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ABSTRACT. In this paper, we define (1, ¢)-Contraction Type T-coupling,
establish a theorem satisfying such contraction condition, and prove the
existence and uniqueness of coupled coincidence and coupled common
fixed points in metric space. Here 1 and ¢ are two altering distance
functions and T is a SCC-Map for metric spaces. Our results extend
and generalize several related results in the existing literature. We also

provided two examples to verify our main results.
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1. INTRODUCTION

The theoretical framework of metric fixed point theory has been an active
research field and the contraction principle is one the most important theorems
in functional analysis. The contraction principle introduced by Banach [2] has
wide range of applications in a fixed point theory. The family of contractive
mappings in different spaces is a great interest and has already been studied
extensively in the existing literatures(see [10, 11, 18, 22, 23]).
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The concept of coupled fixed point and the study of coupled fixed point
problems appeared for the first time in some papers of [15, 16, 17]. Bhaskar
and Lakshmikantham [3] introduced the concept of coupled fixed point of map-
ping. Lakshmikantham and Ciric [14] also introduced the concept of coupled
coincidence point. The concept of coupling was introduced by [8, 9]. The
results on existence of coupled fixed point and coupled coincidence points ap-
peared in many papers [1, 4, 5, 6, 8, 9, 10, 20, 21]. They proved the existence
and uniqueness of strong coupled fixed point for couplings using Kannan type
contractions for complete metric spaces.

Choudhury et al. [9] posed an open problem regarding the investigation of
fixed point and related properties for couplings satisfying other type of inequal-
ities. Aydi et al. [1] proved the existence and uniqueness of strong coupled fixed
point for (3, ¢)-contraction type coupling in complete partial metric spaces.
Rashid and Khan [20] attempted to answer this open problem by introducing
SCC-Map and ¢-contraction type T-coupling and generalize ¢-contraction type
coupling given by Aydi et al. [1] to ¢-contraction type T-coupling and proved
the existence theorem of coupled coincidence point for metric spaces which are
not complete.

In this paper, we generalize the works of Rashid and Khan [20] by defining a
new contractive type namely (¢, ¢)-Contraction Type T-coupling and establish
a theorem satisfying such contraction condition, and prove the existence and
uniqueness of coupled coincidence and coupled common fixed points in metric
space. Our results extend and generalize several related results in the existing
literature. We also provided two examples to verify our main results.

2. PRELIMINARIES

In this section, we need to recall some basic definitions, lemmas, and neces-
sary results from existing literature.

Definition 2.1. A sequence {z,} in a metric space (X, d) is said to converge
to a point z € X if and only if lim d(z,,z) = 0.
n—oo

Definition 2.2. A sequence {z,} in a metric space (X, d) is called a Cauchy

sequence if lim d(zp, %) = 0. Furthermore, a metric space (X, d) is called
7,1Mm— 00

complete if every Cauchy sequence {z,,} in (X, d) converges to a point z € X.
Lemma 2.3. Let (X, d) be a metric space. we have

(1) If d(z,y) = 0, then x = y.
(2) If © # y, then d(z,y) > 0.

Lemma 2.4. Let {z,} and {y,} be sequences such that x, — = and y, — y
as n — oo in a metric space (X,d). If d(xn,yn) — 0 as n — oo, then © = y.
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Definition 2.5. [9] Let (X, d) be a metric space A and B be two nonempty
subsets of X. Then a function F': X x X — X is said to be a coupling with
respect to A and B if F'(z,y) € B and F(y,x) € A where v € A and y € B.

Definition 2.6. [3] Let X be a nonempty set. An element (z,y) € X x X is
called a coupled fixed point of the mapping F' : X x X — X if F(z,y) = x and

F(y,z) =y.

Definition 2.7. [6] An element (x,y) € X x X where X is any nonempty set,
is called a strong coupled fixed point of the mapping F': X x X — X if (z,y)
is the coupled fixed point and x = y that is, F(x,z) = x.

