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1. INTRODUCTION

The works of generalizations of convergence of sequences were taken into
consideration in the early sixties of twentieth century. In the year 1951 the
concept of usual convergence of a real sequences was extended to statistical
convergence by H. Fast [11] and then H. Steinhaus [28] and later it was devel-
oped by many authors [1, 12, 26, 27]. Now we recall the definition of natural
density of a set A C N where N denotes the set of natural numbers. If A,
denote the set {a € A: a < n} and |4,| stands for the cardinality of A,,, the
natural density of A is then defined by

d(A) = lim|An|

n n
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if the limit exits. A real sequence {z,} is said to be statistically convergent to
¢ if for every € > 0 the set A(e) = {k € N : |z — £| > €} has natural density
zero [11, 18]. Extensions of statistical convergence to more general spaces can
be found in [20, 21, 23]. The another generalization of statistical convergence
is the concept of ideal convergence (i.e., I and I*-convergence) which depends
on the construction of ideals of subsets of N introduced by P. Kostyrko et al.
[17] in the beginning of twenty first century. I-convergence of a sequence of real
numbers coincides with the ordinary convergence if I is the ideal of all finite
subsets of natural numbers and with the statistical convergence if I is the ideal
of N of natural density zero [14, 17].

The concept of I*-convergence was introduced by P. Kostyrko et al. [17]. Sub-
sequently the concept of I and I*-convergence was extended from the real
number space to the metric spaces and to the normed linear spaces by many
authors and finally to topological spaces by B. K. Lahiri and P. Das [14] in
the year 2005. They proved that some basic properties are preserved also in a
topological space. Later many works on I-convergence were done in topological
spaces [2, 3, 4, 6].

In the year 2010, M. Macaj and M. Sleziak [19] introduced the idea of I%-
convergence in a topological space where I and K are ideals of an arbitrary set
S and showed that this type of convergence is a common generalization for all
types of I and I*-convergence in some restrictions. They also gave the idea of
AP(I, K) condition which is generalization of AP condition given in [17].

The concept of I-Cauchy condition was studied first by K. Dems [10] in 2004
and then further investigation on I*-Cauchyness was studied in [25] by A. Na-
biev et al. in 2007. In the year 2014, P. Das et al. [8] studied on I-Cauchy
functions.

The idea of probabilistic metric spaces was first introduce by Menger [22] as a
generalization of ordinary metric spaces. The notion distance has a probabilis-
tic nature which has led to do a remarkable development of the probabilistic
metric space(in short PM Space). PM Spaces have nice topological properties
and several topologies can be defined on this space and the topology that is
found to be most useful is the strong topology. The theory was brought to its
present form by Schweizer and Sklar [30] and Tardiff [34]. In the year 2009, the
concept of statistical convergence and then strong ideal convergence in proba-
bilistic metric spaces was studied in [31, 32] by C. Sencimen et al. In the year
2012, M. Mursaleen et al. studied ideal convergence in probabilistic normed
spaces [24].

The recent works of generalizations of convergence via ideals in probabilistic
metric spaces have been developed by many authors. It seems therefore rea-
sonable to think if we extend the same in the same space using double ideals
and in that case we intend to investigate how far several the basic properties
(such as results on limit points, Cauchy sequences etc.) are affected. In our
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paper we study the idea of strong I -convergence of functions in a probabilistic
metric space which also generalizes the strong I*-convergence studied in [32].
Since the convergence in PM space is very significant to probabilistic analysis,
we realize that the idea of convergence via double ideals in a PM space would
give more general frame for analysis of PM spaces.

