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Abstract. Let G be a group. Let R be a G-graded commutative

ring with identity and let M be a graded R-module. The graded

classical prime spectrum Cl.Specg(M) is defined to be the set of

all graded classical prime submodule of M . In this paper we estab-

lish necessary and sufficient conditions for Cl.Specg(M) with the

Zariski topology to be a Noetherian topological space.
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1. Introduction

In recent years, the study of modules whose spectra space have a Zariski

topology has grown in various directions. Some researchers have investigated

the interplay between algebraic properties of a module and the topological

properties of its spectrum (see for example [1, 2, 6, 7, 8, 15, 17, 23, 24, 26,

30, 32]). Also the Zariski topology on the graded spectrum of graded rings in

[33, 34, 35, 36, 37] was generalized in different ways to the graded spectrum

of graded modules over graded commutative rings as in [3, 4, 13, 14, 33]. In

the present work, we study graded modules whose graded classical spectrums

equipped with the Zariski topology are Noetherian spaces. For this purpose, in
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214 M. Jaradat

section 2, we study and develop the basic properties of graded classical Zariski

radicals of graded submodules that are essential for the later sections of this ar-

ticle. In section 3, one of the main purposes of this article is the presentation of

conditions under which a graded module has Noetherian graded classical prime

spectrum with the Zariski topology. In Theorem 3.2, we show that for a graded

R-module M , (Cl.Specg(M), %g) is a Noetherian topological space if and only

if the ACC for the Zcl
g -radical submodules of M holds, also we extend this re-

sult to graded g-Cl.Top R-modules in Theorem 3.3, and moreover, in Corollary

3.14, whenever (Specg(R), τgR) is a Noetherian topological space (for example

R is Noetherian), then (Cl.Specg(M), %g) is a Noetherian topological space

if the natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M)

is surjective. In Theorem 3.15 we show that if M is a Noetherian graded R-

module, then (Cl.Specg(M), %g) is a Noetherian topological space. Also we

characterize graded modules with Noetherian topological space, we show in

Theorem 3.12 and Theorem 3.18, if M is a graded R-module with surjective

natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). Then

(Cl.Specg(M), %g) is a Noetherian topological space if and only if (Specg(R),

τg
R

) is a Noetherian topological space if and only if M has property (GFG),

that is for every graded submodule K, there exists a finitely generated graded

ideal I of R so that Z-GrclM (K) = Z-GrclM (IK). In Section 4, we obtain the-

orems related to the irreducible components and the combinatorial dimension

of the graded classical prime spectrum. Theorem 4.5, for example, states that

a graded R-module M with Noetherian graded classical prime spectrum has

the property that every closed subset of Cl.Specg(M) has a finite number of

irreducible components, property (GFC). We also show Theorem 4.13, for a

graded module M with surjective natural map ψ, the combinatorial dimension

of (Cl.Specg(M), %g) is the same as the Krull dimension of R = R/Ann(M).

Throughout this paper all rings are commutative with identity and all modules

are unitary. Before we state some results let us introduce some notation and

terminology. We refer to [18], [28] and [29] for these basic properties and more

information on graded rings and modules.

Let G be a group and R be a G-graded commutative ring. A proper graded

ideal I of R is said to be a graded prime ideal if whenever rs ∈ I, we have r ∈ I
or s ∈ I, where r, s ∈ h(R), (for more details see [36, 37, 38]). Recall that the

spectrum Specg(R) of a graded ring R consists of all graded prime ideals of R.

For every graded ideal I of R, we set V g
R(I) = {P ∈ Specg(R)|I ⊆ P}. Then

the sets V g
R(I) satisfy the axioms for the closed sets of a topology on Specg(R),

called the Zariski topology; we denote the Zariski topology over the graded

prime spectrum as a topological space by (Specg(R), τgR), (for more details see

[33, 34, 35, 36, 37]).
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The graded classical prime spectrum with the zariski topology as a noetherian ... 215

Let R be a G-graded ring and M an R-module. The colon graded ideal

of M into K is (K :M M) = {r ∈ R|rM ⊆ K} = Ann(M/K). Dually, the

colon graded submodule of M into a graded ideal I of R is (K :M I) = {m ∈
M |Im ⊆ K}. In the case that I = Rr, we write (K :R r) (see [9]).

A proper graded submodule K of M is called a graded classical prime submod-

ule if whenever r, s ∈ h(R) and m ∈ h(M) with rsm ∈ K, then either rm ∈ K
or sm ∈ K, (for more details see [5, 14]). It is show in [5, Lemma 3.1] that if

P is a graded classical prime submodule of M , then p := (P :R M) is a graded

prime ideal of R and P is called a graded p-classical prime submodule.

In the literature, there are many different generalizations of the Zariski topol-

ogy of graded rings to graded modules.

The quasi-Zariski topology on Cl.Specg(M) is defined as follows: For each

graded submodule K of M , put Vg
∗(K) = {P ∈ Cl.Specg(M)|K ⊆ P} and

ηg∗(M) = {Vg
∗(K)|K is a graded submodule of M}. Then there exists a

topology %g∗ on Cl.Specg(M) having ηg∗(M) as the family of closed subsets

of Cl.Specg(M) if and only if it is closed under finite unions. When this is the

case, %g∗ is called the quasi-Zariski topology on Cl.Specg(M) and M is called

g-Cl.Top module, written as a topological space as (Cl.Specg(M), %g∗), (see

[3, 14]).

K. Al-Zoubi, M. Jaradat in [4], defined another variety for a graded submodule

K of a graded R-module M . They defined the variety of K to be Vg(K) = {P ∈
Cl.Specg(M) : (P :R M) ⊇ (K :R M)}. Then the set ηg(M) = {Vg(K)|K is a

graded submodule of M} satisfies the axioms for the closed sets of a topology

on Cl.Specg(M), called the Zariski topology on Cl.Specg(M) and denoted by

%g, written as a topological space as (Cl.Specg(M), %g). And they studied

some properties on this topology as T1-space and spectral space.

In [20], M. Jaradat investigated more properties of the Zariski topology on

Cl.Specg(M) and some conditions under which the graded classical prime spec-

trum of M is a spectral space for its Zariski topology.

We note that the case that Cl.Specg(M) = φ is the trivial case and we will not

discuss it, so throughout the paper we assume that Cl.Specg(M) 6= φ.

2. Graded Classical Radical And Graded Zariski Classical

Radical Of Graded Submodules

In this section, we obtain results about graded Zariski classical radicals of

graded submodules that are needed in the later sections.

Let R be a G-graded ring and M a graded R-module. For a graded sub-

module K of M , the graded classical radical of K, denoted by GrclM (K), is the

intersection of all graded classical prime submodules of M containing K; that
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216 M. Jaradat

is, GrclM (K) = ∩{P | P ∈ Vg
∗(K)} = ∩{P | P ⊇ K}. If Vg

∗(K) = φ, then

GrclM (K) = M . If K = 0, then GrclM (0) is called the graded classical nil-radical

of M . (See [14]). In the next definition we will define a new radical for a graded

submodule of a graded module.