Definition 2.8. [9] Let A and B be two nonempty subsets of a complete metric
space (X, d). A coupling F': X x X — X is called a Banach type coupling with
respect to A and B if it satisfies the following inequality:

d(F(z,y), F(u,v)) < 5ld(z,u) +d(y,v)]

>3
where z,v € A,y,u € B, and k € [0, 1).

Theorem 2.9. [9] Let A and B be two nonempty closed subsets of a complete
metric space (X,d). Let F': X x X — X be Banach type coupling with respect
to A and B. Then ANB # () and F has a unique strong coupled fized point in
ANB.

Definition 2.10. [13] Let A and B be two nonempty subsets of a given set
X. Any function T : X — X is said to be cyclic (with respect to A and B) if
T(A) C B and T(B) C A.

Definition 2.11. [20] Let A and B be two nonempty subsets of a given set X.
Any function T': X — X is said to be self-cyclic (with respect to A and B) if
T(A) C Aand T(B) C B.

Definition 2.12. [14] An element (z,y) € X x X is called a coupled coincidence
point of the mappings F': X x X - X and g : X — X if F(z,y) = g(z) and

F(y,x) = g(y).

Definition 2.13. [14] An element (x,y) € X x X, where X is any nonempty
set, is called a coupled common fixed point of the mappings F': X x X — X
and and g: X — X if F(z,y) = g(z) =z and F(y,z) = g(y) = .

Definition 2.14. [6] An element (x,y) € X x X where X is any nonempty set,
is called a strong coupled common fixed point of the mappings F': X x X — X
and g: X — X if z = y. That is, F(z,z) = g(z) = .

Definition 2.15. [20] An element (z,y) € X x X is called a strong coupled
coincidence point of the mappings F': X x X - X andg: X —» X ifx = y.
That is, F(z,z) = g(z).
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Definition 2.16. [12] A function ¢ : [0,00) — [0,00) is called an altering
distance function, if the following properties are satisfied:

(i) 9 is monotonically non-deceasing and continuous.

(ii) 9(t) =0 if and only if t = 0.

Definition 2.17. [20] Let A and B be any two nonempty subsets of a metric
space (X,d) and T : X — X be a selfmap on X. Then T is said to be
SCC-Map with respect to A and B), if

(i) T(A) C Aand T(B) C B,

(ii) T(A) and T'(B) are closed in X.
Definition 2.18. [20] Let A and B be two nonempty subsets of a metric
space (X,d) and 1, ¢ are two altering distance functions. Then a coupling

F: X x X — X is said to be (¢, ¢)-contraction type coupling with respect to
A and B if it satisfies the following inequality:

Y(d(F (2, y), F(u,v))) < Y(maz{d(z,u),d(y,v)}) — p(maz{d(x,u),d(y,v)})
for any z,v € A and y,u € B.
Theorem 2.19. [20] Let A and B be two nonempty closed subsets of a complete
metric space (X,d) and F : X x X — X is a (¢, ¢)-contraction type coupling

(with respect to A and B). That is, there exist altering distance functions 1,
¢ such that

Y(d(F(2,y), F(u,v))) < (maz{d(z,u),d(y,v)}) — ¢(maz{d(z,u),d(y,v)})
for any x,v € A and y,u € B. Then

(i) ANB #0.

(ii) F has a unique strong coupled fized point in AN B.

Definition 2.20. [14] Let X be nonempty. The mappings F : X x X — X
and g : X — X are called weakly compatible if g(F(z,y)) = F(gz,gy) and
9(F(y,x)) = F(gy, gx) whenever gz = F(z,y) and gy = F(y, z).

3. MAIN RESULTS

Before presenting and proving the main theorem, we introduce the following
definition.

