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ABSTRACT. Let G be a weighted digraph, s and ¢t be two vertices of G,
and t is reachable from s. The logical s-t min-cut (LSTMC) problem
states how ¢ can be made unreachable from s by removal of some edges
of G where (a) the sum of weights of the removed edges is minimum and
(b) all outgoing edges of any vertex of G cannot be removed together. If
we ignore the second constraint, called the logical removal, the LSTMC
problem is transformed to the classic s-t min-cut problem. The logical
removal constraint applies in situations where non-logical removal is either
infeasible or undesired. Although the s-t min-cut problem is solvable in
polynomial time by the max-flow min-cut theorem, this paper shows the
LSTMC problem is NP-Hard, even if G is a DAG with an out-degree of
two. Moreover, this paper shows that the LSTMC problem cannot be
approximated within alogn in a DAG with n vertices for some constant
a. The application of the LSTMC problem is also presented in test case

generation of a computer program.
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1. INTRODUCTION

Given a weighted digraph G = (V, E), the min-cut problem states how we
can partition V' into two nonempty sets S and T in order to minimize the total
weights of the edges from S to T. The min-cut problem has a variant called
the s-t min-cut, which requires that the two special vertices s and ¢ be on
opposite sides of the cut. The value of the min-cut in a digraph is equal to
the minimum, taken over all pairs of vertices s and ¢, of the s-t min-cut [1].
The min-cut problem has lots of applications in various fields. A matching in a
graph is a set of edges, no two of which share a vertex and a maximum matching
is a matching of maximum cardinality. Matching problems occur in many
practical applications such as scheduling. We can use the min-cut approach
to find a maximum matching in an unweighted bipartite graph in polynomial
time [2]. The problem of determining the connectivity of a network arises in
the network reliability field [1]. Karger showed a connection between the min-
cut and network reliability [3]. Picard and Querayne studied the applications
of the min-cut problem in weighted graphs, including partitioning items in a
database [4]. The s-t min-cut problem can be rephrased as follows. How a
target vertex ¢ can be made unreachable from a source vertex s in a digraph G
where the sum of the weights of the removed edges is minimum. This definition
of the s-t min-cut problem is more appropriate in the context of reachability.
In some situations, in order to make the target vertex unreachable from the
source vertex, we cannot remove all outgoing edges of any vertex of G together.
If a removal of the edges of a digraph follows the latter constraint, we say the
removal is logical. The notion of the logical removal is borrowed from the
nature of the control flow graph of computer programs. The label of any edge
of the control flow graph G of a program indicates a logical expression and the
OR of the labels of all outgoing edges of any vertex of G is always True. In such
digraphs, the removal of an edge e of G is equivalent to making False the label
of e. Thus, we cannot remove all outgoing edges of any vertex of G together.
Adding the logical removal constraint to the classic s-t min-cut problem, we
call it the logical s-t min-cut or the LSTMC problem, in short.

Related Work. Minimum cut is one of the most basic problems in computer
science and has various applications in different contexts [5, 6]. The LSTMC
problem is a variant of the s-¢t min cut problem having the constraint of logical
removal. The s-t min-cut problem is dual of the s-t max-flow problem. G. B.
Dantzig is credited with development of the general max-flow problem in 1951
[7). Ford and Fulkerson [8, 9] developed the first known algorithm in 1955.
After that, new algorithms have been designed using more efficient methods
to compute the max-flow. However, up to this time, no one has studied the
max-flow/min-cut problem by considering the logical removal constraint.
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Contribution. Let G = (V, E) be a weighted DAG with n vertices, s and
t be two vertices of G, and LSTMC be an instance of the logical s-t min-
cut problem. We show LSTMC problem is NP-Hard. Moreover, we show
LSTMC problem is NP-Hard, even if G is a binary DAG. We demonstrate the
LSTMC problem cannot be approximated within alogn for some constant c.
Let OPTR be the following problem: how to remove some edges of G where
all paths starting from s pass through ¢ and the removal is both minimal and
logical [10]. We show that both problems of LSTMC and OPTR are reducible
to each other. Then, based on this reduction, we show an application of the
LSTMC problem in test case generation of a computer program.

Organization. The remaining part of the paper is organized as follows. The
next section presents the necessary concepts and notations. Section 3 shows
basic properties of the LSTMC problem. Section 4 discusses the computational
complexity of the LSTMC problem in both acyclic and binary digraphs. Sec-
tion 5 studies the inapproximability of the LSTMC problem. Section 6 provides
application of the LSTMC problem in test case generation of a computer pro-
gram. Finally, Section 7 concludes the research findings and proposes future
works.