Definition 2.1. Let R be a G-graded ring and M be a graded R-module. The

graded Zariski classical radical of a graded submodule K of M , denoted by Z-

GrclM (K), is the intersection of all members of Vg(K) for the Zariski topology,

that is, Z-GrclM (K) = ∩{P | P ∈ Vg(K)} = ∩{P ∈ Cl.Specg(M) | (P :R M) ⊇
(K :R M)}. If Vg(K) = φ, then Z-GrclM (K) = M . We say a graded submodule

K is a Zcl
g -radical submodule (graded Zariski classical radical submodule) if

K = Z-GrclM (K).

Let X be a topological space, if Y is a nonempty subset of X, then we let

=(Y ) denote the intersection of the members of Y . Thus, if Y1 and Y2 are

subsets of Cl.Specg(M), then =(Y1 ∪ Y2) = =(Y1) ∩ =(Y2).

Theorem 2.2. [4, Theorem 4.4]. Let R be a G-graded ring, M a graded R-

module, K be a graded submodule of M and Y be a subset of Cl.Specg(M).

Then Vg(=(Y )) = Cl{Y }, the closure of Y . Hence Y is closed if and only if

Vg(=(Vg(K))) = Vg(Z-GrclM (K)) = Vg(K).

The assertions in the following proposition are followed easily from Definition

2.1 and [4, Lemma 3.3 and Lemma 3.6 ].

Proposition 2.3. Let R be a G-graded ring, M be a graded R-module, K and

L be graded submodules of M, P ∈ Cl.Specg(M), and I be a graded ideal of R.

Then we have the following statements:

(i) If Q ∈ Vg
∗(K), then GrclM (K) ⊆ Q.

(ii) If P ∈ Vg(K), then Z-GrclM (K) ⊆ P .

(iii) Z-GrclM (K) ⊆ GrclM (K).

(iv) Z-GrclM (IM) = Z-GrclM (Gr(I)M) = GrclM (IM) = GrclM (Gr(I)M).

(v) Z-GrclM (K) = Z-GrclM ((K :R M)M) = Z-GrclM (Gr((K :R M))M) =

GrclM ((K :R M)M) = GrclM (Gr((K :R M))M).

(vi) If K ⊆ L, then Vg
∗(K) ⊇ Vg

∗(L) if and only if GrclM (K) ⊆ GrclM (L). The

converse is true if K ⊆ GrclM (K).

(vii) If (K :R M) ⊆ (L :R M), then Vg(K) ⊇ Vg(L) if and only if Z-

GrclM (K) ⊆ Z-GrclM (L). The converse is true if K ⊆ Z-GrclM (K).

(viii) If P is a graded classical prime submodule, then (K :R M) ⊆ (P :R M) if

and only if Vg(K) ⊇ Vg(P ); consequently, (K :R M) = (P :R M) if and only

if Vg(K) = Vg(P ) if and only if Z-GrclM (K) = Z-GrclM (P ).

In the next proposition, we list more properties of both Vg(K) and Z-

GrclM (K) for a graded submodule K of M , which are useful in next section.

Let M be a graded R-module. The map ψ: Cl.Specg(M) −→ Specg(R) where
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The graded classical prime spectrum with the zariski topology as a noetherian ... 217

R = R/Ann(M), defined by ψ(P ) = (P :R M) for every P ∈ Cl.Specg(M) will

be called the natural map of Cl.Specg(M), (see [4]).

Proposition 2.4. Let R be a G-graded ring, M be a graded R-module, K

and L are graded submodules of M and ψ: Cl.Specg(M) −→ Specg(R), where

R = R/Ann(M), be the natural map. Then we have the following statements:

(i) Z-GrclM (Z-GrclM (K)) = Z-GrclM (K).

(ii) Z-GrclM (K ∩ L) = Z-GrclM (K) ∩ Z-GrclM (L).

(iii) If ψ is surjective, then K 6= M if and only if Vg
∗(K) 6= φ if and only if

GrclM (K) 6= M .

(iv) If ψ is surjective, then K 6= M if and only if Vg(K) 6= φ if and only if

Z-GrclM (K) 6= M .

(v) Gr((K :R M)) ⊆ (Z-GrclM (K) :R M) ⊆ (GrclM (K) :R M) and thus

Gr((K :R M))M ⊆ Z-GrclM (K) ⊆ GrclM (K). If ψ is surjective, then Gr((K :R
M)) = (Z-GrclM (K) :R M).

Proof. (i) Follows directly from Theorem 2.2.

(ii) Holds by [4, Lemma 3.1(iii)]. Since Z-GrclM (K ∩ L) = =(Vg(K ∩ L)) =

=(Vg(K) ∪ Vg(L)) = =(Vg(K)) ∩ =(Vg(L)) = Z-GrclM (K) ∩ Z-GrclM (L).

(iii) K = M if and only if Vg
∗(K) = φ if and only if GrclM (K) = M .

(iv) Suppose that K 6= M . Then (K :R M) 6= R, and so there exists a

p ∈ Specg(R) such that (K : M) ⊆ p. Since Ann(M) ⊆ p and ψ is surjec-

tive, there exists a P ∈ Cl.Specg(M) with p = (P :R M) ⊇ (K :R M) by

[20, Proposition 4.3]. It follows that P ∈ Vg(K), and so Vg(K) 6= φ. Next

suppose that Vg(K) 6= φ and let P ∈ Vg(K). Then, by Proposition 2.3, Z-

GrclM (K) = =(Vg(K)) ⊆ P 6= M . Also Z-GrclM (K) 6= M implies K 6= M by

Definition 2.1.

(v) We assume that Vg(K) 6= φ (if not, Z-GrclM (K) = M). Set H := {(P :R
M) ∈ Specg(R) | P ∈ Vg(K)} = {(P :R M) ∈ Specg(R) | P ∈ Cl.Specg(M)

and (K :R M) ⊆ (P :R M)}. Then we have H ⊆ V g
R((K :R M)) and

=(H) = ∩P∈Vg(K)(P :R M) = ((∩P∈Vg(K)P ) :R M) = (Z-GrclM (K) :R M).