2. PRELIMINARIES

We recall on some basic ideas related to theory of PM spaces which are
already studied in depth in the book by Schweizer and Sklar [29]. A non-
decreasing function F : R — [0, 1] with F'(—o0) = 0 and F'(c0) =1 is called a
distribution function. In particular if F' is defined on [0, o] and left continuous
on (0,00) is called a distance distribution function (d.d.f). The set of all dis-
tribution function and set of all distance distribution functions are respectively
denoted by A and AT. For any z € (—o00,00) the unit step function at x
is denoted by €, and is defined to be a function in the family of distribution

functions given by
er(s) = 0 ifs<z
T ifs>a

Definition 2.1. The distance between F and G in A is defined by

di(F,G) = inf{t € (0,1] : both (F,G;t) and (G, F;t) hold} where for ¢t €

(0,1], the condition (F,G;t) holds if F(s —t) —t < G(s) < F(s+1t)+ ¢ for
11

every s € (—,7)-

Definition 2.2. A sequence {F},},en of d.d.f’s is said to converge weakly to
a d.d.f F and if {F,,(s)}nen converges to F(s) at each continuity point s of F’
and then we write F,, — F.

In order to present the definition of a probabilistic metric space, we need
the notion of triangle function introduced by Serstnev in [33].

Definition 2.3. A triangle function 7 : At x AT — AT is a binary operation
on AT which is non-decreasing, associative, commutative in each of its variables
and has €y as the identity.

Definition 2.4. A probabilistic metric space (briefly PM space) is a triplet
(P, F,7) where P is a non-empty set, F : P x P — AT is a function, 7 is a
triangle function satisfying the following condition for all a,b,c € P

(i) F(a,a) = e

(ii) F(a,b) #egifa#b

(iii) F(a,b) = F(b,a)

(iv) F(a,c) > 7(F(a,b), F(b,c))

Henceforth we shall denote F(a,b) by Fyp and its value at s by Fgp(s).
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Theorem 2.5. Let G € A be given then for any t > 0, G(t) > 1 —t if and
only if di, (G, €0) < t

Definition 2.6. Let (P, F,7) be a PM space. For ¢t > 0 and a € P, the strong
t-neighborhood of a € P is defined by the set N, (t) = {b € P: Fu(t) > 1 —t}.

The collection R, = {N,(¢) : t > 0} is called strong neighborhood system
at a and the union N = U,epX, is said to be strong neighborhood system
of S and the strong topology is introduced by a strong neighborhood system.
Applying theorem 2.5 we can write strong ¢-neighborhood as N, (t) = {b € P :
dL(Fab7 60) < t}.

Theorem 2.7. Let (P, F,7)be a PM space. If T is continuous, then the strong
neighborhood system N satisfies (i) and (i3).

(i) If V is a strong neighborhood of p € P and q € V, then there is a strong
neighborhood W of q such that W C V.

(it) If p # q, then there is a V € N, and a W in Ny such that VW = ¢ and
thus the strong neighborhood system N determines a Hausdorff topology for P.

Definition 2.8. Let (P, F,7) be PM space. Then for any ¢ > 0, the subset
U(t) of Px P given by U(t) = {(a,b) : Fap(t) > 1—1t} is called strong-t-vicinity.

Theorem 2.9. Let (P, F,7) be PM space and T be continuous. Then for any
t > 0, there is an n > 0 such that U(n) o U(n) C U(t), where U(n) o U(n) =
{(a,c) : for some b, (a,b) and (b,c) € U(n)}

Note 2.10. Under the hypothesis of theorem 2.9 we can say that for any t > 0
there is an n > 0 such that Fo.(t) > 1 —t whenever Fyp(n) > 1 —n and
Foe(n) > 1 —n ice. from the theorem 2.5 we can say that dj(Fae,€0) < t
whenever dr,(Fap, €0) < n and dr,(Fpe, €0) < 1.

Definition 2.11. Let S be a non-empty set then a family of sets I C P(5) is
called to be an ideal if

(i)A,Bel=AuUuBel

(i) Ael,BCA=Bel

I is said to be nontrivial ideal if S ¢ T and I # {¢}. In view of condition (ii)
¢ € 1. If IS P(S) we say that I is proper ideal on S. A nontrivial ideal I is
said to be admissible if it contains all the singletons of S. A nontrivial ideal I
is said to be non-admissible if it is not admissible. The ideal of all finite subsets
of S which we shall denote by Fin(S). If S = N, set of all natural number, then
we denote Fin instead of Fin(N) for short.