Definition 3.1. Let A and B be two nonempty subsets of a metric space
(X,d) and T : X — X is a SCC-Map on X (with respect to A and B). Then
a coupling F': X x X — X is said to be (1, ¢)-contraction type T-coupling
(with respect to A and B) if there exist altering distance functions v, ¢ such
that

Y(d(F(z,y), F(u,v))) <p(maz{d(Tz, Tu),d(Ty,Tv)})—
¢p(max{d(Tz,Tu),d(Ty,Tv)}) (3.1)
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for any z,v € A and y,u € B.

Theorem 3.2. Let A and B be any two nonempty closed subsets of a complete
metric space (X,d), T : X — X is a SCC-Map on X (with respect to A and
B), and a coupling F: X x X — X be (¢, ¢)-contraction type T-coupling (with
respect to A and B), then

(i) T(A)NT(B) # 0.

(i) F and T have a coupled coincidence point in A x B.
(iii) If F and T are weakly compatible, then F' and T have a unique coupled

common fized point in A X B.

Proof. Since A and B are non-empty subsets of X and F is (¢, ¢)-contraction
type-T coupling with respect to A and B, then for zp € A and yy € B, we
define the sequence {z,} and {y,} in A and B respectively such that

Tx,i1 = F(ynyxn) and Tyn+1 = F(xnayn) (32)

If for some n, Txp+1 = Ty, and Typ4+1 = Txy, then using (3.2), we have
Tz, = Tyny1 = F(zn,yn) and Ty, = Txpy1 = F(yn, ). This show that
(Zn,Yn) is a coupled coincidence point of F' and T. So, we are done in this
case. Thus we assume that Tz,, # Typ41 or Ty, # Txp4q for all n > 0.

Let us define a sequence {D,,} by

D,, = maz{d(Txns+1,TYn), d(Tyn+1,Txn)}. (3.3)
Then by lemma 2.3, we have {D,,} C [0, 00) for all n € N. Now using (3.1) and
(3.2) and the fact that x,, € A and y,, € B for all n, we have
Y(A(Tzn, Tyns1)) = YAF(Yn-1,Tn-1), F(Tn,yn))]
w[d F($n7yn)7 F(y’ﬂ717xn71))]
< Ymax{d(Txn, Tyn—1), d(Tyn, Txpn_1)} —
dlmaz{d(Txn, Tyn-1), d(Tyn, Txn_1)}. (3.4)

—~~

Using the properties of ¢, we have
Y(d(Tzp, Tyntr)) < Y(maa{d(Ten, Tyn—1), d(Tyn, Txn-1)}).
Again using the properties of 1, we get
d(Txp, Tynt1) < max{d(Txn, Tyn—1), d(Tyn, Txpn_1)}. (3.5)

Now, using (3.1) and (3.2) and the fact that x,, € A and y,, € B for all n, we
have

’lp(d(Tyan‘rnJrl)) 1/)[d(};‘(xnfl,ynfl)vF‘(ynvl'n))]
< Ymax{d(Tzp-1,Tyn),d(Tyn—1,Txn)}] —

olmaz{d(Txpn_1,Tyn), d(Tyn—1,Tzn)}. (3.6)
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Now, using the properties of ¢y and ¢, we get
d(TYn, Txns1) < max{d(Txn-1,Tyn), d(Tyn—1,Tx,)}. (3.7)

By using (3.5) and (3.7), we get
ma-r{d(Tynv Txn+1)7 d(Tyn-i-la Txn)} < max{d(Tmn, Tyn—l)a d(Tyna Txn—l)}-
That is,

max{d(Txn+1,TYn), d(TYn+1, Txn)} < max{d(Txn, Tyn—1), d(TYn, TTn_1)}.
(3.8)

From (3.3) and (3.8), we have D,, < D,,_; for all n > 1.

Therefore, {D,,} is monotonically decreasing sequence of non-negative real

numbers.

There exists r > 0 such that nh_}rr;o D,, = r. That is,

ILm {d(Txns1, TYn), d(Typs1, Txn)} =1 (3.9)

Suppose r > 0.