Thus (Z-GrclM (K) :R M) = =(H) ⊇ =(V g
R((K :R M))) = Gr((K :R M)),

whence Gr((K :R M))M ⊆ (Z-GrclM (K) :R M)M ⊆ Z-GrclM (K). There-

fore, by Proposition 2.3 we are done for the first part. To prove the sec-

ond part, assume that M is a graded module with surjective natural map ψ:

Cl.Specg(M) −→ Specg(R) and p ∈ Vg((K :R M)). Then Ann(M) ⊆ (K :

M) ⊆ p, and by [20, Proposition 4.3] there exists a graded classical prime

submodule P with p = (P :R M) ⊇ (K :R M); that is, p ∈ H. Thus

V g
R((K :R M)) ⊆ H. We conclude that H = Vg((K :R M)). Therefore,

=(H) = Z-GrclM (K :R M) = =(Vg((K :R M))) = Gr((K :R M)). �

In the next proposition we study the relationship between Z-GrclM (K) and

GrclM (K) for a graded submodule K of M .
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218 M. Jaradat

Proposition 2.5. Let R be a G-graded ring, M be a graded R-module and K

be a graded submodule of M . Then the following statements are equivalent:

(i) K ⊆ Z-GrclM (K),

(ii) Vg(K) = Vg
∗(K),

(iii) Z-GrclM (K) = GrclM (K).

Hence a Zcl
g -radical submodule is a graded classical radical submodule.

Proof. (i)⇒ (ii) Clearly, Vg(K) ⊇ Vg
∗(K). Let P ∈ Vg(K). Then Z-GrclM (K) ⊆

P so thatK ⊆ P by (i). Thus Vg(K) ⊆ Vg
∗(K) and, therefore, Vg(K) = Vg

∗(K).

(ii) ⇒ (iii) By Definition 2.1.

(iii) ⇒ (i) Follows as K ⊆ GrclM (K).

For the last statement, let L be a Zcl
g -radical submodule. Then L = Z-GrclM (L)

and (i) ⇒ (iii) imply that L = Z-GrclM (L) = GrclM (L). �

Recall that a graded R-module M is called a graded multiplication if for each

graded submodule N of M , N = IM for some graded ideal I of R. One can

easily show that if N is graded submodule of a graded multiplication module

M , then N = (N :R M)M , (see [31]).

Proposition 2.6. Let R be a G-graded ring and M be a graded R-module. If

M is a graded multiplication module, then the following hold:

(i) Z-GrclM (K) = GrclM (K).

(ii) Z-GrclM (GrclM (K)) = GrclM (Z-GrclM (K)).

Proof. (i) Since M is a graded multiplication module, then N = IM for some

graded ideal I of R. Then by [4, Lemma 3.6(ii)], we have Vg(K) = Vg(IM) =

Vg
∗(IM) = Vg

∗(K), thus Z-GrclM (K) = GrclM (K).

(ii) It is clear by (i) and Proposition 2.4(i). �

3. Noetherian Graded Classical Prime Spectrum

In this section, we examine the graded classical prime spectrum for a certain

type of graded modules, and we give necessary and sufficient conditions for it

to form a Noetherian topological space, with respect to the Zariski topology for

graded classical prime submodules. We also investigate other aspects of this

topology.

Remark 3.1. A topological space X is said to be Noetherian if the open subsets

of X satisfy the ascending chain condition (if the closed subsets of X satisfy

the descending chain condition). (See [10, p. 79, Exercises 5-12]).

Theorem 3.2. Let R be a G-graded ring and M be a graded R-module. Then

(Cl.Specg(M), %g) is a Noetherian topological space if and only if the ACC for

the Zcl
g -radical submodules of M holds.

Proof. Suppose the ACC holds for Zcl
g -radical submodules ofM . Let Vg(K1) ⊇

Vg(K2) ⊇... be a descending chain of closed sets Vg(Ki) of Cl.Specg(M),
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The graded classical prime spectrum with the zariski topology as a noetherian ... 219

where Ki is a graded submodule of M . Then =(Vg(K1)) = Z-GrclM (K1) ⊆
=(Vg(K2)) = Z-GrclM (K2) ⊆... is an ascending chain of Zcl

g -radical submod-

ules of M . So, by assumption there exists n ∈ N such that for all i ∈
N, Z-GrclM (Kn) = Z-GrclM (Kn+i). Now, by Theorem 2.2, Vg(Kn) = Vg(Z-

GrclM (Kn)) = Vg(Z-GrclM (Kn+i)) = Vg(Kn+i). Thus (Cl.Specg(M), %g) is a

Noetherian topological space. Conversely, suppose that (Cl.Specg(M), %g) is

a Noetherian topological space. Let K1 ⊆ K2 ⊆... be an ascending chain of

Zcl
g -radical submodules of M . Thus Vg(K1) ⊇ Vg(K2) ⊇... be a descending

chain of closed sets Vg(Ki) of Cl.Specg(M). By assumption there is n ∈ N
such that for all i ∈ N, Vg(Kn) = Vg(Kn+i). Therefore, Kn = Z-GrclM (Kn) =

=(Vg(Kn)) = =(Vg(Kn+i)) = Z-GrclM (Kn+i) = Kn+i. Therefore the ACC for

the Zcl
g -radical submodules of M holds. �

Theorem 3.3. Let R be a G-graded ring and M be a g-Cl.Top R-module.

Then (Cl.Specg(M), %g∗) is a Noetherian topological space if and only if the

ACC for the graded classical radical submodules of M holds.

Proof. The proof is similar to that of Theorem 3.2. �

A graded submodule K of M will be called a graded classical semiprime if

K is an intersection of graded classical prime submodules of M , (see [14, p.

162]). Thus GrclM (K), Z-GrclM (K) are graded classical semiprime submodules,

and hence we have the following corollary.

Corollary 3.4. Let R be a G-graded ring and M be a graded R-module. If M

satisfies the ACC on graded classical semiprime submodules, then (Cl.Specg(M),

%g) and (Cl.Specg(M), %g∗) are Noetherian topological spaces.

Proof. By Theorem 3.2 and Theorem 3.3. �

In the next theorem we give different conditions under which a graded R-

module M has an injective natural map.

Theorem 3.5. Let R be a G-graded ring and M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). Then ψ

is injective if and only if one of the following cases satisfied:

(i) (Cl.Specg(M), %g) is a T0-space.

(ii)| Cl.Specpg(M) |≤ 1 for every p ∈ Specg(R).

(iii) For any graded submodules N1, N2 of M, if Vg(N1) = Vg(N2), then

N1 = N2.

(iv) M is a graded classical weak multiplication R-module.

(v) M is a fully graded classical semiprime submodule R-module.

Proof. By [4, Theorem 4.10], [20, Theorem 4.7], [20, Theorem 4.8]. �
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In the following, we give a formal definition of Cl.Specg(M)-inj graded R-

module M .

Definition 3.6. Let R be a G-graded ring and M be a graded R-module. Then

M is said to be Cl.Specg(M)-inj if Cl.Specg(M) = φ or Cl.Specg(M) 6= φ and

M satisfies one of the statements in Theorem 3.5.

Theorem 3.7. Let R be a G-graded ring and M be a graded R-module.