2. PRELIMINARIES AND NOTATIONS

Let G be a digraph. We use V(G) and E(G) to denote the vertex and edge
set of G, respectively. A path on a digraph is an alternating series of vertices
and edges, beginning and ending with a vertex, in which each edge is incident
with the vertex immediately preceding it and the vertex immediately following
it. A simple path is a path in which all vertices are distinct. We denote the
outgoing and incoming edges of a vertex v of G as oe(v) and ie(v), respectively.
Let v; and v; be two vertices of G and e = (v;,v;) be an edge of G. We refer to
v; and v; as the tail and head of the edge e, respectively. Let G’ be a subgraph
of G and e be an edge of G. The edge e is called an incoming edge of G' if we
have tail(e) ¢ V(G') and head(e) € V(G’). In contrast, the edge e is called
an outgoing edge of G' if we have tail(e) € V(G') and head(e) € V(G'). Two
distinct edges e; and e; of G are called sibling if the tail of the two edges is the
same. The out-degree of G is the maximum out-degree of the vertices of G. A
digraph G is called a binary digraph if the out-degree of G is two. A digraph
G is called a binary DAG if it is acyclic and the out-degree of G is two. An
induced subgraph H of G is a subset of the vertices of G together with any
edges whose endpoints are both in this subset. If the vertex set of H is the
subset S of V(G), then H can be written as G[S] and is said to be induced
by S. Flow graph (FG) is a triple (V| E,s) where (V, E) is a digraph, s € V
is the unique source vertex of the digraph, and there is a path from s to each
vertex of G [11]. If G = (V, E) is a digraph and v; € V, then we can construct
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a flow graph with the source vertex V;, by removal of any vertex of G (and
its adjacent edges), which is not reachable from v;. The function FG(G,v;) is
used for this purpose. Hence, we have FG(G,v;) = (V' E',v;) = G[V’] such
that V' = {v € V]v € reach(v;)}. A control flow graph is the flow graph of
a computer program that associates an edge with each possible branch in the
program, and a node with sequences of statements [12]. We denote the logical
s-t min-cut problem in the underlying digraph G as the triple (G, s,t). In this
paper, by LSTMC, we refer to the generic logical s-t min-cut problem and by
LSTMC, we refer to a specific (an instance of) logical s-t min-cut problem.

Symbol Description
LSTMC Logical s-t min-cut problem
OPTR Optimal reach problem
FG Flow graph
FG(G,V;) The function converting the digraph G to a flow

graph with the source vertex v; by removal of

any vertex of G which is not reachable from v;

CFG Complete flow graph
HS Hitting set problem
DFS Depth-first-search traversal of a digraph

starting from a given vertex

ie(v)/oe(v) Incoming/Outgoing edges of the vertex v of a digraph

ie(G'Joe(G') | Incoming/Outgoing edges of the subgraph G’ of a digraph

TABLE 1. Notations.

3. PROPERTIES OF LOGICAL s-t MIN-CUT PROBLEM

Proposition 3.1. Let G = (V, E) be a digraph, s and t be two vertices of G,
and (G, s,t) be an instance of the LSTMC problem. We have that (G, s,t) can
be transformed to (G', s,t) where G' = FG(G,s) — oe(t).

Proof. Tt is clear from definition of the LSTMC problem. O

Note that the removal of all outgoing edges of ¢ is not a logical removal.
However, Proposition 3.1 states that the outgoing edges of ¢t have no effect
on the LSTMC problem. So, prior to computing the answer to the LSTMC
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problem, we can remove them safely. Proposition 3.1 also states that all non-
reachable vertices from s have no effect on the LSTMC problem. Since we can
transform any logical s-t min-cut problem (G, v;,v;) in the digraph G to the
corresponding logical s-t min-cut problem (G, s, v;) in the flow graph G; with
the source vertex s = v; such that G; = FG(G,v;), in the following, we usually
consider a flow graph instead of a digraph in studying the LSTMC problem.

Proposition 3.2. Let G = (V, E,s) be a flow graph, t be a vertex of G, and
(G, s,t) be an instance of the LSTMC problem. If there exists a vertex k in G
such that t is not reachable from k, then the LSTMC problem has an answer.

Proof. It is obvious that the LSTMC problem has an answer (not necessarily
optimal) if and only if there exists a logical removal of edges of G such that
the removal makes ¢ unreachable from s. Now, we find a simple path p from
s to k. By considering the path p as a subgraph of G, an answer to the
LSTMC problem is to remove all outgoing edges of the subgraph p. Removing
all outgoing edges of p, if we start moving from the vertex s in G, as we have
only one path to move, we finally reach the vertex k, which never reaches ¢t. As
the edges of the path p are not removed, the removal is logical. Indeed, each
removed edge has at least one un-removed sibling edge in p. O

Proposition 3.3. Let the flow graph G = (V, E, s) be acyclic, t be a vertex of
G, and (G, s,t) be an instance of the LSTMC problem. The LSTMC problem
has an answer if and only if there exists a vertex k in G such that t is not
reachable from k.

Proof. By Proposition 3.2, the if-part of the proposition holds. Now, suppose
that ¢ is reachable from every vertex of G. If we start moving from the vertex
s, then, since G is acyclic, we finally reach the vertex ¢ after passing through
at most |E| edges of G. Now, let £y C E be an arbitrary logical removal of
the edges of G. If we start moving from the vertex s in the digraph G — Ej,
then, since the removal is logical, the vertex s has at least one un-removed
outgoing edge called e;. Thus, by passing through e;, we can exit from s and
reach a vertex v; of G. As the removal is logical, the vertex v; has at least
one un-removed outgoing edge such that we can use it to exit from v; and
reach a vertex vy of G. If we repeat this scenario, we finally reach the vertex
t, which is the final vertex of G. Hence, by any logical removal of the edges of
G, we cannot make ¢ unreachable from s, implying the LSTMC problem has
no answer. (I

Note that the acyclicity condition cannot be dropped in this proposition as
the simple example in 1 shows.