Note 2.12. A filter on S is a non-empty collection of subsets of S, which is
closed under finite intersection and super sets. If I is a non-trivial on a non-
void set S then F' = F(I) ={A C S: S\ A€ I} is clearly a filter on S and
conversely. F(I) is called the associated filter with respect to ideal I.
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Note 2.13. If I is an ideal on S and M C S then we denote by I|y the trace
of the ideal I on the subset M i.e. I|py = {ANM : A€ I} and the dual filter
is F(Ily) ={GNM:Ge F(I)}.

3. STRONG I*-CONVERGENCE OF FUNCTIONS

Throughout the paper P stands for a probabilistic metric space(briefly PM
space) and we always assume that in a PM space P, the triangle function 7
is continuous and P is endowed with strong topology and I, K are non-trivial
ideals of a non empty set S unless otherwise stated. First we will give the
definition of Fin-convergence of a function in a PM space

Definition 3.1. Let (P, F,7) be a PM space. A function f : S — P is said
to be Fin-convergent to p € P if f~1(P\N,(t)) ={s € S: f(s) ¢ N,(t)} is a
finite set for every strong t-neighborhood N, (t) of p.

We use the notation Fin(S)-f = p. Now we give the definition of strong
I-convergence using functions instead of sequences in a probabilistic metric
space.

Definition 3.2. (cf.[32]) Let I be an ideal on a non-empty set S and (P, F, )
be a PM space. A function f : S — P is said to be strong I-convergent to
p € Pif

FHNG(@0) = {s € S f(s) e Np(t)} € F(I)

holds for every strong t-neighborhood N, (t) of p.

That is fHP\Np(t)) = {s € S : f(s) ¢ Np(t)} € I for every strong
t-neighborhood. We use the notation f str=1, p. If S = N we obtain the usual
definition of strong I-convergence of sequences in a PM space. In this case the

. str—1 . .
notation p, — p is used for a real sequence {p,}. Now we consider some
primary results regarding strong I-convergence for future reference.

Note 3.3. (i) If I is an ideal on an arbitrary set S and P is PM space then it
can be easily verified that strong I-limit of a function is unique.

(ii) If I, Iy are ideals on an arbitrary set S such that Iy C Iy then for each
function f : S — P, we get f streh, p implies f strob, p.

(i4i) Again if P,Q are two PM spaces and g : P — Q is a continuous mapping
and if f: S — P is strong I-convergent to p then go f is strong I-convergent

to g(p).

Since we are working with function, we modify the definition of strong I*-
convergence in PM space.

Definition 3.4. Let I be an ideal on an arbitrary set S and let f : S — P be
a function to a PM space P. The function f is called strong I*-convergent to
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p € P if there exists a set M € F(I) such that the function g : S — P given by

f f(s) ifseM
g(s){p ifs¢ M

is Fin(.S)-convergent to p.

If f is strong I*-convergent to p, then we write f st p. The usual

notion of strong I*-convergence of sequence is a special case for S = N. We
write p, stroI7, p for a real sequence {p,}. In the definition of strong I*-
convergence we simply replace the Fin by an ideal on the set S. Strong I*-
convergence as a common generalization of all types of strong I*-convergence
of sequences and functions from S to P. Here we shall work with functions
instead of sequences. One of the reasons is that using functions sometimes

helps to simplify notation.

Definition 3.5. Let K and I be an ideal on an arbitrary set S, P be a PM
space and let p be an element of P. The function f : S — P is called strong
I%_convergent to p € P if there exists a set M € F(I) such that the function
g: S — P defined by
| f(s) ifseM
9(5){ p ifs¢M

is strong K-convergent to p.

Remark 3.6. We can reformulate the definition of strong I’f-convergence in
the following way: if there exists an M € F(I) such that the function f|as is
strong K|ps-convergent to p where K|y = {ANM: A e K}.

K
If f is strong I*-convergent to p, then we write f strl7, p. As usual,
notion of IX-convergence of sequence is a special case for S = N.

Lemma 3.7. If I and K are ideals on an arbitrary set S and f : S — P is a

— K
function such that f stro K, p, then f str=17, D.

