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1. INTRODUCTION

A number sequence closely associated to the famous Fibonacci sequence is
the balancing sequence. Behera and Panda [1] in 1999 defined a natural number
n as a balancing number if it is the solution of a simple Diophantine equation
1424+---+(n—-1)=(n+1)+(n+2)+---+ (n+r), calling r as the balancer
corresponding to n. In general if B,, denotes the n — th balancing number,
then the balancing sequence is defined recursively as B, = 68,1 — B,,_2, for
n > 2 with seeds By = 0 and B; = 1. The sequence companion to balancing
sequence is the Lucas-balancing sequence whose recurrence relation is given by
C, =6C,_1—C)_s, for n > 2 with seeds Cy = 1 and C; = 3, where C,, denotes
the n-th Lucas-balancing number. It is known that the ratio of two adjacent
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balancing numbers B,, and Lucas-balancing numbers C,, tends to a definite
proportion 3 + /8 as n — oco. This number \; = 3 + /8 and its conjugate
Ao = 3— /8 are indeed the roots of the characteristic equation 22 —6x+1=0.
Binet’s formulas are well-known in the theory of the balancing numbers, these
formulas allow all balancing numbers B,, and Lucas-balancing numbers C,, to
be represented by the roots of the characteristic equation as

AP =AY
Bn="0rs a1
and
AT+ AD
C, = % (1.2)

The theory of balancing numbers is broadly studied by many authors, the
interested readers may see [1, 3, 4, 6, 11] for a detail review. The combinatorial
forms for balancing and Lucas-balancing numbers were almost studied by Patel
et al. [7]. They defined incomplete balancing and Lucas-balancing numbers as

k .
_ i(n—=1—=7\ n o 1. _on—1
Bn(k)_Z(—l)f( ; )6 TSk, =]
=0
and
k

Cu(k) =33 (—1)7 (”;J)G"—2i—1; 0<k<h, i = LgJ.

n—j

Jj=0

Balancing and Lucas-balancing sequences are generalized in many ways. For
details, one can see for example [2, 5, 6, 7, 9].

In this note, we generalize balancing and Lucas-balancing sequences by in-
troducing balancing and Lucas-balancing p-numbers and deduce some of their
properties. Further, we also present some of the combinatorial forms of these
number sequences.

2. BALANCING AND LUCAS-BALANCING p-NUMBERS

In this section we introduce balancing and Lucas-balancing p-numbers and
establish some of their properties.

Definition 2.1. For any given non-negative integer p, the balancing p-sequence
is recursively defined as

By(n) =6B,(n—1) — By(n—p—1), (2.1)
with seeds

By(n) =6""1; forn=1,2,...,p+1 and B,(0) = 0. (2.2)
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For different values of p the recurrence relation (2.1) generates some interest-
ing known sequences. For example, for the case p = 0, the recurrence relation
(2.1) is reduced to the identity By(n) = 5By(n — 1), which generates the se-
quence of power of five, that is Bg(n) = {5°,5',52,5%,...} for n = 1,2,...
with the given initials By(0) = 0 and By(1) = 1.

For the case p = 1, the basic recurrence relation (2.1) takes the form
Bi(n) = 6Bi(n — 1) — Bi(n — 2), with the initials B1(2) = 6! = 6 and
Bi1(1) = 6° = 1 and which generates the classical balancing sequence Bj(n) =
B, = {1,6,35,204,1189,6930, ... } for all n € N.

Definition 2.2. For any given non-negative integer p, Lucas-balancing p-
numbers are defined by the following recurrence relation:

Cy(n) = 6Cy(n — 1) — Cyln — p— 1), (2.3)

with seeds

1
Colp+1)=3 <6p — pJg> and Cp(n) =3-6""1, forn=1,2,...,p. (2.4)

Notice that C,(0) = p—;l. Furthermore, for the initials Ci(1) = 3 and
(1 (2) = 17, the recurrence relation (2.3) generates the classical Lucas-balancing
numbers C,, = C1(n) = {3,17,99,577,... }.