Definition 3.4 (Complete Flow Graph). A quadruple G = (V, E, s, f) where
(V, E) is a digraph, s € V is the unique source vertex of G, f € V is the unique
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FIGURE 1. The vertex t is reachable from every vertex of the
flow graph G. However, since G is cyclic, we can make ¢ un-
reachable from s by removal of the edge (v,t), which is also a
logical removal. Note that the sibling edge (v, s) of the edge
(v, 1) is not removed.

final vertex of GG, there is a path from the source vertex to each vertex of G,
and there is a path from each vertex of G to the final vertex.

Corollary 3.5. Let G = (V, E, s,t) be an acyclic complete flow graph with the
source and final vertices s and t, respectively. We have the LSTMC problem
(G, s,t) has no answer, implying it is infeasible to make t unreachable from s
by a logical removal.

Proof. By Definition 3.4, we have ¢ is reachable from every vertex of G. So, by
Proposition 3.3, we have the LSTMC has no answer. O

4. COMPUTATIONAL COMPLEXITY OF LOGICAL s-t MIN-CUT PROBLEM

This section demonstrates the LSTMC problem in a weighted digraph is
NP-Hard, even if the digraph is a binary DAG. The decision problems of the
LSTMC and Hitting Set are shown in the following tables. We use the latter
problem to prove the NP-Completeness of the LSTMC problem.

Input: A weighted digraph G = (V, E), two vertices s and t of G,
and a real value w;.
Question: Can t be made unreachable from s by removal

of some edges of G such that the removal is logical and sum

of weights of the removed edges is at most wq?

TABLE 2. Decision problem of logical s-t min-cut.
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Input: A ground set {aj,as,...,an}, a collection of n subsets s;
of that ground set, and an integer k.

Question: Does there exist the subset A of the ground set such that

|A| < ki and for each i = 1...n, we have s; N A £ ()7

TABLE 3. Decision problem of hitting set (HS).

Algorithm HS2LSTMC(s1,82,.-.,8n)

LG = (V’,E’),V/ = {S,t,k},E’ = ¢
2. for each element a; of the union of the input sets do

3. V' =V'Ha;}

4. B =EU{(a,k),(a;,1)}

5. w(a;, k) =1,w(a;,t) =1 // w(e) indicates the weight of the edge e.
6. end for

7. for each s; do

8. V' =V U{s:}

9. E' = E'U{(s,8:)},w(s,s;) = 00

10. for each element a; of s; do

11. E' = E'\U{(s,aj)},w(si,a;) =0
12. end for

13.  end for

14. return G’

/*Reduction of the hitting set (HS) problem to the LSTMC problem*/

Theorem 4.1. The LSTMC problem is NP-Complete even if the underlying
digraph is acyclic.

Proof. Let G = (V, E) be a weighted DAG, s and t be two vertices of G, and
(G, s,t) be an instance of the LSTMC problem. First, we show the LSTMC
problem is NP. We can verify a given answer to the decision problem of the
LSTMC in polynomial time as follows. Let Fy C E be a given answer to be
verified. We remove every edge of F; from G and call G’ the new digraph.
If each removed edge e of G has at least one un-removed sibling edge and
the vertex t is unreachable from s in G’, then FE; is an answer, otherwise,
it is not an answer. It is obvious that this verification can be performed in
polynomial time. Also, we can check the sum of the weights of elements of F;
in polynomial time. Now, we should show the LSTMC is NP-Hard. We reduce
the hitting-set problem to the LSTMC problem. The hitting-set is a classic
NP-complete problem proved by Karp in 1972 [13]. Let S = {s1,52,...,8n}
be the given sets and {aj,as,...,a,} be the union of all the sets. Given the
number ki, the decision problem of the hitting set problem states whether
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there exists a set A with k; elements such that every element of S (every set
s; where i = 1...n) contains at least one element of A. We denote the hitting
set problem as HS(S). We construct the weighted DAG G’ from the set S
by Algorithm HS2LSTMC (see Figure 2 (a) as an example). This algorithm
considers s as the source vertex of the DAG G’. For each set s; of HS where
i = 1...n, the algorithm considers the new vertex s; and adds an edge with
infinite weight from s to each s;. Then, for each element a; of the union of the
input sets where j = 1...m, the algorithm considers the new vertex a; and
adds an edge with zero weight from each s; to any a; where a; € s; in HS.
Finally, the algorithm considers two final vertices called ¢ and k, and add two
edges from each a; where j = 1...m to the both final vertices. It is clear that
G’ can be constructed in polynomial time.

Now, we demonstrate that HS(S) has an answer with k; elements if and
only if the LSTMC problem (G, s, t) has an answer with some logically removed
edges such that the sum of the weights of the removed edges is k.