Proof. The proof is simple. Choose M = S € F(I) in Definition 3.5. O

Proposition 3.8. Let I,J, K and L be ideals on a set S such that I C J and
K C L and let P be a PM space. Then for any function f:S — P, we have

_ K _ K
(’L)f str—1 p = fstr J pand

.. str—I% str—I%
(ii)f ——p = [ ——p
K
Proof. (i) Now as f S b so there exist a set M € F(I) such that the
function g : S — P defined by
f f(s) ifseM
9(s) = { D if s ¢ M
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is strong K-convergent to p. Here M € F(I) C F(J) as I C J. So obviously

str—J%

f ——= p. (ii) The proof directly follows from the fact that K C L and the
note 3.3(it). O

Theorem 3.9. Let I,K be ideals on an arbitrary set S, P be a PM space and
let f be a function from S to P then

str—1 str—1I str—I%

ST — K . . e .
() f == p = fSpifKCL (i) f “5p = fZ—pif
ICK.
Proof. (i) Now f itr—_I—K% p, then by the definition of strong I™-convergence
there exist a set M € F'(I) such that the function g : S — P defined by

{f(s) ifseM

9(s) = p if s¢ M

is strong K-convergent to p. i.e. g7 (P\N,(t)) = f7H(P\N,(t))NM € K C 1
, for every strong t-neighborhood of p. Consequently, f~1(P \ N,(t)) € (S '\
str—1I

M)Ug H(P\N,(t)) € I [as S\ M € I]. Thus f — p.
(ii) Proof follows from the note 3.3(é4) and lemma 3.7. O

Now we give an example which is strong I®-convergence but not strong
I-convergence.

ExamMpLE 3.10. Let K and I be two ideals on non-empty set S such that
K¢ TIand I ¢ K, but KNI # ¢. Consider a set B € K\ I. Let N,(t) be
strong t-neighborhood of p € P and g € P\ N, (t). Let us define the function
f:5—Phby

f(s):{ z ifseS\B

y ifseB
Clearly, f~Y(P\ N,(t)) = B € K so f sty and by the lemma 3.7,

£ L But U PAN, () =B ¢ Tie f°% 7 p.

Note 3.11. Consider the two sets My = {2n :n € N} and My = {3n:n € N}
then 21 and 2M2 are two ideals such that 2" ¢ 2M2 and 2M2 ¢ 2Mi pot
9Mi oM £

3.1. Strong I’ and (I V K)¥-Convergence. In this part, for any two ideals
I, K on a non-empty set S, we discuss strong I*-convergence when I = K and
strong (I V K)&-convergence where I VK = {GUH : G € I,H € K} is the
new ideal containing both I and K. Then it is clear that I, K C IV K. It is
noted that if I vV K is non-trivial ideal and I, K C I V K then both I and K
are non-trivial. But following examples shows that converse part may or may
not be true always.


http://dx.doi.org/10.52547/ijmsi.17.2.273
http://ijmsi.com/article-1-1490-en.html

[ Downloaded from ijmsi.com on 2025-11-28 ]

[ DOI: 10.52547/ijmsi.17.2.273 ]

280 A. K. Banerjee, M. Paul

ExaMPLE 3.12. Consider the two sets My = {3n:n € N} and My = {3n—1:
n € N} now it is clear that 2M1 2M2 and 2M1 v 2M2 3]] ideals are non-trivial
on N.

ExaMPLE 3.13. Now let M7 be set of all odd integers and M5 be set of all even
integers. Then I = 2M1| K = 2M2 hoth are non-trivial on the whole set N but
IV K is not a non-trivial ideal on N.

If IV K is a non-trivial ideal on a non-empty set S then the dual filter of
IVKisFUIVK)={ANB:AeF(I),Be F(K)}.

Theorem 3.14. Let f: S — P be a map, I, K be ideals on the set S and P
be a PM space. Then

I
(’L)f str—1I p o f str—1I » and

1K str— K
(ii)f str—T p o f tr—(IVK)
Proof. (i) Proof of one implication follows from lemma 3.7 taking K = I.
Conversely, let f be strong I’-convergent to p then there is a set M € F(I) such
that f|as is strong I|j-convergent. So for any strong t-neighborhood N, (t) of
p there exists G € F(I) such that

TN, ))NM=GnM

Clearly GNM € F(I) and GNM C f=H(N,(t)) ie. f7EHN,(t)) € F(I) ie. f
is strong convergence to p.