(i) Suppose that M is Cl.Specg(M)-inj. If R satisfies the ACC on graded

prime ideals, then M satisfies the ACC on graded classical prime submodules.

(ii) Suppose that M is Cl.Specg(M)-inj. If (Cl.Specg(M), %g) is a Noetherian

topological space, then M satisfies the ACC on graded classical radical submod-

ules.

(iii) For each graded submodule K of M , if K satisfies one of the statements

in Proposition 2.5, then (Cl.Specg(M), %g) is a Noetherian topological space if

and only if M satisfies the ACC on graded classical radical submodules.

Proof. (i) Let P1 ⊆ P2 ⊆ ... be an ascending chain of graded classical prime

submodules of M . This induces the following chain of graded prime ideals,

ψ(P1) ⊆ ψ(P2) ⊆ .... Since R satisfies the ACC on graded prime ideals, there

exists a positive integer k such that for each i ∈ N, ψ(Pk) = ψ(Pk+i). Now

since ψ is injective, by Theorem 3.5, we have Pk = Pk+i as required.

(ii) Let K1 ⊆ K2 ⊆ ... be an ascending chain of graded classical prime sub-

modules of M . Then Vg(K1) ⊇ Vg(K2) ⊇ ... is a descending chain of closed

subsets of (Cl.Specg(M), %g), which is stationary by assumption. There exists

an integer n ∈ N such that Vg(Kn) = Vg(Kn+i) for each i ∈ N. By Theorem

3.5, we have Kn = Kn+i for each i ∈ N.

(iii) By Theorem 3.2. �

In the next corollary we give different cases under which the graded clas-

sical prime spectrum is a Noetherian topological space with the quasi-Zariski

topology.

Corollary 3.8. Let R be a G-graded ring and M be a g-Cl.Top R-module.

Then (Cl.Specg(M), %g∗) is a Noetherian topological space in the following

cases:

(i) R satisfies the ACC on graded prime ideals.

(ii) (Cl.Specg(M), %g) is a Noetherian topological space.

(iii) For each graded submodule K of M , if K satisfies one of the statements

in Proposition 2.5 and M satisfies the ACC on Zcl
g -radical submodules.

Moreover, in part (iii) (Cl.Specg(M), %g∗) is Noetherian topological space if and

only if (Cl.Specg(M), %g) is Noetherian topological space.

Proof. It follows from [20, Theorem 6.10], Theorem 3.2, Theorem 3.3 and The-

orem 3.7. �
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Proposition 3.9. Let R be a G-graded ring and M be a graded multiplication

R-module. Then (Cl.Specg(M), %g∗) is a Noetherian topological space if and

only if (Cl.Specg(M), %g) is a Noetherian topological space.

Proof. It follows from Proposition 2.6. �

In the sequel, we present more conditions under which (Cl.Specg(M), %g) is

a Noetherian topological space.

A topological space X is a cofinite topological space when its open sets are

the emptyset, X and all subsets with a finite complement. This topology is

denoted by τfc. (See [25]).

Theorem 3.10. Let R be a G-graded ring such that the intersection of every

infinite collection of graded prime ideals of R is zero and let M be a graded

R-module. Then (Cl.Specg(M), %g) is a Noetherian topological space.

Proof. Let Vg(K) be a closed subset of (Cl.Specg(M), %g) for some graded

submodule N of M . If Vg(N) is infinite, then (K :R M) is contained in an

infinite number of graded prime ideals of R. Since the intersection of every

infinite collection of graded prime ideals of R is zero, (N :R M) = (0) so that

Vg(N) = Cl.Specg(M). It follows that %g ⊆ τfc and hence (Cl.Specg(M),

%g) is a Noetherian topological space because every cofinite topological space

is Noetherian. �

Theorem 3.11. Let R be a G-graded ring and M be a graded R-module. Then

(Cl.Specg(M), %g) is a Noetherian topological space in the following cases:

(i) If for every graded submodule N of M there exists a finitely generated graded

submodule L of K such that GrclM (K) = GrclM (L).

(ii) M satisfies the ACC on extended graded submodules, IM , where I is a

graded ideal of R.

Proof. (i) Let K1 ⊆ K2 ⊆... be an ascending chain of graded classical semiprime

submodules ofM , and letK = ∪iKi. By assumption, there exists a finitely gen-

erated graded submodule L of K such that GrclM (K) = GrclM (L). Hence there

exists a positive integer n such that L ⊆ Kn. Then GrclM (K) = GrclM (L) ⊆
Kn ⊆ K ⊆ GrclM (K), so that Kn = Kn+1 = Kn+2 =.... Hence, M satis-

fies the ACC on graded classical semiprime submodules. By Corollary 3.4,

(Cl.Specg(M), %g) is a Noetherian topological space.

(ii) Let Vg(K1) ⊇ Vg(K2) ⊇..., be a descending chain of closed subsets of

(Cl.Specg(M), %g). Then we have an ascending chain of graded submod-

ules of M , =(Vg(K1)) ⊆ =(Vg(K2)) ⊆..., and the ascending chain of ideals,

(=(Vg(K1)) :R M) ⊆ (=(Vg(K2)) :R M) ⊆.... Thus, there is a positive in-

teger n such that (=(Vg(Kn)) :R M)M = (=(Vg(Kn+i)) :R M)M for each

i = 1, 2,.... By [4, Lemma 3.6(i)], Vg(=(Vg(Kn))) = Vg(=(Vg(Kn+i))). So, by

Theorem 2.2, Vg(Kn) = Vg(Kn+i), and so (Cl.Specg(M), %g) is a Noetherian

topological space. �
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The surjectivity of the natural map of (Cl.Specg(M), %g) is particularly im-

portant in studying properties of (Cl.Specg(M), %g). A graded modules M

with surjective natural map ψ, plays important roles in the following theo-

rem. In Theorem 3.12, the surjectivity of ψ yields the characterization that

(Cl.Specg(M), %g) is a Noetherian topological space exactly if (Specg(R), τg
R

)

is.

Theorem 3.12. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then (Cl.Specg(M), %g) is a Noetherian topological space if and only if (Specg(R),

τg
R

) is a Noetherian topological space.

Proof. If M = 0, then trivially (Cl.Specg(M), %g) is a Noetherian topological

space. Hence we assume that M is a nonzero graded R-module. Let Ψ : R→ R

be the natural graded epimorphism. For every p ∈ Specg(R), we identify p with

Ψ(p), where p ∈ Specg(R); we also write (K :R M) for Ψ((K :R M)). Thus

p ∈ V g
R((K :R M)) if and only if p ∈ V g

R
((K :R M)). Since ψ is surjective, ψ is a

closed mapping by [4, Proposition 3.9], whence ψ(Vg(K)) = V g

R
((K :R M)) ⊆

Specg(R) for every graded submodule K of M. Suppose that (Specg(R), τg
R

) is

a Noetherian topological space, and let Vg(K1) ⊇ Vg(K2) ⊇ ... be a descending

chain of closed sets in Cl.Specg(M), where Ki is a graded submodule of M .