Since v : [0, 00) — [0, 00) is non-decreasing, then for all a,b € [0,0), we have
maz{y(a), ¥(b)} = p(mazfa,b}). (3.10)

Now, using (3.4), (3.8), and (3.10), we get

Ymaz{d(Txn, TYn+1), d(Tyn, Txnt1)}] = maz{d(Tzn,Tyn+1),d(TYn, TTn+1)}]

< Ymaz{d(Tzn, Tyn-1),d(Tyn, Trn-1)}] —
Blmaz{d(Tan, Tyn-1), d(Tym, T 1)}].
Letting n — oo in the above inequality, using (3.9) and continuities of ¥ and

¢, we have () < (r) —¢(r) < 9 (r) which is a contradiction. Hence ¢(r) =0
since ¢ is an altering distance function. So r = 0. Hence,

lim D, = 0.
n—oo
That is,
lim maz{d(Txn, Tyn+1), d(Tyn, Txn+1)} = 0.
n—oo
Thus
lim d(T%p, Tynt+1) =0 and lim d(Tyn, Txpy1) = 0. (3.11)
n— oo n—00

Now, we define a sequence {R,} by R, = d(Tx,,Ty,) and show that R,, — 0
as n — o0o. By using (3.1) and (3.2), we get

(Rn) = P(d(Tn, Tyn))
w(d(F(yn—laIn—l)aF(gjn—layn—l))

< Y(maz({d(Tyn-1,Tzn-1)})) — d(maz({d(Tyn-1, Txn-1)})).
(3.12)
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By properties of ¢ and ¢, we have R, < d(Txp—1,Tyn—1) = Rn—1. That is,
R, < R, for all n > 1. Thus, {R,} is monotone decreasing sequence of
non-negative real numbers which implies that there exists s > 0 such that

lim R, = lim d(Tz,,Ty,) = s. (3.13)
n— 00

n— oo

Taking n — oo in (3.12) and using continuities of ¥ and ¢, we have ¥(s) <
P(s) — &(s) < (s). Since ¢ is an altering distance function, it follows that
¢(s) = 0 which in turn implies that s = 0. That is,

lim R, = lim d(Tx,,Ty,) = 0. (3.14)
n—oo

n—o0

Now, applying the triangle inequality and using (3.11) and (3.14), we have
lim d(Txp, Txpny1) < lim d(Txn, Ty,) + lim d(Tyn, Txny1) =0  (3.15)
n— oo n—0o00

n—oo

and
ILm A(Tyn, Tynt1) < le d(Tyn, Tx,) + le d(TZp, Tyns+1) =0. (3.16)

Now, we will prove that the sequences {T'z,, } and {T'y,} are Cauchy sequences
in T(A) and T'(B) respectively. If possible, let {Tz,,} or {Ty,} is not a Cauchy
sequence. Then there exist € > 0 and a sequence of positive integer {m(k)}
and {n(k)} such that for all positive integers k, with n(k) > m(k) > k, we have

gr. = maz{d(TT iy TTrk)), AT Ym(k)y, TYn(k))} = €. (3.17)
Furthermore, corresponding to my, we can choose ny such that k is the smallest
positive integer with n(k) > m(k) > k and satisfying (3.17), then

maz{d(Tz 1y, TTrnk)-1), AT Ymk)s TYnk)—1)} < €. (3.18)
Now, we show that:

A(TYn k), TTmky+1) < max{d(Txp ), TYn)—1)s ATYmk)y, TTne)—1)}-
By using (3.1) and (3.2), we get

VAT Ynys TTmry+1)] = CAF (@n)—1> Ynk)—1)s F Gmk)» Tme)))]

IN

plmaz{d(Txyk)—1, TYmk))> AT Ynk)—1> T L)) }-
Using properties of ¢ and ¢, we have