Proposition 2.3. For any particular positive integer p the sum of the balancing
p-numbers By(n) for all non-negative integers n is

S B(0) = ({By(n+ 1) = 3 Byln i)~ Bylp+ 1) + (6~ 1)}
1=0 1=0

Proof. We will prove this by using the principle of mathematical induction on
n. Clearly the result is true for n = 0,1 and 2. Let us assume the statement is
true for n = k, and is

k p—1
S B(0) = (Bl +1) = X By(k —i) = By(p+1) + 6~ 1
=0 1=0
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k+1
Now Y B,(i) can be written as
1=0
k+1
ZB Z (i) + By(k+1)
=0
f{B (k+1)— ZBP By(p+1) 46" —1} + By(k+1)
{5B (k+1) ZBP By(p+1)+ 6" —1}
1 p2
= {6By(k+1) = By(k—p+1) = By(k+1) - > By(k—1i)
=0
— By(p+1)+6° —1}
1 2
= {6By(k+1) = By(k—p+1) - > By(k+1-1i)
1=0
— B,(p+1)+6° —1}
1 =
=Bk +2) - > By(k+1—i)— By(p+1)+6" -1},
1=0
which proves the result. O

Proposition 2.4. For any particular positive integer p the sum of the Lucas-
balancing p-numbers Cp(n) for all positive integer n is

ZCp(i):i{Cp(n-i—l Zc n—i)—Cy(p+1)+3(6" — 1)}

Proof. The proof has similar approach to the above. O

As the limit of the ratio of two adjacent balancing and Lucas-balancing p-
numbers By, (n) and C,(n) respectively tends to a definite proportion, we have

lim 7317(”) =
n—o0 By(n —1)

Which imply by recurrence formula that

By(n) _ 6B,(n—1) — Bp(n—p—1)
B,(n—1) By(n—1)
1
= 6- Br(n—1) °
Bp(n—p—1)
It follows that

_B(n) 1
Bp(n _ 1) By (n—1)Bp(n—2)---Bp(n—p)

Bp(n—2)B,(n—3)---Bp(n—p—1)
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Taking lim on both sides, we get the result
n—oo

2Pt —62P 41 =0. (2.5)

The result (2.5) is the algebraic equation of (p + 1)-th degree and has (p + 1)
roots namely be x1, 2,23, ..., Tp+1. Now we examine the equation (2.5) for
different values of p. By taking p = 0, (2.5) is the trivial equation x = 5, and
for p = 1, (2.5) becomes 2% — 6z + 1 = 0. After solving this equation, we get
two defined roots A; and A, and has Binet’s formulas (1.1) and (1.2).

Now we derive the Binet’s formula for B,(n) and Cp(n). Let x1, z2, ..., T,
Tp11 be roots of the polynomial equation P! — 6xP + 1 = 0, then the Binet’s
formulas for balancing and Lucas-balancing p-numbers with p > 0, are of the
forms

Bp(n) = k1ot + kowy + -+ kpp1my (2.6)
and

Cp(n) = a1zt + agwy + -+ apr12,4 1, (2.7)
respectively, where k1, ko, ..., kpy1 and aq, ag, .. ., apy; are coefficient constants.

By considering the balancing p-numbers given by the recurrence relation
(2.1) and by using (2.2) and (2.6), we will get a set of following results.

Bp(0) = k1 +ka + -+ kpr1 = 0;

By(1) = kywy + koxo + - - + kppizp0 = 1

B,(2) = kya? + koxd + - + kp+1x12)+1 = 6; (2.8)
By(p) = kraf + kol + -+ + kppaxh = 677"

Similarly by considering (2.3) and by using (2.4) and (2.7), we get

+1
CP(O) =ai+az+ -+ app1 :pT;
Cp(l) =171 + %2 + -+ App1Tpyr1 = 3;
CP(Z) = a1x% + @2]}% 4+ ap+1x12)+1 =18; (29)

Cp(p) = araf + agah + - +app1ap =3 6Pt

Solving the above sets of equations, we get the approximate values of all con-
stants kl, k27 ey kp+1 and a1,42,...,0p41-

For the case p = 1, the characteristic equation 2P*! —62P +1 = 0 is 2% — 6z +
1 = 0, which implies the roots x1 = Ay =3+ V8 and xo = Ao = )\% =3 -8
Hence for p = 1, equation (2.6) becomes the Binet’s formula for balancing
l-number and is
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To find out the values of k; and ko, use equation (2.8) and get k1 = 2—\1@ and
ko = %. Hence by manipulating k1 and ko in (2.10), we get the desired Binet’s
formula (1.1).

In a similar way we find the Binet’s formula for Lucas-balancing 1-numbers
Ci(n), equation (2.7) implies

C1(n) = a127 + asx} = a1 (34 V8)™ + az(3 — V)™ (2.11)

To find out the values of a; and as, use equation (2.9) and get a3 = % and
ag = % Hence by manipulating a; and as in (2.11), we get the desired Binet’s
formula (1.2).