(ii) Suppose that f is strong I -convergent to p. Then there is a set M € F([)
such that f|as is strong K|p-convergent. Clearly M € F(IV K), since M €
F(I). Therefore f is also strong (I V K)X-convergent to p.

Conversely, let f is strong (I V K)¥-convergent to p i.e. there is a set M €
F(IV K) such that f|y is strong K|p-convergent. Then for any strong ¢-
neighborhood N, (t) of p there exists G € F(K) such that f=1(N,(t)) N M =
GNM. Since M € F(IV K), then M = M, N M for some My € F(I) and
M, € F(K). Now we have

FTHN(0) N My D fHNG (1) N M = (G0 M) N M,y
Since GN My € F(K), this shows that f~1(N,(t)) N My € F(K|p,) ie. fis
strong I™-convergent to p. O
4. BASIC PROPERTIES OF STRONG I¥-CONVERGENCE IN PM SPACES

Theorem 4.1. Let I V K be a nontrivial ideal on an arbitrary non empty set
S and let P be a PM-space. Then a strong I -convergent function f : S — P
has unique strong I -limit.

Proof. If possible suppose that the strong I-convergent function f has two
distinct strong I*-limits say p and g. Since every PM-space is Hausdorff,
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there exists strong t-neighborhood N, (t)) and N, (t)) for (¢t > 0) such that
Ny(t) NN (1) = 6.

Now f has strong I-limit p, so there exists a set M; € F(I) such that the
function g : S — P given by

| f(s) ifse M
9(5){ p ifs¢ M

is strong K-convergent to p. So, g7 (N,(t) = {s € My : g(s) € N,(t)} U {s €
S\M < g(s) € Ny (1)} = (8\M)US (N (1)) = S\(M:\ f- LN, (1)) € F(K)
ie. My \ f7H(N,(t)) € K or M1\ Ni € K where Ny = f=1(N,(¢)).

Similarly, f has strong I-limit ¢ so there exists a set My € F(I) such that
MQ\fil(Nq(t)) € K or MQ\NQ € K where N2 = fﬁl(./\/—q(t)) So (Ml \Nl) @]
(MQ\NQ) € K. Then (MlﬂMg)ﬂ(NlﬁNg)c C (MlﬂNlc)U(MzﬂNf) e K.
Thus (MiNM2)N(N1NN2)¢ € K ie. (MinM2)\(f~ (N (0))NFTH(NG(1))) € K
i.e. Since f7H(N,(t) NN (t)) = ¢ then My N M € K i.e.

S\(Ml ﬂMg) GF(K) (41)

As My, Ms € F(I),
MlﬂMQEF(I) (42)

As I'V K is a non-trivial ideal so the dual filter F(I VK) = {ANB: A €
F(I),B € F(K)} exists. Now from 4.1 and 4.2 we get ¢ € F(I V K) which is
a contradiction. Hence the strong I*-limit is unique. (]

Theorem 4.2. If I and K both are admissible ideals and if f: S — X C P
is an injective function which is strong IS -convergent to py € P then po is a
accumulation point of X.

Proof. The function f has strong I*-limit pg, so there exists a set A € F(I)
such that the function g : S — P defined by

| f(s) ifsecA
g(S)_{pO ifs¢ A

is strong K -convergent to pg. Let N, (t) be an arbitrary strong ¢-neighborhood.
Then the set C (say)= g~ (N, (£)) = {s: g(s) € Npy ()} € F(K). So C ¢ K
i.e. the set C is an infinite set, since K is admissible ideal. Choose kg € {s :
4(5) € Ny (1)} such that g(ko) # po then g(ko) € Npo(t) N (X \ {po}). Thus po
is a accumulation point of X. ([l