ATYnky, TTmk)+1) < maz{d(TTniy—1, TYmkx))» ATYn)—1, TTm)) }-
(3.19)
Similarly, we can show by the same steps that

ATy TYmky+1) < max{d(TYny—1,TTmi))s AT Ty —1, TYmi)) }-
(3.20)
From (3.19) and (3.20), we have

max{d(Tyn(k)v Txm(k)-l-l)a d<Tmn(k)v Tym(k)—i—l)} <A (321)

Ymaz{d(Txp)—1, TYmk))> AT Yn)y—1, TTm)) ] —
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where A = max{d(T%p k) TYn(k)=1)> AT Ym(ky> TTn(r)—1)}-
It is a fact that for nonnegative real numbers a, b, c,
maz{a+ ¢,b+ ¢} = ¢+ max{a,b}.
Therefore, by the triangle inequality on (3.18) and the above fact, we have
A= mar{d(TZm), TYnk)—1) AT Ym)s TTnk)—1)}
< mam{d(Txm(k)v Txn(k)—l) + d(Txn(k)—la Tyn(k)—l)a d(Tym(k)v Tyn(k)—l) +
ATYnk)y—1, TTn(ry—1)}
= d(Txn(k)—lv Tyn(k)—l) + max{d(Tmm(k)v Tmn(k)—l)v d(Tym(k)7 Tyn(k)—l)}

< d(Trpy—1,TYnk)—1) + € (3.22)

Thus from (3.21) and (3.22), we get

maz{d(TYn iy, TTmk)+1), AT Tn k), TYmy+1)} < AT ney—1, TYniry—1) + €

(3.23)
Now again by the triangle inequality, we have
A(Txpy, Tmiy) < ATTpy TYnr)) + A TYniys TTmr)+1) +
d(T2mk)+1> TTm(k)) (3.24)
ATYnky, Tymry)) < d(Ty, k),Tdfn(k)) + d(T Ty TYm(r)+1) +
AT Ymk)+1: TYm(x))- (3.25)

From (3.17), (3.23), (3.24), and (3.25), we get

e<gr = max{d(TTni), TTmm)) ATYnk), TYmk))}

< d(Taner), Tyneey) + maz{d(Temeey, TEmr) +1), ATYme)s TYmry 1)} +
maz{d(TYnk), TTmk)+1)s AT Tnky, TYmr)+1) }
A(Tn k), TYncry) + maz{d(TTm @y, TTmk)+1) AT Ymk), TYmk)+1) F +
A(Txpey—1, TYnk)—1) + €. (3.26)
Taking k& — oo in (3.26) and using (3.14), (3.15), (3.16), and (3.17), we have
€ < €, which is a contradiction.
Hence {T'x,,} and {Ty,} are Cauchy sequences in T'(A) and T'(B) respectively.
Since T'(A) and T(B) are closed subset of a complete metric space X, {Tz,}

and {T'y,} are convergent in T'(A) and T'(B) respectively.
Thus, there exist r € T(A) and s € T'(B) such that

A

Tz, —rand Ty, — s as n — oo. (3.27)
From (3.14), we have

d(Txp, Ty,) — 0 as n — oo. (3.28)
Therefore, from (3.27) and (3.28), we have
s=r. (3.29)
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Asr e T(A) and s € T(B), it follows that s =r € T(A) NT(B).
This proves part (i) i.e., T(A) NT(B) # 0.
Now, since r € T(A) and s € T(B), there exist a € A and b € B such that
r=T(a) and s = T(b).
From (3.27) and (3.29), we have

Tz, — T(a), Ty, — T(b) (3.30)
T(a) =T(b). (3.31)

Now, by (3.1), (3.2), (3.30), and (3.31) and the triangle inequality, we have
d(r, F(a,b)) < d(r,Tyn+1) + d(Tyn+1, F(a,b)).
Letting n — oo, we get
d(r,F(a,b)) < Jim d(Tyn+1, F(a,b)).