HS — LSTMC. Let A be a set with k; elements such that each element of S
(each set s; € S where i = 1...n) contains at least one element of A. We intend
to show (G’ s,t) has an answer with some logically removed edges such that
the sum of weights of the removed edges is k1. For each element a; € A where
1 < j < m, we remove the outgoing edge (a;,t) of a; from G’. This removal is
logical, as the edge (a;,t) has the un-removed sibling edge (a;, k) in G’. As the
weight of any edge (a;,t) is 1, the cost of this removal is k;. Furthermore, for
each set s; € S'in HS(S) where i = 1...n, we remove all outgoing edges of the
vertex s; from G’ except those edges, which are in the form of (s;,a,) where
ap € s;()A. This removal is also logical, as A contains at least one element
of any element of S (any s;) which is not removed from G’. Since the weight
of any edge (s;,ap,) of G’ is zero, the cost of the latter removal is zero. Now,
if we start moving from s in G’, first we reach a vertex s; where 1 < i < n.
Then, moving from s;, we reach a vertex a, where a, € A (1 < p < m), as
we have not removed any edge (s;,ap) of G’ such that a, € A. Finally, as we
have removed the outgoing edge (a,,t) of any a, where a, € A, we reach the
vertex k, which never reaches ¢, implying ¢t becomes unreachable from s. Note
that the sum of weights of the total removed edges is k1. Also, note that k is
a vertex of the digraph G’ whereas k; is the number of the elements of the set

A.

LSTMC — HS. Let the edge set E1 C E(G’) with the total weight k7 be an
answer to (G', s,t), implying the removal of F; from G’ makes ¢ unreachable
from s and the removal is logical. The answer to the LSTMC problem cannot
remove any outgoing edge of s, as the weight of any outgoing edge of s is
infinite. The answer to the LSTMC problem may remove some outgoing edges
of some s;’s such that 1 < ¢ < n. However, since the weight of every outgoing
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edge of any s; is zero, the cost of this removal is zero, too. As the removal
is logical, at least one outgoing edge of every vertex s; of G' (i = 1...n) is
not removed. We call A; the heads of the un-removed outgoing edges of every
vertex s; of G’ (i = 1...n). Hence, there are some paths from s to some a;’s
in G’(1 < j < m) such that a; € A;. The answer to the LSTMC problem
definitely removes the outgoing edge (a;,t) of any vertex a; of 41 (1 < j <m),
otherwise, we have that ¢ is reachable from s in G’, which is a contradiction.
Let E5 C E; be those removed edges of G’, which are in the form of (a;,t),
namely the removed edges of G’ with the head ¢. Note that A; is the tail set
of F5. Since the total weight of F; is k1, we have that the total weight of Es is
also k1, because the weight of any removed outgoing edge of any s; (1 < i < n)
is zero. So, the size (the number of elements) of Ay is k1. Now, we claim that
A; with the size ky is an answer to HS(S). Suppose that A; does not hit
one of the elements of S such as s; (1 <1 < n), implying that A; contains
no elements of s; in HS(S). It means that in the digraph G’, we have not
removed the outgoing edge (ap,t) of any a, (1 < p < m) where a, € s in
HS(S). Since the removal is logical, at least one outgoing edge of s; is not
removed in G’. Moreover, since A; contains no elements of s; in HS(S), the
head of any outgoing edge of the vertex s; in G’ does not belong to A;. Hence,
there exists at least one un-removed edge from s; to an a, in G' (1 < p <m)
such that the outgoing edge (a,,t) of a, is not removed in G’. Thus, there
exists the path s.s;.ap,.t in G’, implying ¢ is reachable from s in G’, which is a
contradiction. (]

EXAMPLE 4.2. Let S = {sy, 82,83} such that s; = {1,2,3}, s; = {1,4}, and
s3 = {2,5}. Figure 2 (a) shows the weighted DAG G’ of the LSTMC problem
corresponding to the hitting set problem HS(S). In this example, the set A,
namely the union of all elements of S, is A = {1,2,3,4,5}. We have |S| =3
and |A| = 5. This example shows how an arbitrary instance of the hitting set
problem can be solved by the help of a specific instance of the logical s-t min-cut
problem in a weighted DAG. If we compute an answer to (G, s,t) and consider
those removed edges of the answer which are in the form of (a;,t) called E; (1 <
j <'m), then the tail set of E is an answer to HS(.S). An answer to the LSTMC
problem is the edge set By = {(s1,2), (s1,3), (s2,4), (s3,5), (1,t),(2,t)}. So,
the tail set of the subset Fy = {(1,1), (2,t)} of the edge set F;, namely the set
{1,2}, is an answer to the HS(S).

Theorem 4.3. The LSTMC problem is NP-Complete even if the underlying
digraph is a binary DAG.

Proof. Let the weighted digraph G = (V, E) be a binary DAG, s and ¢ be two
vertices of G, and (G, s,t) be an instance of the LSTMC problem. By Theorem
4.1, we have the LSTMC problem is NP-Complete. This theorem intends
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FIGURE 2. (a) The weighted DAG G’ of the LSTMC problem
corresponding to the hitting set problem HS(S) such that S =
{51, 82,83}, s1 = {1,2,3}, s2 = {1,4}, s3 = {2,5}, n=|5| =
3, m = |A| =5, and A is the union of all elements of S. (b)
The modified instance of G’, called G”, such that the weight
of all outgoing edges of every vertex a; of A is m * n where
I<j<m

to show that the out-degree of a DAG has no effect on the computational
complexity of the logical s-t min-cut problem. The proof is the same as the
proof of Theorem 4.1, except that in the reduction of the HS(S) to the LSTMC,
we consider a new binary DAG, G”, instead of the DAG G’. In the DAG G’
constructed by Algorithm HS2LSTMC, the out-degree of s and any s; where
i=1...n (n=15]) is generally more than 2. However, the out-degree of any
a; (j =1...m) is 2 where m is the number of elements of the union of all
elements of S. Therefore, to transform G’ to a binary DAG, we should change
the structure of the outgoing edges of s and s;’s (i = 1...n). We transform the
DAG G’ to the binary DAG G” in polynomial time as follows. We demonstrate
the idea on an example with n = 4 and m = 5. The idea is easily extendable
to arbitrary values of n and m. The Figure 3 (a) shows the DAG G’ of an
instance of HS(S) with n =4 and m = 5.