Then ψ(Vg(K1)) ⊇ ψ(Vg(K2)) ⊇ ... is a descending chain of closed sets in

Specg(R). Hence there exists a j such that ψ(Vg(Kj)) = ψ(Vg(Kj+1)), that is,

V g

R
((Kj :R M)) = V g

R
((Kj+1 :R M)) in Specg(R). Namely, V g

R((Kj :R M)) =

V g
R((Kj+1 :R M)) in Specg(R). Thus, Vg(Kj) = {P ∈ Cl.Specg(M) | (P :R
M) ⊇ (Kj :R M)} = {P ∈ Cl.Specg(M) | (P :R M) ∈ V g

R((Kj :R M))} =

{P ∈ Cl.Specg(M) | (P :R M) ∈ V g
R((Kj+1 :R M))}=Vg((Kj+1)). By Remark

3.1, (Cl.Specg(M), %g) is a Noetherian topological space.

Conversely suppose that (Cl.Specg(M), %g) is a Noetherian topological space,

and let Vg(I1) ⊇ Vg(I2) ⊇ ... be a descending chain of closed sets in Specg(R),

where each Ii is a graded ideal of R. Since ψ is continuous by [4, Proposition

3.9], ψ−1(Vg(Ii)) ⊇ ψ−1(Vg(I2)) ⊇ ... is a descending chain of closed sets in

(Cl.Specg(M), %g). By hypothesis, there exists an i such that ψ−1(Vg(Ii)) =

ψ−1(Vg(Ii+1)), whence ψ ◦ ψ−1(Vg(Ii)) = ψ ◦ ψ−1(Vg(Ii+1)). We have that

Vg(Ii) = Vg(Ii+1) because ψ is surjective. Therefore, (Specg(R), τg
R

) is a

Noetherian topological space. �

Recall that (Specg(R), τgR) is a Noetherian topological space if and only if

the ascending chain condition (ACC) for graded radical ideals holds, and R is

said to be a graded Noetherian ring if it satisfies the ascending chain condition

(ACC) on graded ideals of R. Equivalently, R is graded Noetherian if and only

if every graded ideal of R is finitely generated (see [29]).
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Lemma 3.13. Let R be a G-graded ring. If R is a graded Noetherian ring

then (Specg(R), τgR) is a Noetherian topological space.

Proof. Let Y1 ⊃ Y2 ⊃... be any decreasing chain of closed subsets of (Specg(R),

τgR). Then we can write Yi = V g
R(Ii) for every i. Define Ji = ∩p∈Yi

p. Then

clearly V g
R(Ji) = V g

R(Ii) and {Ji}i is an increasing chain of graded ideals of

R. Since R is a graded Noetherian ring, this sequence J1 ⊃ J2 ⊃... becomes

stationary and therefore the chain Y1 ⊃ Y2 ⊃... becomes stationary. Hence,

(Specg(R), τgR) is a Noetherian topological space. �

Corollary 3.14. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then we have the following:

(i) If (Specg(R), τgR) is a Noetherian topological space, then (Cl.Specg(M), %g)

is a Noetherian topological space.

(ii) If R is a graded Noetherian G-ring, then (Cl.Specg(M), %g) is a Noetherian

topological space.

Proof. (i) Let M be a graded R-module with surjective natural map. It is well-

known that the mapping µ : Specg(R)→ Specg(R) given by J/Ann(M)→ J is

a graded R-homeomorphism, and hence (Specg(R), τg
R

) is homeomorphic to a

closed subspace of (Specg(R), τgR), and the corresponding topological properties

are inherited by closed. Thus if (Specg(R), τgR) is a Noetherian topological

space, so is (Specg(R), τg
R

). Thus, by Theorem 3.12, (Cl.Specg(M), %g) is a

Noetherian topological space.

(ii) Follows by Lemma 3.13 and part (i). �

Recall that a graded R-module M is called a graded Noetherian module if

it satisfies the ascending chain condition on its graded submodules.

We know from Lemma 3.13 that for a graded Noetherian ring R, (Specg(R), τgR)

is a Noetherian topological space. In the following theorem we will generalize

this fact.

Theorem 3.15. Let R be a G-graded ring. If M is a graded Noetherian R-

module, then (Cl.Specg(M), %g) is a Noetherian topological space.

Proof. Let Y1 ⊃ Y2 ⊃..., be any decreasing sequence of closed subset of (Cl.Specg(M),

%g). Then we can write, Yi = Vg(Ki), where Ki is a graded submodule of M for

every i. Define K
′

i = ∩N∈YiN = Z-GrclM (K
′

i). Then clearly Vg(Ki) = Vg(K
′

i)

and {K ′

i}i is an increasing sequence of graded submodule of M . Since M is a

graded Noetherian R-module, this sequence becomes stationary and therefore

the sequence Y1 ⊃ Y2 ⊃..., becomes stationary. Hence. (Cl.Specg(M), %g) is a

Noetherian topological space. �
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We continue to study some conditions under which the graded classical prime

spectrum of a graded R-module M is a Noetherian topological space, here we

will use the property (GFG), defined below.

Definition 3.16. Let R be a G-graded ring and M be a graded R-module.

(i) A graded submodule K of M is called a graded FG-submodule if Z-

GrclM (K) = Z-GrclM (IM) for some finitely generated graded ideal I of R.

(ii) M is said to have property (GFG) if every graded submodule of M is a

graded FG-submodule.

(iii) A graded ideal of R is called a graded FG-ideal if and only if it is a graded

FG-submodule of R. i.e., for any graded ideal I of R we have Gr(I) = Gr(J)

for finitely generated graded ideal J of R.

Proposition 3.17. Let R be a G-graded ring, M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M), and K

be a graded submodule of M . Then we have the following statements:

(i) Suppose that Gr((K :R M)) = Gr(I) for some finitely generated graded

ideal I of R. Then K is a graded FG-submodule of M .

(ii) If ψ is surjective, then K is a graded FG-submodule of M if and only if

(K :R M) is a graded FG-ideal of R.

Proof. (i) By Proposition 2.3(v), Z-GrclM (K) = Z-GrclM ((K :R M)M) = Z-

GrclM (Gr((K :R M))M). Hence Z-GrclM (N) = Z-GrclM (Gr(I)M) = Z-GrclM (IM).

Thus, K is a graded FG-submodule of M .

