fact that a topological space

is a T0-space if and only if the closures of distinct points are distinct, we

conclude that for any g-Cl.Top R-moduleM , Cl.Specg(M) is a T0-space. Since

ϱg(M) ≤ ϱg∗(M), by Theorem 6.9, Cl.Specg(M) is a T0-space too. □

The next theorem is an important result about a graded R-module M for

which Cl.Specg(M) is a spectral topological space. The result is obtained by

combining Remark 2.1, Remark 2.3, [7, Theorem 4.10], Theorem 4.7, Theorem

4.8, Theorem 6.5, Theorem 6.6, Theorem 6.7, Theorem 6.8 and Theorem 6.10.

Theorem 6.11. Let R be a G-graded ring and M be a graded R-module. Then

Cl.Specg(M) is a spectral topological space in each of the following cases:

(i) The natural map ψ : Cl.Specg(M) → Specg(R), where R = R/Ann(M), is

surjective and one of the following conditions is satisfied:

(1) Cl.Specg(M) is a T0 space.

(2) ψ is injective.

(3)| Cl.Specpg(M) |≤ 1 for every p ∈ Specg(R).

(4) For any graded submodule N1, N2 of M , if Vg(N1) = Vg(N2), then N1 =

N2.

(5) M is a fully graded classical semiprime submodule R-module.

(6) M is a graded classical weak multiplication R-module.

(7) M is a g-Cl.Top R-module.

(8) Cl.Specg(M) =Maxclg (M).

(9) dimcl
g (M) ≤ 0.

(10) Cl.Specg(M) is homeomorphic to Specg(R) under ψ.
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38 M. Jaradat

(ii) Cl.Specg(M) is a finite space and one of the parts (1)-(10) in part (i) is

satisfied.

(iii) Im(ψ) is closed and one of the parts (1)-(10) in part (i) is satisfied.

(iv) If dimg(R) = 0 and for any q ∈ V gR(Ann(M)), we have ∩p∈Im(ψ)p ⊆ q ⇒
qM ̸=M and one of the parts (1)-(10) in part (i) is satisfied.
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