It follows that

Yl Flab) < lm 9(d(Fan pn), Fa,b)
< T}LH;Ow(max{d(Tmea),d(Tym (b))})*

—  Y(maz{d(r,T(a), d(s, T(5))}) -
o(maz{d(r, T(a)), d(s, T(b))})

< $(maz{d(r,T(a)),d(s, T(b))}).

Similarly, v(d(s, F(b,a))) < v(maz{d(s, T(b)), d(r. T(a))}).

Since

Y(max{d(r, F(a,b)),d(s, F(b,a))} = max{y(d(r, F(a,b))),¢(d(s, F(b,a)))}
'@[J(ma’x{d(s’ T(b)), d(?”, T(a))}) =0,

IA

we have
max{d(r, F(a,b)),d(s, F(b,a))} = 0.

So, F(a,b) =r and F(b,a) = s

Hence, F(a,b) = T(a) =r and F(b,a) = T'(b) = s.

Therefore, (a,b) € A x B is the coupled coincidence point, and (T'(a),T(b)) is
the coupled point of coincidence of F' and T'.

Now, we will show that the coupled point of coincidence of F and T is unique.
Let (a’,b") be another coupled coincidence point of F and T.

So, we will prove that T'(a) = T'(a’) and T'(b) = T'(V'). The proof is as follows.
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Suppose T'(a) # T(a’). Using (3.1)
(

(d(T(a),T(a") = ¢(d(F(a,b),F(d,1)))
< Y(maz{d(T(a), T(a)),d(T(b), T(V))}) —
¢(maz{d(T(a), T(a")),d(T(b), T('))})
= Y(max{d(T(a),T(a")),d(T(a),T(a’))}) —
¢(maz{d(T(a),T(a’)),d(T(a),T(a’))})
(

= P(d(T(a),T(a"))) = $(d(T(a), T(a")))
< P(d(T(a), T(a"))).

So that ¢(d(T(a),T(a’))) = 0 (since ¢ is an altering distance function) which
in turn implies that d(T'(a),T(a")) = 0. Hence T'(a) = T'(a’). Similarly, we can
show that T'(b) = T'('). Hence, the coupled point of coincidence of F and T is
unique.

Using (3.31), we have T'(a) = T'(b).

Thus, (T'(a),T(a)) is the unique coupled point of coincidence of the mapping
F and T with respect to A and B. Now, we show that F' and T have unique
coupled common fixed point. For this let T'(a) = z, then, we have z = T'(a) =
F(a, a) by the weakly compatibility of F' and T', we have

Tz=T(T(a)) =T(F(a,a)) = F(T(a),T(a)) = F(z, 2).

Thus, (T(z),T(2)) is coupled point of coincidence of F' and T
By the uniqueness of coupled point of coincidence of F' and T', we have T'(z) =

T(a).
Thus, we obtain z = T(z) = F(z, 2).
Therefore, (z, z) is the unique coupled common fixed point of F' and T. O

Remark 3.3. If we take T' = I (the identity map) and A and B be any two
non-empty closed subsets of a complete metric space, then Theorem 3.2 will
reduce to Theorem 2.19 of Rashid and Khan [20].

The following are examples which support our main result.

EXAMPLE 3.4. Let X = [0,5] with a metric d defined on X by
d(z,y) = o = yl.

Let A= {1} and B = {1,2}. Then A and B are closed subsets of X.

We define F: X x X — X by F(z,y) = min{z,y}, for all x,y € X.
Let T : X — X be defined by

1 ifo<z<?2
T(x) = nE= .
2 if2<z <5

Also, we define v, ¢ : [0,00) — [0,00) by ¢(t) = t? and ¥ (t) = t3.
Then clearly v and ¢ are altering distances functions.
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First, we show that T is a SCC-map.

T(A) ={1} and T(B) = {1, 2}.