We replace the outgoing edges of s with the binary DAG given in Figure 3
(b). In Figure 3 (b), as the weight of any edge of the binary DAG is infinite,
none of these edges are removed. Hence, replacing the outgoing edges of s with
the binary DAG given in Figure 3 (b) does not alter the answer to the LSTMC
problem. Also, for each vertex s; (i = 1...n) with the out-degree greater than
two, we replace the outgoing edges of s; with a binary DAG similar to the one
given in Figure 3 (c). In Figure 3 (a), as the out-degree of only the vertex s; is
greater than two, the conversion is just performed for s;. Note that two edges
(s1,a1), (y2,a1) in Figure 3 (c) are the representative of the edge (s1,a1) in
Figure 3 (a). Also, the edges (y1,a2), (y2, as) in Figure 3 (c) are the represen-
tatives of the edges (s1,as2), (s1,a3) in Figure 3 (a), respectively. Now, we claim
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that replacing the outgoing edges of s; with the binary DAG given in Figure 3
(c) does not alter the answer to the LSTMC problem. To prove this claim, we
should show that the removal of any subset of the outgoing edge set of s; in Fig-
ure 3 (a) is also feasible with the same cost in Figure 3 (¢). As a rule of thumb,
the removal of multiple outgoing edges {ej,ea...} of an s; (1 < i < n) with
the out-degree greater than 2 in Figure 3 (a) can be performed by the removal
of the representatives of {e1,es,...} in Figure 3 (c), unless the removal of the
representatives is not logical. In this special case, instead of the removal of two
outgoing edges of a vertex v in Figure 3 (c), we remove the incoming edge of v.
Hence, we have that the removal of the edge (s1,a1) in Figure 3 (a) is equiva-
lent to the removal of two edges (s1, a1) and (y2, a1) in Figure 3 ¢. The removal
of (s1,az) or (s1,a3) in Figure 3 (a) equals the removal of (y1,as) or (y2,as)
in Figure 3 (c), respectively. The removal of {(s1,a1), (s1,a2)} in Figure 3 (a)
equals the removal of {(s1,a1), (y2,a1), (y1,az2) in Figure 3 (¢). The removal
of {(s1,a2),(s1,a3)} in Figure 3 (a) equals the removal of {(y1,a2), (y2,a3)}
in Figure 3 (¢). The removal of {(s1,a1),(s1,a3)} in Figure 3 (a) equals the
removal of {(s1,a1),(y1,y2)} in Figure 3 (c). In the latter removal, we have
considered the removal of (y,y2) instead of {(y2,as3), (y2,a1)}, because the re-
moval should be logical, implying we cannot remove every outgoing edge of the
vertex yo in Figure 3 (c).

Hence, replacing the outgoing edges of s and any s; with the binary DAG’s
given in Figure 3 (b)-(c) does not alter the answer to the LSTMC problem,
implying we have (G, s,t) = (G”, s,t). Therefore, we can consider G” instead
of G’ in the proof of Theorem 4.1 and the theorem holds. This proof was
provided for n = 4 and m = 5. However, for any values of n and m, only the
height of the binary DAG’s given in Figure 3 (b)-(c) is increased polynomially.
So, the idea naturally generalizes to different values of n and m. O

Proposition 4.4. The LSTMC problem is NP-complete even if the underlying
digraph is a binary DAG and all weights are non-zero and finite.

Proof. We should show that in Theorem 4.3, the zero and infinite weights on
the edges of the digraph are not restrictive. The zero and infinite weights on the
edges of the digraph can be substituted with the natural numbers as follows.
Let N = (n*m)+1 where n = |S| and m is the number of elements of the union
of all elements of S in the HS(S). We can replace the weight 0 of the outgoing
edges of s;’s (1 < i < n) with 1, the weight 1 of the outgoing edges of a;’s
(1 < j < m) with N, and the weight oo of the outgoing edges of s with N2. We
can remove at most (n*m) outgoing edges of all s;’s, even in the binary mode.
Since the new weight of the outgoing edges of any s; is 1, the total cost of the
removal is (n*m), which is always less than N (the new weight of one outgoing
edge of any a;). It implies that any answer to the LSTMC problem does not
try to remove some outgoing edges of a;’s instead of that of s;’s, otherwise, it
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FIGURE 3. (a) The digraph G’ of the LSTMC problem cor-
responding to an instance of the hitting set problem HS(S)
with n = 4 and m = 5. (b) The conversion of the outgoing
edges of s to binary mode; (¢) The conversion of the outgoing
edges of s; to binary mode.

will not be a minimum removal, which is a contradiction. Moreover, we can
remove at most m outgoing edges of all a;’s, because the removal should be
logical. Since the new weight of the outgoing edges of any a; is IV, the total
cost of the removal is (m * N), which is always less than N2, implying any
answer to the LSTMC problem does not try to remove some outgoing edges of
s instead of that of a;’s. O

Proposition 4.5. The LSTMC problem is NP-complete in a binary DAG even
if the weights of any two sibling edges are the same.