(ii) Suppose that (K :R M) is a graded FG-ideal. Then by part (i), K

is a graded FG-submodule. Conversely, let K be a graded FG-submodule

and I a finitely generated graded ideal of R such that Z-GrclM (K) = Z-

GrclM (IM). Since ψ is surjective by Proposition 2.4(v) and Proposition 2.3(iii),

we have Gr((K :R M)) = (Z-GrclM (K) :R M) = (Z-GrclM (IM) :R M) = (Z-

GrclM (Gr(I)M) :R M) = Gr((Gr (I)M :R M)). Now by [20, Proposition

4.4(i)], we get Gr((K :R M)) = Gr((Gr(I)M :R M)) = Gr(I). Thus (K :R M)

is a graded FG-ideal of R. �

Recall that if M is a graded R-module with surjective natural map ψ, then

the open sets Cl.Specg(M) − Vg(rM) for every r ∈ h(R) are quasi-compact

and form a base for (Cl.Specg(M), %g), (see [4, Theorem 4.2]).

Theorem 3.18. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then M has property (GFG) if and only if (Cl.Specg(M), %g) is a Noetherian

topological space.

Proof. Let K be a graded submodule of M . Then the following statements are

equivalent:

(i) There exist a finitely generated graded ideal I =
∑k

i=1 riR such that Z-

GrclM (K) = Z-GrclM (IM), where ri ∈ h(R) and k ∈ Z+ M .
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(ii) Vg(K) = Vg(IM) = Vg(
∑n

i=1 riM) = Vg(
∑n

i=1(riM :R M)M) = ∩ni=1Vg(riM),

where ri ∈ h(R) and n ∈ Z+, (see [4, Lemma 3.6(ii) and Theorem 3.1(ii) ] and

Proposition 2.4).

(iii) The open set Ug(K) = Cl.Specg(M)−Vg(K) = Cl.Specg(M)−(∩ni=1Vg(riM))

= ∪ni=1(Cl.Specg(M)− Vg(riM)), where ri ∈ h(R) and n ∈ Z+.

(iv) The open set Ug(K) = Cl.Specg(M)−Vg(K) is quasi-compact as Ug(K) is

a finite union of quasi-compact subsets Cl.Specg(M)−Vg(riM) with ri ∈ h(R),

(see [4, Theorem 4.3] ).

By using the equivalences above, we deduce that M has property (GFG) if and

only if every open subset Ug(K) of form Cl.Specg(M)− Vg(K), where K is a

graded submodule of M is quasi-compact if and only if (Cl.Specg(M), %g) is a

Noetherian topological space, (see [11, Chap. 1, 2. p. 123, Proposition 9]). �

Corollary 3.19. Let R be a G-graded ring. Then R has property (GFG) if

and only if (Specg(R), τgR) is a Noetherian topological space.

Proof. It is clear by Theorem 3.18. �

By [14, Proposition 3.3], the graded classical prime submodules of M/K

are just the graded submodules N/K where N is a graded classical prime

submodule of M with K ⊆ N . So we have the following lemma which is

needed for Theorem 3.21.

Lemma 3.20. Let R be a G-graded ring, M and M
′

be graded R-modules, and

let v : M →M
′

be a graded R-module homomorphism.

(i) If K
′

is a graded submodule of M ′ and K = v−1(K
′
), then (K

′
:R M

′
) ⊆

(K :R M). If v is surjective, then equality holds.

(ii) If P is a graded classical prime submodule of M containing ker(v), then

v(P ) is a graded classical prime submodule of M
′
. If P

′
is graded classical

prime in M ′, then P = v−1(P
′
) is graded classical prime in M . Thus, if v is

surjective, there is a one-to-one correspondence between graded classical prime

submodules P of M containing ker(v) and graded classical prime submodules

P of M/ker(v) ∼= M
′
.

(iii) Assume that v is surjective. Let υ∗ : Cl.Spec(M) → Cl.Spec(M ′) be a

mapping such that υ∗(P ) = v−1(P
′
) for every P´∈ Cl.Spec(M ′). Then υ∗ is

continuous.

Proof. By [14, Proposition 4.1] and [20, Theorem 4.10]. �

Theorem 3.21. Let M be a graded R-module, K be a graded submodule of M ,

and κ : M →M/K be the natural R-epimorphism. Then we have the following

statements:

(i) κ∗ : Cl.Specg(M/K)→ Cl.Specg(M) induces a graded R-homeomorphism

of Cl.Specg(M/K) onto Vg
∗(K).

(ii) If (Cl.Specg(M), %g) is a Noetherian topological space. Then (Cl.Specg(M/K),

%g) is a Noetherian topological space.
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Proof. (i) By Lemma 3.20(ii), we can see that κ∗ is a bijection of Cl.Spec(M/K)

= {P = P/K | P ∈ Vg
∗(K)} onto Vg

∗(K), where κ∗(P/K) = P for every

P/K ∈ Cl.Specg(M/K) and (κ∗)−1(P ) = P/K for every P ∈ Vg
∗(K). Fur-

thermore, κ∗ : Cl.Specg(M/K) → Cl.Specg(M) is continuous by to Lemma

3.20(iii). Consequently, κ∗ : Cl.Specg(M/K) → Vg
∗(K) is also continuous be-

cause κ∗(Cl.Specg(M/K)) = Vg
∗(K). To prove that κ∗ is a homeomorphism,

we only need to show that it is a closed mapping. Let Vg(L) be a closed

set in Cl.Specg(M/K), where L = L/K for some graded submodule L of M

which contains K, and let P ∈ Cl.Specg(M). Then P ∈ κ∗(Vg(L)) if and

only if P ∈ Vg
∗(K) and (κ∗)−1(P ) = P/K ∈ Vg(L) if and only if P ∈ Vg

∗(N)

and P/N = P ∈ Vg(L) if and only if P ∈ Vg
∗(N) and (P : M) ⊇ (L : M)

where M = M/N if and only if P ∈ Vg
∗(K) and (P :R M) ⊇ (L :R M) by

Lemma 3.20(i) if and only if P ∈ Vg
∗(K) ∩ Vg(L). We have that κ∗(Vg(L)) =

Vg
∗(K) ∩Vg(L), a closed set in the subspace Vg

∗(K) of Cl.Specg(M). Thus κ∗

is a closed mapping of Cl.Specg(M/K) to Vg
∗(K). Therefore, κ∗ is a homeo-

morphism of Cl.Spec(M/K) onto Vg
∗(K).

(ii) If (Cl.Specg(M), %g) is a Noetherian topological space, then the subspace

Vg
∗(K) of Cl.Spec(M) is also a Noetherian topological space by [11, Chap. 1,

2. p. 123, Proposition 8]. It follows that (Cl.Specg(M/K), %g) is a Noetherian

topological space by (i). �

4. Noetherian Graded Classical Prime Spectrum And Its

Irreducible Components

In this section, we investigate the relationship between the graded minimal

classical prime of a graded R-module M and the irreducible components closed

subsets of (Cl.Specg(M), %g).