So, T(A) and T(B) are closed subsets of a complete metric space X = [0, 5].
Hence T': X — X is a SCC-Map.

Second, we show that F' is T-coupling with respect to A and B. For all x € A
and y € B, we have F(z,y) =1 € B and F(y,z) =1 € A which show that F’
is T-coupling with respect to A and B.

Third, we prove that F is (¢, ¢)-Contraction type T-Coupling w.r.t. A and B.
Let x,v € A and y,u € B ie.,x =1 and y = 1,2. Four cases will arise for y

and u.

Case (i): = =landy=u=1.
Case (ii): z fl and y = 1,u=2.
Case (iii): = :vzlandy:lu:l.

Case (iv: c=v=1and y = u=2.

For case (i), i.e., z =v =1 and y = u = 1, we have F(z,y) = F(1,1) = 1,
F(u,v) = F(l,l) =1,T(x)=Ty) =Tw) =TW) =T(1) =1, d(1,1) =0,
and
0 =9(d(F(z,y), F(u,v)) < ¢(maz{d(T(x),T(u)),d(T(y), T(v))}) -
p(maz{d(T(x), T(w)),d(T(y),T(v))})
= ¢(maz{0,0}) — ¢(maz{0,0})
= 9%(0) — ¢(0) =0,

which proves case (i).

For case (ii), i.e, z =v=1and y = 1,u =2, we have F(z,y) = F(1,1) =1,
Fu,v) =F(2,1)=1,T(z) =T(y) =T(v) =T(1) =1,

T(u) =T(2) = 2,d(1,1) = 0, d(1,2) = 1, and

0 =9(d(F(z,y), F(u,v))) < ¢(maz{d(T(x),T(u)),d(T(y), T(v))}) -
T T

b
)

p(maz{d(T (x), T (u)),d(T(y),T(v))})
= ¢(maz{l,0}) — ¢(maz{1,0})
= (1) —¢(1) =0,

which proves case (ii).

For case (iii),i.e.,z=v=1and y =2,u =1, we have F(z,y) = F(1,2) =1,
Flu,v9)=F(1,1)=1,T(z) =T(u)=Tw) =1,T(y) =T(2) = 2,d(1,1) =0,
d(2,1) =1, and

0=v(d(F(z,y), F(u,v)) < ¢(maz{d(T(x),T(u)),dT(y),T(v))}) -
¢(maz{d(T(x), T(u)),d(T(y), T(v))})
= Y(maxz{0,1}) — ¢(max{0,1})
= ¢(1)=9¢(1) =0,
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which proves case (iii).
For case (iv), i.e., x =v=1and y = u = 2, we have
F(z,y)=F(1,2) =1, F(u,v) = F(2,1) = 1,T(z) =T(v) = 1,
T(y)=T(u)=T(2)=2,d(1,1) =0,d(1,2) = d(2,1) =1, and
Y(d(F(z,y), F(u,v))) < d(maz{d(T(z),T(u)),d(T(y), T(v))}) -
¢(maz{d(T(z),T(u)),d(T(y), T
max{1,1}) — ¢(max{1,1})

=
SIS
IA A
< <

which proves case (iv).

From the cases (i) to (iv) F' and T satisfy all the conditions of Theorem 3.2.
Thus F' and T have a strong coupled fixed points in AN B.

Clearly T(A)NT(B) = {1} # 0.

1 is the unique strong coupled coincidence point and (1, 1) is the unique coupled
common fixed point of F and T in AN B as T(1) = F(1,1) = min{1,1} = 1.

ExXAMPLE 3.5. Let X = [—1,1] with a metric d given by
d(z,y) = [z —y|

for all z,y € X. Then (X, d) is a complete metric space.

Let A =[-1,0] and B = [0,1]. Then AN B = {0}.