Proof. In the DAG G’ of Theorem 4.1 and its corresponding binary DAG (refer
to Figure 3), we have that the weights of any two sibling edges are the same.
Hence, the proposition holds. O

5. INAPPROXIMABILITY OF LOGICAL s-t MIN-CUT PROBLEM

Theorem 5.1. If the underlying digraph with n vertices is a weighted DAG,
then the LSTMC problem cannot be approximated within alogn for some con-
stant o.

Proof. We modify the constructed DAG G’ from the set S by the Algorithm
HS2LSTMC in Theorem 4.1 as follows: change the weight of all outgoing edges
of every vertex a; of A to m xn where A is the union of all elements of 5,1 <
j < m, n=1|S],m = |A|. The modified digraph is called G” (See Figure 2
(b) as an example). In this case, we can easily see that HS(S) has an answer
with k; elements if and only if (G”,s,t) has an answer with some logically
removed edges where the sum of the weights of the removed edges is mnk;.
The reduction of HS to LSTMC and vice-versa is exactly the same as the
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reduction provided in Theorem 4.1. We call the hit edges, the tail set of the
edge set (a;, k) of an answer to the LSTMC problem in G”.

As hitting set problem cannot be approximated within alogn for some con-
stant « [14], we can show that the LSTMC problem cannot be approximated
within alogn for some constant «. Suppose size of the optimal solution of an
instance of the hitting set problem is B, then size of the optimal solution of
the corresponding LSTMC problem in the constructed digraph G” (Figure 2
(b)) will be mnB. If we can find a logical s-t cut in which the total number
of all hit edges is Bj, then the logical s-t cut has a weight mnB;. Assume
%ﬁl < azlog(n * m) for some constant «;. Note that size of the digraph G”
is O(n*m). Then, we have that 2 < a;log(n * m). For the hitting set prob-
lem with n sets and m = poly(n) elements, it cannot be approximated within
alogn [14]. Since m is bounded by some polynomial in n, we can see that
B < ajlog(n xm) < ayaslog(n), where as is another constant. If we choose
ay < O%, then % < alog(n) . Now, we have a contradiction, which means that
the LSTMC problem cannot be approximated within alogn for some constant
Q. O

6. APPLICATION OF LOGICAL s-t MIN-CUT PROBLEM

Suppose that G = (V, E, s) is the control flow graph of a computer program
with the source vertex s. The vertices of the control flow graph G indicate
the processing statements of the program and the edges of G indicate the
conditional or iteration statements. Let G be a binary DAG. Note that the
control flow graph of a computer program can be transformed to a semantically
equivalent binary flow graph. The main problem is to generate a set of test
cases for the program such that each statement of the program is reached by at
least one test case. In the software testing terminology, this method is called
the node coverage [12]. The common approach to generate such test cases is to
find a path p from s to each vertex t of G and then to satisfy (make True) the
label (Boolean expression) of every edge of p. It results in n Boolean equations
where n is the length of the path p. By solving these equations, a test case
for reaching the vertex ¢ is obtained. When the length of the shortest path
from s to t is increased, the number of the equations is increased, too. Thus, it
becomes more complex to satisfy all Boolean equations. Now, we propose an
alternative and better approach to reach any vertex of G.

In order to reach a vertex t from s in GG, we can make True the labels of a
set of edges (and not necessarily a sequence of the edges of a path from s to
t). Figure 4 (a) shows the acyclic control flow graph G of a computer program
with the out-degree of two.

The length of the shortest path from the source vertex s = vy to the target
vertex t = v12 in G is 4. So, to reach t from s in G by the common approach
of the shortest path, we need to make True the labels of four edges. However,
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FIGURE 4. (a) The acyclic control flow graph G of a computer
program with the out-degree of two. The goal is to guarantee
to reach the target vertex, t = v1o, from the source vertex,
s = v1, in G. The important vertices of the digraph are shaded.
The vertex t is not reachable from any vertex of the set K =
{vs,v11}. (b) Using Algorithm Condense, the induced sub-
graph G[K] of G is substituted with the new vertex, k = vg11,
and the head of any edge with the head h where h € K is
changed to k. The resulting digraph is called G’. (c) The
conversion of G’ to a complete flow graph with the final vertex
f = v13. The new vertex, v13, and the two edges, (k, f), (¢, f),
are added to G’ and the resulting graph is called G”.

we can guarantee to reach ¢ from s by making True the labels of only two
edges (v4,v9) and (vg, v12), because making True the labels of the edges (v4, v9)
and (vg,v12) is equivalent to removal of (making False the labels of) their
sibling edges namely (v4,vs) and (vg,v11). Note that the Boolean expressions
of any two sibling edges in the control flow graph of a computer program are
complement of each other. Now, in Figure 4 (a), you can observe that, by
removal of the edges (v4,vg) and (vg,v11) from G, any path starting from the
source vertex vy finally reaches the target vertex vis. Let A be the problem to
guarantee to reach the target vertex ¢t from the source vertex s of the binary
DAG G by making True the labels of the minimum number of edges. Moreover,
let F4 C E be an answer to the problem A, implying that it is guaranteed to
reach ¢ from s by making True the label of every edge of E; and there is no
answer smaller than the size of F;. If a vertex of G has only one outgoing edge,
then according to the semantic of the program, the label of that outgoing edge
is always True. As F; is a minimum answer, the set E; has no such always-true
edges, implying that any edge of F; has a distinct sibling edge in GG. As the
out-degree of G is 2, that sibling edge is unique. Hence, instead of making True
the label of an edge, ey, of F1, we can make False the label of the unique sibling
edge es of e;. It means that the problem A has an answer by making False
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Input: A weighted digraph G = (V, E') and the two vertices s and ¢ of G.
Question: How can we remove some edges of G such that, by following any
path starting from s, it is guaranteed to reach t and the removal is both

minimal and logical?