Recall that a topological space X is irreducible if the intersection of two non-

empty open subsets of X is non-empty, (see [11, Ch. II, p. 119]). Every subset

of a topological space consisting of a single point is irreducible and a subset Y

of a topological space X is irreducible if and only if its closure is irreducible

[11, Chap. 1, 2. p. 123, Proposition 8(i) ]. A maximal irreducible subset Y

of X is called an irreducible component of X and it is always closed, (see [11,

Ch. II, p. 119]).

Remark 4.1. For a topological space X, we recall:

(i) If X is a Noetherian topological space, then every subspace of X is a Noe-

therian topological space, and X is a quasi-compact topological space (see [10,

Chap. 6, Exc. 5]).

(ii) Every Noetherian topological space has only finitely many irreducible com-

ponents (see [11, P. 124, Proposition 10]).

Remark 4.2. Let X be a topological space. We consider strictly decreasing (or

strictly increasing) chain Z0, Z1, ..., Zr of length r of irreducible closed subsets
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Zi of X. The supremum of the lengths, taken over all such chains, is called the

combinatorial dimension of X and denoted by dim(X). For the empty set, φ,

the combinatorial dimension of φ is defined to be −1.

Definition 4.3. Let M be a graded R-module and K be a proper graded sub-

module of M . P ∈ Vg
∗(K) is called a graded minimal classical prime submodule

over K if there does not exist Q ∈ Vg
∗(K) such that Q ⊂ P . If Vg

∗(K) 6= φ,

then the existence of graded minimal classical prime submodules over K can

be verified easily by Zorn’s lemma. We say that P is a graded classical prime

divisor (resp. graded minimal classical prime divisor ) of K if P ∈ Vg
∗(K) (resp.

P ∈Minclg (Vg
∗(K)), where Mincl

g (Vg
∗(K)) is the set of all graded minimal clas-

sical prime submodule of M over K).

Definition 4.4. Let R be a G-graded ring and M be a graded R-module.

(i) R is said to have property (GFC) if every closed subset of (Specg(R), τgR)

has a finite number of irreducible components.

(ii) M is said to have property (GFP ) if every graded submodule of M has a

finite number of graded minimal classical prime divisors.

(iii) M is said to have property (GFC) if every closed subset of (Cl.Specg(M),

%g) has a finite number of irreducible components.

(iv) M is said to have property (GFD) if the (Cl.Specg(M), %g) has a finite

combinatorial dimension.

We next consider irreducible components of closed subsets of Cl.Specg(M)

for gradedR-modulesM that has a surjective natural map ψ : Cl.Specg(M) −→
Specg(R), where R = R/Ann(M).

Theorem 4.5. Let R be a G-graded ring and M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

(i) If ψ is surjective, then M has property (GFC) if and only if for every graded

submodule K of M , the graded ideal (K :R M) has a finite number of graded

minimal prime divisors in R.

(ii) If ψ is bijective and M has property (GFC), then Cl.Specg(M) has finite

number of minimal elements with respect to inclusion.

(iii) If ψ is bijective, then M has property (GFC) if and only if M has property

(GFP ).

(iv) If (Cl.Specg(M), %g) is a Noetherian topological space, then it has property

(GFC).

Proof. (i) Is a direct result of [20, Corollary 5.12(ii)].

(ii) By [20, Theorem 5.13].

(iii) Is a direct result of [20, Corollary 5.14].

(iv) By Remark 4.1(ii). �

[20, Theorem 3.7], the irreducible components of (Specg(R), τgR) are the

closed subsets V g
R(p), where p is a graded minimal prime ideal of R.
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Corollary 4.6. Let R be a G-graded ring and M be a graded R-module with

natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). Then we

have the following statements:

(i) If ψ is surjective, then R has property (GFC) if and only if every graded

ideal I of R, Gr(I) is contained in a finite number of minimal prime ideals.

(ii) If (Specg(R), τgR) is a Noetherian topological space, then R has property

(GFC).

Proof. (i) By Theorem 4.5(i).

(ii) By Remark 4.1(ii). �

Corollary 4.7. Let R be a G-graded ring and M be a graded R-module with

bijective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

If (Cl.Specg(M), %g) is a Noetherian topological space, then every classical

radical submodule of M is the intersection of a finite number of graded classical

prime submodules.

Proof. By Theorem 4.5(iv) and Theorem 4.5(ii), every graded submodule K of

M has a finite number of graded minimal classical prime divisors. �

Corollary 4.8. Let M be a R-graded module with bijective natural map ψ :

Cl.Specg(M) −→ Specg(R), where R = R/Ann(M). If (Cl.Specg(M), %g) is

a Noetherian topological space, then the following statements are true:

(i) If K is a proper graded submodule of M , then Vg(K) has only finitely many

minimal elements.

(ii) The set of graded minimal classical prime submodules of M is finite. In

particular Cl.Specg(M) = ∪ni=1Vg(Pi), where Pi are all graded minimal classi-

cal prime submodules of M .

Proof. (i) We know that Vg(K) is homeomorphic to Cl.Spec(M/K) by Theo-

rem 3.21(i). Since (Cl.Specg(M), %g) is Noetherian, (Cl.Specg(M), %gM/K) has

finitely many irreducible components by Theorem 3.21(ii) and Remark 4.1(ii).

Hence by [20, Theorem 5.13], there is one-to-one correspondence between ir-

reducible components of (Cl.Specg(M), %gM/K) and graded minimal classical

prime submodules of M/N . Also for P ∈ Cl.Spec(M), P/K is a graded min-

imal classical prime submodule of M/K if and only if P is a graded minimal

classical prime submodule of K.

(ii) Since (Cl.Specg(M), %g) is a Noetherian topological space, the number of

irreducible components of (Cl.Specg(M), %g) is finite by Remark 4.1(ii). So

the result follows from [20, Theorem 5.13]. �

Theorem 4.9. Let R be a G-graded ring and M be a graded R-module. If M

has property (GFD) then (Cl.Specg(M), %g) is a Noetherian topological space

in the following cases:

(i) M has a surjective map ψ and for every graded submodule K of M , the
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graded ideal (K :R M) has a finite number of graded minimal prime divisors in

R.

(ii) M has bijective map ψ and M has property (GFP ).

Proof. It follows by Theorem 4.5(i), (iii) and [30, Proposition 1.1]. �

The next result is obtained by combining Remark 4.1, Theorem 3.2, Corol-

lary 3.4, Theorem 3.7(iii), Theorem 3.10, Theorem 3.11, Theorem 3.12, Corol-

lary 3.14(ii), Theorem 3.15, and Theorem 3.18.

Theorem 4.10. Let R be a G-graded ring and M be a graded R-module. Then

(Cl.Specg(M), %g) is Noetherian topological space and a quasi-compact space

with property (GFC) in each of the following cases:

(i) The ACC for Zcl
g -radical submodules of M holds.

(ii) M satisfies the ACC on graded classical semiprime submodules.