Theorem 4.3. A Continuous function h : P — P always preserves strong
I -convergence.
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Proof. Let f has strong I-limit p, then 3 M € F(I) such that g : S — P
defined by
| f(s) ifseM
9ls) = { D if s¢ M

is strong K-convergent to p. Let N, (t) be a strong t-neighborhood of the point
p- Then g~ (N (1)) = (S\M)UfTH N, (1)) = S\(M\ f~HN,(1))) € F(K) ie.
str—I%

M\ f71(N,(t)) € K. Now we shall show h(f(p)) ——— h(p). So it suffices
to show that the function ¢ : S — P given by
[ (hof)(s) ifseM

g1(s) = { h(p) it s ¢ M
is strong K-convergent to h(p). Let N, (t) be a strong t-neighborhood con-
taining h(p). Since h is continuous so there exists a strong t-neighborhood
Np(t) containing p such that A(Np(t)) C Ny (t). Clearly {s : h(f(s)) ¢
Ny (1)} € {s = f(s) ¢ Np(t)} which implies that {s : f(s) € Np(t)} C
{5t ho f(s) € Nug(®} ie. S XNG(6) € (ho )" (N (£)). So M\ (ho
F) 7 Ny () € M\ f7HNG(t)). Therefore M\ (ho f) ' (Nyw)(t)) € K as
M\ f7H(N,(t)) € K. So its complement g ' (N (1)) € F(K), as required.
Hence h(f(p)) ﬂ h(p). O
Theorem 4.4. If P has no limit point then strong I-convergence implies strong
I¥ -convergence, where I and K both are admissible ideals.

Proof. Let f:S — P be a function such that f str1, p. Since P has no limit

point so N, (t) = {p} is open where N, (t) is strong ¢-neighborhood. Now we
have f~H(P\N,(t)) = {s € S: f(s) ¢ Np(t)} € I. Then M = f~1(N,(t)) =
{s € S: f(s) € N(t)} € F(I). Then there exists M € F(I) such that the
function g : S — P given by
| f(s) ifseM
9(s) = { D if s¢ M
is strong K-convergent to p. (Since for any strong ¢-neighborhood N, () con-

_ K
taining p, {s € S : g(s) ¢ Np(t)} = ¢ € K). Sof%p. O
Note 4.5. Converse of the theoremj./ may not be true. Let I and K be two
ideals on an arbitrary non-void set S. Consider a set B € K\I. Let ¢ € P\{p}
be a fixed point and consider a function f:S — P by
p ifseS\A
fo={ 1 e
q otherwise
Now if Ny, (t) is any strong t-neighborhood containing p then f~1(N,(t)) = S\ B
if ¢ & Np(t) and f=1(NL(t)) = S if ¢ € N,(t) i.e. in both case f~H(N,(t)) €
F(K). Hence strong K-lim f = p then by lemma(3.7) we get strong I -lim f =
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p. But Ny, (to) = {p} is also a strong to-neighborhood containing p, since P has
no limit point and f~1(P\N,(to)) = B ¢ I. Hence f is not strong I-convergent
to p.

4.1. Additive Property with strong I and I*-Convergence. When we
are trying to find the relationship between strong I and I*-convergence, the
following condition is important. Before giving the definition of AP(I, K)-
condition which is defined in [19], we need to state the definition of K-pseudo
intersection.

Definition 4.6. [19] Let K be an ideal on a set S. We write A Cx B whenever
A\ B € K. If A Cx B and B Cx A then we write A ~x B. Clearly
We say that a set A is K-pseudo intersection of a system {A, : n € N} if
A Ck A, holds for each n € N.

Definition 4.7. [19] Let I, K be ideals on the set S. We say that I has additive
property with respect to K or that the condition AP(/, K) holds if any one of
the following equivalent conditions holds:

(i) For every sequence (Aj,)nen of sets from I there is A € I such that 4, Cx A
for all n’s.

(ii) Any sequence (F),)nen of sets from F(I) has K-pseudo intersection in F(I).

(iii) For every sequence (A, )nen of sets from I there exists a sequence (By,)nen €
I such that A; ~x B; for j € Nand B = UjenB; € 1.

(iv) For every sequence of mutually disjoint sets (A, )neny € I there exists a
sequence (B, )nen € I such that A; ~x B; for j € Nand B = UjenB;j € 1.