TABLE 4. Optimal reach problem (OPTR), denoted by the
triple (G, s, ).

the labels of a set of edges of G. As G indicates the flow graph of a computer
program, making False the label of an edge e of G is equivalent to the removal
of e from G. Also, according to the semantic of a computer program, we cannot
remove (make False the labels of) all outgoing edges of a vertex of G together,
implying that the removal should be logical. Therefore, the problem A can be
rephrased as the following problem called OPTR (Optimal Reach) [10].

Note that both problems of A and OPTR are equivalent. In Figure 4 (a),
as mentioned above, the answer to the problem A is to make True the labels of
the edges (v4,v9) and (vg, v12) of G. Hence, the answer to the problem OPTR
is to remove (make False the labels of) the edges (v4,vs) and (vg,v11) of G.

Up to this point, the test case generation problem has been transformed to
the problem OPTR by using the idea of minimum logical removal. However,
the goal of the problem OPT'R is to guarantee to reach the target vertex ¢ from
the source vertex s in (G, which is the opposite of making ¢ unreachable from s
(the LSTMC problem). Lemma 6.1 demonstrates that the problem OPTR can
be reduced to an LSTMC problem. This application shows a case in which,
non-logical removal of the edges of a digraph is infeasible.

Lemma 6.1. Let G = (V, E,s) be an acyclic weighted flow graph and t be a
verter of G. Also, let OPTR = (G, s,t) be an instance of the optimal reach
problem. Moreover, let K C V be the set of the vertices of G such that t is
reachable from no vertices of K. Furthermore, let Algorithm Condense(G,t)
condense all vertices of K as well as their adjacent edges in one vertex called
k and return the new flow graph G'. Finally, let LSTMC = (G',s,k) be an
instance of the LSTMC problem. We have that any answer to the LSTMC
problem (G', s, k) is an answer to the OPTR problem (G, s,t) and vice-versa.

Proof. Algorithm Condense substitutes the induced sub-graph G[K] of G with
a new vertex named k and considers the incoming edges of G[K] as the incoming
edges of k and calls G’ the new flow graph (See Figure 4 (b) as an example).
For each vertex v of G, if there exists only one incoming edge of K with the
tail v in G, then, the corresponding edge ¢’ = (tail(v), k) is added to G’ and
the weight of ¢’ is considered same as the weight of e. Otherwise, if there
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exists multiple incoming edges of K with the same tail v in G, then, although
only one corresponding edge ¢ = (tail(v), k) is added to G’, the weight of €’
is considered as the sum of weights of all incoming edges of K with the tail v
(lines 5-13). Hence, the cost of removal of any subset of the incoming edges of
K is the same in the both digraphs G and G’. As the outgoing edges of ¢ have
no effect on the reachability of ¢ from s, we also remove every outgoing edge
of t in G’ (line 3). Now, we claim that any answer to the LSTMC problem
(G', s, k) is an answer to the OPTR problem (G, s,t) and vice-versa. It means
that in order to guarantee to reach the target vertex ¢ from the source vertex s
in the DAG G it is enough to make k unreachable from s in G’ by the approach
of the minimum logical removal such that G’ = Condense(G,t).

The latter claim can be demonstrated as follows. We add a new vertex called
f to G" and two edges from k and t to f. We call G” the new flow graph (See
Figure 4 (c) as an example). Since f is reachable from any vertex of the flow
graph G”, by Definition 3.4, we have that G” is a complete flow graph with the
source and final vertices s and f, respectively. Thus, by Corollary 3.5, we have
that it is impossible to make f unreachable from s in G” by a logical removal
of the edges of G”. On the other hand, as the edges (¢, f) and (k, f) have
no siblings, they cannot be logically removed. So, by performing any logical
removal in G”, we will definitely reach either k or ¢. Hence, if we make k
unreachable from s in G’ by a logical removal of the edges of G’, then ¢ will be
reachable from s and since ¢ becomes the final vertex of G’, it is guaranteed to
reach ¢ by moving any path starting from s in G’. Conversely, if we guarantee
to reach t from s in G’ by a logical removal of the edges of G’, then, as ¢ has no
paths to k, the vertex k becomes unreachable from s. Note that the digraph
G’ is the same as G except that the vertex k in G’ is the replacement of the
induced sub-graph G[K] in G. Therefore, to make k unreachable from s in G’
by a logical removal of the edges of G’, we should guarantee to reach ¢ from s
in G’ (or G) and vice-versa. It is obvious that G’ is computable in polynomial
time in the size of G. (I

Remark 6.2. In Lemma 6.1, let By = E(G[K]). As the edges of E; have no
effect on the reachability of ¢ from s in G, we have that an answer to the OPTR
problem (G, s,t) contains no edge of E;. That is why we removed E(G[K]) in
G’ and substituted V(G[K]) with one vertex called k. Moreover, suppose that
E] C E(G@) is an answer to the LSTMC problem (G',s,k) in G'. If €] € E}
be an edge with the head k in G’, then the corresponding edges of €} in G are
the edges of G with the tail tail(e}) and the head h where h is a vertex of K.