We define F': X x X — X by F(x,y) = 5%, for all z,y € X.
Let T : X — X be defined by

-1 ifx <0
T(x) = 0 ifz=0.
1 ifx>0

Since T(A) = {—1,0} c A, T(B) ={0,1} C B, T(A) and T(B) are closed sets
in A and B respectively. Thus T': X — X is SCC-map with respect to A and
B.
Now, we show that F': X x X — X is a coupling with respect to A and B.
(i) Foreveryxz € Aandy € B,0 < y—z <2, wehave 0 < F(z,y) = 5% <
Thus, F(z,y) € [0,1] C B.
(ii) Also, for every y € B and z € A, =2 < z —y < 0, hence we have
-1 < F(y,z) = 5% <0. Thus F(y,z) € [-1,0] C A.
From (i) and (ii), F' is a coupling with respect to A and B.
It remains to show that F is (4, ¢)-contraction type T-coupling with respect
to A and B.
We define 4, ¢ : [0,00) — [0,00) by ¢(t) = t*,¢(t) = % for all ¢t € [0,00).
Clearly ¥ and ¢ are altering distance functions.
We consider the following cases:

1
-
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Case (i) c=v=0€ A,y=u=0¢€ B.
In this case,
0 Y(d(F(z,y), F(u,v))
< Y(maz{d(Tz,Tu),d(Ty,Tv)}) — ¢(maz{d(Tz,Tu),d(Ty,Tv)}) =0

Case (ii): z=v=-1€ A, y=u=1¢€ B.
In this case, F(z,y) = F(-1,1) = i,F(u, v)=F(1,-1) = —%,
d(F(x,y),F(u,v)) = d(i7_%) =
V() =1
Tx)=T(-1)=-1,T(u)=TQ1)=1,T(y) =T(1) =1,T(v) =T(-1) = —1,
ma:c{d(T;z:,Tu), d(Ty,Tv)} — maz{d(~1,1),d(1,~1)} = maz{2,2} = 2.
So, we have

1

Z:w(d(F(x,yLF(u,v)) < ¢<mamd(Tx,Tu),d(Ty,Tv))

1
29

fqb(max {d(Tx,Tu),d(Ty,TU)}) = ;

Case (iii): For —1 < z,v <0and 0 < u,y <1,
ly —z| < 2,]v—u| < 2,mam{d(Tx,Tu),d(Ty,Tv)} € {1,2}, but

d(F(z,y), F(u,v)) = d(F(z,y), F(u,v)) = [F(z,y) = F(u,v)]
_ly—x v—u
- ‘ 8 8
Y- v—u
= ‘ 8 8
B
= 442

Thus, since 1 is non-decreasing,

Y(d(F(z,y), F(u,v))
w(’y;x D <y(1/2) =1/4

) (maz {d(Tz,Tu),d(Ty, T’U)}) — qS(maa: {d(Tz,Tu),d(Ty, Tv)})
3 7
Y1) - (1) = i ¥(2) —9(2) = 3"

From cases (i)-(iii), F' is (¢, ¢)-contraction type T-coupling with respect to A
and B and satisfies all the conditions of Theorem 3.2. Thus F' and T have a
strong coupled common fixed point in AN B = {0} # (), F(0,0) =70 = 0, and
0 the unique coupled common fixed point of F' and T'.

v—Uu

IN

+

IN

4. CONCLUSION

Rashid et al. [20] established and proved a theorem of coupled coincidence
Point of (¢, ¢)-contraction type coupling in metric spaces. In this paper, we
establish and prove existence of coupled coincidence point and existence and
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uniqueness of coupled common fixed point theorem for (¢, ¢)-contraction type
T-coupling in metric spaces. Where ¥ and ¢ are two altering distance functions
and T is a SCC-Map. We also provide two examples in support of our main
result. Our work extend coupled coincidence point of (1, ¢)-contraction type

coupling in metric spaces to coupled coincidence and coupled common fixed

points of (1, ¢)-contraction type T-coupling in metric spaces. Our result extend
and generalize comparable results in the existing literature.
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