(v) For every non-decreasing sequence A3 C Ay C -+ C A, - of sets from [ 3
a sequence (B )nen € I such that A; ~x Bj for j € Nand B = U,enBj € 1.

(vi) In the Boolean algebra 2°/K the ideal I corresponds to a o-directed sub-
set,i.e. every countable subset has an upper bound.

The AP(I, K)-condition is more generalization of condition AP from [7][17].

Theorem 4.8. Let I and K be two ideals on an arbitrary non-empty set S and
P be a PM space. If the condition AP(I,K) holds then strong I-convergence
implies strong I -convergence.

str—1I

Proof. Let f : S — P be a function such that f — p. Let B = {N,(¢,) : n
N} be a countable base for P at the point p. Now we have f~1(N,(t,)) € F(I )
for each n, so there exists a set A € F(I) such that A Cx f~1(N,(t,)) i
AN\ f7Y(Np(tn)) € K. Now we shall show that the function g : S — P given
by
f(s) ifseA

9(s) = { P ifs¢ A
is strong K-convergent to p. Now for N,(t,) € B ,we have g~ (N, (t,)) =
(S\AJUS (N (ta)) = S\(A\S (N (£)))- Since the set A\ F~1 (N (ta)) €
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s0 S\ (A\f71(Np(tn))) € F(K)ie. g (Ny(tn)) € F(K). Therefore g is strong
K-convergent to p i.e. f is strong I’ -convergent to p. O

5. STRONG I®-CaucHY FUNCTIONS

Now we can define in a full generality the notion of Cauchy function and
make some basic observations.

Definition 5.1. (cf [32]) Let (P, F,7) be a PM space. A function f:S — P
is called strong I-Cauchy if for any ¢ > 0 there exists an m € S such that

{s€S:f(s) ¢ Npomy(t)} €1

Lemma 5.2. Let (P, F,7) be a PM space and I be an ideal on a set S. For a
function f : S — P following are equivalent.

(i) f is strong I-Cauchy.

(ii) For any t > 0 there is m € S such that {s € S: f(s) € Ny (t)} € F(I).
(i1i) For every t > 0 there exists a set A € I such that s,m ¢ A implies
F(5) € Ny (1)

Proof. The proof is straightforward and so it is omitted. |

Note 5.3. (i) Note that in a PM space (P,F,T) every strong I-convergent
function is strong I-Cauchy.

(ii) Clearly if I, Iy are ideals on a set S such that Iy C Iy and if f : S — P
is I1-Cauchy then it is also Is-Cauchy.

Definition 5.4. Let I, K be ideals on an arbitrary set S and (P, F,T) be a
PM space. A function f : S — P is said to be strong IX-Cauchy if there is
M € F(I) such that the function f|p; is strong K |pr-Cauchy.

If K =Fin we obtain the notion of strong I*-Cauchy functions. It is rel-
atively easy to see directly from definition and note 5.3(ii) that every strong
I -convergent function is strong I-Cauchy.

Lemma 5.5. If I and K are ideals on an arbitrary set S and P be a PM space

and a function f : S — P is strong K -Cauchy then it is also strong IS -Cauchy.

Proof. If we take M = S then M € F(I). In this case K|y = K, hence f is
strong K|p;-Cauchy. This shows that f is strong I€-Cauchy. O

Lemma 5.6. Let I, J, K and L be ideals on a set S such that I C J and K C L
and let P be a PM space. Then for any function f:S — P, we have
(i)strong I -Cauchy = strong J¥ -Cauchy and (ii)strong I -Cauchy = strong
I*-Cauchy.

Proof. ()If f: S — P is strong I®-Cauchy then there is a subset M € F(I)
such that f|as is strong K|p-Cauchy. Since F(I) C F(J), we have M € F(J).
This means that f is also strong J*-Cauchy.
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(ii) As K C L implies K|y C L|p. From note 5.3(ii) we get that if f|as
is strong K|j/-Cauchy then it is also strong L|y-Cauchy i.e. f is strong I7-
Cauchy. |

Theorem 5.7. Let P be a PM space and f: S — P be a map and let I, K be
ideal on the arbitrary set S . then

(i) f is strong I-Cauchy if and only if it is strong I'-Cauchy. and

(ii) f is strong I -Cauchy if and only if it is strong (I V K)X-Cauchy.