Figure 4 (b) shows the corresponding flow graph, G’ = Condense(G,t), of
the acyclic flow graph G of a program such that s = v; and t = v1a. As
the outgoing edges of ¢t have no effect on the reachability of ¢ from s in G,
they have already been removed from the figure. The set K = {vg,v11} is
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the set of vertices of G such that ¢ is reachable from no vertices of K. Using
Algorithm Condense, the induced sub-graph G[K] of G is substituted with the
new vertex, k = vgy; and the head of any edge with the head h where h € K is
changed to k. By Lemma 6.1, an answer to the LSTMC problem (G’, s, k) by
a logical removal of the edges of G’ is also an answer to the OPTR problem
(G, s,t). An answer to the LSTMC problem (G’, s, k) is to remove the edge set
E{ = {(v4,v811), (vg,v811)}. Hence, in order to guarantee to reach the target
vertex ¢t = vy from the source vertex s = v; in G’ by a logical removal, it is
enough to remove the edge set F{. The corresponding edges of F/ in G are the
edge set By = {(v4,vs), (v9,v11)}. Therefore, an answer to the OPT R problem
(G, s,t) is to remove the edge set Ey from G.

Algorithm Condense (G,t) // G = (V,E,s)

1. K={v eVt ¢reach(v)}

2. EK ={e € E| 3 v1,v2 € K where head(e) = vy and tail(e) = va)}
3. G'=(V',E',s),V =V -K E =F—EK — oe(t)

4. V' =V'Jk

5 for each incoming edge e of the induced subgraph G[K] do
6. e’ = (tail(e), k)

7. if (¢/ ¢ E') then

8 E' =FE'|{e'}

9. w(e’) =w(e) // w(e) indicates the weight of e.

10. else
11. w(e') =w(e) +w(e)
12. end if

13. end for

14. return G’

/*Let G = (V, E, s) be an acyclic weighted flow graph and ¢ be a vertex of G.
Let K C V be the set of vertices of G such that ¢ is reachable from no vertices
of K. This algorithm condenses all vertices of K as well as their adjacent edges
in one vertex called k and returns the new flow graph G’. Also, the outgoing

edges of ¢ are removed in G'.*/

Remark 6.3. In Lemma 6.1, we demonstrated that the OPT R problem is re-
ducible to the LSTMC problem. By a similar proof, we can show that the
LSTMC problem is reducible to the OPTR problem, too. The proof stems
from this fact that the roles of the vertices of ¢ and k can be transformed to
each other. In other words, in order to guarantee to reach the target vertex
t from the source vertex s in the underlying DAG G by a minimum logi-
cal removal, we should guarantee not to reach the vertex k in the digraph
G’ = Condense(G,t). In contrast, to guarantee not to reach ¢ from s in G
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by a minimum logical removal, we should guarantee to reach the vertex k in
G’ = Condense(G,t).

Conjecture 6.4. The LSTMC problem is NP-Complete and it cannot be approx-
imated within alogn even if the underlying digraph is an unweighted binary
DAG.

This section showed why the LSTMC approach is superior to the current ap-
proaches, such as shortest path, in the context of program test case generation.
As previously mentioned, in order to generate a test case to reach the target
vertex in the flow graph of Figure 4, we need to satisfy 4 edges in the com-
mon approach of the shortest path but 2 edges in the OPTR (or, equivalently
LSTMC) approach. It implies that in order to find the test case, we have to
solve 4 Boolean equations in the shortest path approach but 2 equations in the
LSTMC approach. When the size of the underlying digraph becomes bigger,
the shortest path approach needs to solve more Boolean equations, implying it
becomes more difficult to find an input to satisfy all Boolean expressions. In
this state, the LSTMC approach can be used to find a test case easily comparing
to the shortest path approach.

7. CONCLUSION AND FUTURE WORKS

The logical removal constraint applies in situations where non-logical re-
moval is either infeasible or undesired. We introduced the Logical s-t Min-Cut
(LSTMC) problem as a cut problem having both constraints of the minimal
and logical removal. We presented the basic properties as well as the applica-
tion of the LSTMC problem. We showed why the LSTMC approach is superior
to the current approaches in the context of program test case generation. Al-
though the s-t min-cut problem is solvable polynomially in any digraph, we
showed that the LSTMC problem is NP-Hard, even if the underlying digraph
is acyclic with an out-degree of two. Moreover, we showed that the LSTMC
problem cannot be approximated within alogn in a DAG with n vertices for
some constant a. Given the results presented in this research paper, new areas
for further works are identified, including:

e To show whether or not the LSTMC problem is NP-Hard in unweighted
DAG’s, and especially in unweighted binary DAG’s.

e Assuming the LSTMC problem is NP-Hard in unweighted DAG’s, is it
also inapproximable? What about unweighted binary DAG’s?

e To provide a necessary and sufficient condition for verifying the exis-
tence of an answer to the LSTMC problem in cyclic flow graphs.
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