(iii) For each graded submodule K of M , K satisfies one of the statements in

Proposition 2.5, and M satisfies the ACC on graded classical radical submod-

ules.

(iv) The intersection of every infinite collection of graded prime ideals of R is

zero.

(v) For every graded submodule K of M there exists a finitely generated graded

submodule L of K such that GrclM (K) = GrclM (L).

(vi) M satisfies the ACC on extended graded submodules, IM , where I is a

graded ideal in R.

(vii) M has a surjective natural map ψ: Cl.Specg(M) −→ Specg(R), where

R = R/Ann(M), and (Specg(R), τg
R

) is a Noetherian topological space.

(viii) (Specg(R), τg
R

) is a Noetherian topological space and M has a surjective

natural map ψ: Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

(ix) M has a surjective natural map ψ: Cl.Specg(M) −→ Specg(R), where

R = R/Ann(M), and R is a Noetherian G-graded ring.

(x) M is a Noetherian graded R-module.

(xi) M has a surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where

R = R/Ann(M), and M has property (GFG).

Definition 4.11. Let R be a G-graded ring. The Krull dimension of R,

K.dimg(R), equals the combinatorial dimension of Specg(R) equipped with

the Zariski topology. For a graded R-module M , the classical Krull dimension

of M is denoted by K.dimcl
g (M) and is defined by K.dimcl

g (M) = K. dimg(R),

where R = R/Ann(M).

Theorem 4.12. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M).

Then (Cl.Specg(M), %g) has a chain of irreducible closed subsets of Cl.Specg(M)

of length r if and only if R has a chain of graded prime ideals of length r.
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Proof. By [20, Theorem 5.9(i)], since dimg(Cl.Specg(M)) = dimg(Specg(R)).

�

Corollary 4.13. Let R be a G-graded ring and M be a graded R-module with

surjective natural map ψ : Cl.Specg(M) −→ Specg(R), where R = R/Ann(M),

and equip Cl.Specg(M) and Specg(R), respectively, with their Zariski topolo-

gies. Then, dimg(Cl.Specg(M)) = K.dimg(R) = dimg(Specg(R)) = K.dimg(

V g
R(Ann(M))), where Vg(Ann(M)) is a closed subspace of (Specg(R), τgR).

Proof. By Theorem 4.12. �

Let R be a G-graded ring, the graded dimension, dimg(R) of R was defined

in [9] as the supremum of all numbers n for which there exists a chain of graded

prime ideals p0 ⊆ p1 ⊆ ... ⊆ pn in R, where dimg(R) = −1 if Specg(R) = φ

and dimg(R) = 0 if every graded prime ideal is a maximal. A proper graded

ideal I of R is said to be a graded maximum prime ideal if whenever I ⊆ J , we

have I = J , where J ∈ Specg(R), (see [36]), we will denote the set of graded

maximum prime ideals of R by Maxpg(R). A proper graded ideal J of R is said

to be a graded minimal prime ideal if whenever I ⊆ J , we have I = J , where

I ∈ Specg(R), (see [36]).

In the next theorem we study the relation between the Noetherian property

and the graded dimension of a graded ring R. Let I a graded ideal of R, the

minimal graded prime divisors of I correspond bijectively to the irreducible

components of the subset V g
R(I) ⊂ (Specg(R), τgR), (see [20, Theorem 3.7]).

In particular, any graded ideal in a graded ring R has minimal graded prime

divisors, and any p ∈ Specg(R) contains a minimal graded prime ideal of R.

Lemma 4.14. Let R be a G-graded ring. Then we have the following state-

ments:

(i) If (Specg(R), τgR) is Noetherian topological space (for example R is a graded

Noetherian ring), then R has only finitely many graded minimal prime ideals.

Moreover any graded ideal I of R, has only finitely many graded minimal prime

divisors.

(ii) (Specg(R), τgR) is a T1-space if and only if dimg(R) = 0 if and only if

Specg(R) = Maxpg(R).

(iii) If (Specg(R), τgR) is Noetherian topological space (for example R is a

graded Noetherian ring) with dimg(R) = 0, then Specg(R) has only finitely

many elements, which are both graded maximal and minimal prime ideals of R.

Proof. (i) By Remark 4.1(ii), (Specg(R), τgR) has a finite number of irreducible

components, which are exactly the graded minimal prime ideals of R by [20,

Theorem 3.7]. The minimal graded prime divisors of I are just the generic

points of the irreducible components of the set V g
R(I) by [20, Theorem 3.5].

(ii) [20, Theorem 3.8].

(iii) Since (Specg(R), τgR) is Noetherian topological space, then by part (i) R
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has only finitely many graded minimal prime ideals. Also since dimg(R) = 0,

then by part (ii) we have Specg(R) = Maxpg(R). Therefore (Specg(R), τgR)

has only finitely many elements which are both graded maximal and minimal

prime ideals of R. �

Theorem 4.15. Let R be a G-graded ring and M be a graded R-module such

that (Cl.Specg(M), %g) has combinatorial dimension zero and (Cl.Specg(M),

%g) is a Noetherian topological space with surjective natural map ψ : Cl.Specg(M)→
Specg(R), where R = R/Ann(M). Then the set of irreducible components of

(Cl.Specg(M), %g) is {Vg(p1M), Vg(p2M),..., Vg(pkM)} for some k ∈ Z+,

where the pi for i = 1, 2,..., k are all the graded minimal prime divisors of

Ann(M).

Proof. Since (Cl.Specg(M), %g) is a Noetherian topological space with dim(Cl.S

pecg(M)) = 0, (Specg(R), τg
R

) is a Noetherian topological space and dim(R) =

0 by Theorem 3.12 and Corollary 4.13. Now Specg(R) = Maxg(R) and

(Specg(R), τg
R

) has only finitely many elements p1, p2,..., pk which are both

maximal and minimal graded prime ideals of R by Lemma 4.14(iii). Put

pi = pi/Ann(M), where pi is a graded ideal of R. Then pi is a graded min-

imal prime divisor of Ann(M), which is also a graded maximal ideal of R

for every i. Thus {p1, p2,.. pk} is the set of all graded minimal prime di-

visors of Ann(M). Since M is a graded R-module with surjective natural

map ψ : Cl.Specg(M) −→ Spec(R) and piM 6= M , so by [20, Proposition

4.4(i)] we have (piM :R M) = pi, a graded maximal ideal of R. Thus by

[20, Proposition 4.4(ii)] piM is a graded pi-classical prime submodule and

Vg(piM) is an irreducible component of (Cl.Specg(M), %g) for every i by

[20, Corollary 5.10(i)]. Applying [20, Corollary 5.12(ii)], we can conclude

that {Vg(p1M),Vg(p2M),...,Vg(pkM)} is the set of all irreducible components

of (Cl.Specg(M), %g). �
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