Proof. (i) Suppose that f is strong I-Cauchy. Then by lemma 5.5 it is strong
I'-Cauchy by taking K = I.

Conversely, let f be strong I’-Cauchy. So there is a set M € F(I) such that
flar is strong I]p-Cauchy. Then for any strong t-neighborhood Ny(q)(t) of
f(q@), ¢ € S the set C(say)={p € S : f(p) € Ny(q)(t)} N M € F(I|n). So
there exists G € F(I) such that C = GN M. Clearly GNM € F(I) and
GNM C [Ny (t) and so f=H (N (8) € F(I).

(ii) Suppose that f is strong I*-Cauchy. Then there is a set M € F(I) such
that f|as is strong K|p-Cauchy. Clearly if M € F(I) then M € F(IV K).
Therefore f is also strong (I V K)%-Cauchy.

Conversely, let f be strong (I V K)¥-Cauchy. So there is a set M € F(I V K)
such that f|as is strong K|p-Cauchy. Then for any strong t-neighborhood
N (), g € S there exists G € F(K) such that f~'(Np)(t) N M =Gn M.
Since M € F(IVK), then M = MyN M, for some My € F(I) and M> € F(K).
Now we have

7 W () N My 2 7 (N () 1 M = (G0 My) 0 My

Since GN M, € F(K), this shows that =Ny (£)) N My € F(K|a) ie. fis
strong I¥-Cauchy. O

6. STRONG IE-LiMmIT POINTS

In this section, following the line of Fridy [13] and Leonetti et al. [15], we
modify the definition of strong I-limit points given in [32].

Definition 6.1. Let f : S — P be a function and I be a non-trivial ideal of S.
Then an element ¢ € P is said to be a strong I-limit point of f if there exists
a set M such that M ¢ I and the function g : S — P given by

[ f(s) ifseM
g(s)—{q ifs¢ M

is Fin(.S)-convergent to q.

In the definition of strong I -limit point we simply replace the finite ideal
by an arbitrary ideal on the set S.
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Definition 6.2. Let f : S — P be a function and I, K be two non-trivial
ideals of S. Then an element ¢ € P is said to be a strong I -limit point of f if
there exists a set M such that M ¢ I, K and the function g : S — P given by

| f(s) ifseM
g(s)—{q ifs¢ M

is strong K-convergent to gq.

We denote respectively by Ay(I) and Ay(I%) the collection of all strong I
and strong I%-limit points of f.

Theorem 6.3. If K is an admissible ideal then A¢(I) C Ap(I¥) when K C 1.

Proof. Proof is obvious. So it is omitted.
O

Theorem 6.4. If every function f : S — P has a strong I -limit point then
every infinite set QQ in P has an w-accumulation point when |S| < |Q|, where
|S| denotes the cardinality of the set S.

Proof. Consider an injective function f : S — @ C P where @ is an infinite
set. Then f has a strong I®-limit point say g. So there exists a set M such
that M ¢ I, K and the function g : S — P defined by

{f(s) ifseM

9(s) = q ifs¢ M

is strong K-convergent to ¢q. Let N,(t) be a strong t-neighborhood then
GING(D) = (S\ M) U I NG®) = S\ (M FIN0) € F(K) pe.
M\ f7HN (1) € K. So f7H(WN,(t)) ¢ K.[For if f~'(N,(t)) € K then we
get M € K, which is a contradiction.] So {s : f(s) € Ng(t)} is an infinite
set. Consequently, Ny (t) contains infinitely many elements of f in P. So Ng(t)
contains infinitely many points of Q. Thus g becomes w-accumulation point of

Q. 0

7. OPEN QQUESTION

An open question is whether I -convergence is equivalent to J-convergence,
for some ideal J = J(I, K). This would possibly open another line of research
or provide a way of re-proving the same results with old techniques.
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