For p = 2, from the algebraic equation 2P —62P41 = 0 we get 23 —622+1 =
0, which gives xy = —0.39543, xo2 = 0.42347 and x5 = 5.9720. Again for p = 2,
the Binet’s formula (2.6) and equation (2.8) become

By(n) = ki + kawly + kszh (2.12)
and
k1 + ko + k3 = 0;
kixq + koxo + kzxs = 1;
ki3 + koxs + kszi = 6,
respectively, and solving this system of equations, we get k; = —0.0758435,

ko = —0.0931908 and k3 = 0.169034.
Finally, (2.12) can be written as

Bs(n) = (—0.0758435)(—0.39543)" + (—0.0931908)(0.42347)"
+(0.169034)(5.9720)",

which is the Binet’s formula for balancing 2-numbers for any integers n =
0,41,42,+3,.. ..

Similarly we can calculate the Binet’s formula for the Lucas-balancing 2-
numbers. Put p = 2 in the algebraic equation xPt! — 62P 4+ 1 = 0, we get the
desired equation 23 — 622 + 1 = 0, which acquire same roots 21 = —0.39543,
9 = 0.42347 and x3 = 5.9720. Again by using p = 2, the Binet’s formula (2.7)
and equation (2.9) become

Ca(n) = a1zt + asxy + azxy (2.13)
and

3
a1+a2+a3:§;

a1x1 + 222 + azxrz = 3,

2 2 2
a1z] + agx;5 + azzy = 18,
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respectively and solving this system of equations, we get a; = 0.499979, a; =
0.500028 and az = 0.499993.
Finally, (2.13) can be written as

Ca(n) = (0.499979)(—0.39543)" + (0.500028)(0.42347)" + (0.499993)(5.9720)",

which is the Binet’s formula for the Lucas-balancing 2-numbers for any integers
n=0,%1,+2 43, .

In this way we can find out the Binet’s formulas for all remaining balanc-
ing and Lucas-balancing p-numbers for occurrence of p = 3,4, -- . In general
the Binet’s formulas for balancing and Lucas-balancing p-numbers are of the
form given by (2.6) and (2.7) in which the coefficients ki, k2, -, kp+1 and
a1,as,- -+ ,ap+1 can be calculated by using the equations (2.8) and (2.9).

Before going to prove the following theorem it is better to discuss one more
thing, that is, if 1, 22,23, ,Tp41 are roots of the characteristic equation
2Pl — 62P + 1 = 0, then these roots can be written in balancing and Lucas-
balancing p-numbers as in form:

el =6ar =y P = g (6ay T — 2 P =yl (2.14)
for all integer values n and k =1,2,3,--- ,p+ 1.

Theorem 2.5. For any given positive integers p(p > 0), balancing p-numbers
can be written for (n =0,£1,4+2,£3,---) in the form:

Bp(n) = k1xy + koxy + -+ kpp1my,q, (2.15)
where k1, kg, -+ ,kp11 are coefficient constants and x1,x2, - ,Tpy1 are T00tS

of the polynomial equation xPT1 —6xP +1 = 0.
Proof. We can easily find out the first p-terms for n = 0,1,2,--- ,p of the
balancing p-numbers by using (2.6), (2.8) and algebraic equation zP™! — 62P +
1 = 0. Now our seek is to prove By(n) = kizy + koxly + -+ + kpy17p, for
remaining positive integers. For the case n = p 4+ 1, we have

By(p+1) =kttt 4 ko 4 4 kp_s_w:gﬂ

:6[]?11‘11) + Ifgl‘g + -+ ]i'p-',-l.TZ_i_l] — [k‘ll‘(l) + kigl‘g + -
+ kp+1332+1]-
Therefore according to (2.8), we have
By(p+1) =6By,(p) — By(0),

which is the basic recurrence relation (2.1) for n = p + 1.

Similarly it is easy to prove that equation (2.15) is true for all remaining
positive values from n = p + 2.
Finally, we have to prove equation (2.15) is true for all negative values of n.
For the case n = —1:

Bp(—1) = kiay ' + koxy ' 4+ kppia . (2.16)
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Let write (2.14) in the form:
ap P =6 ap Tt - al (2.17)
By puting n = p in (2.17), we get
ot =62t~ (2.18)

Apply (2.18) in (2.16), we get

By(—1) = 6[kia} " +koab ™ -t kpirah y] — kel Fhaah 4 kel ).

(2.19)
Using (2.8), expression (2.19) will become
Bp(_l) = GBp(p -1) - Bp(p) =0,
which is the balancing p-number B,(—1) = 0.
Similarly, for negative values of n = —2, —3, —4, - - - , we will get all balancing
p-numbers. Hence the equation (2.15) is true for allm = 0, £1,+2, £3,- - - . This
completes the proof. O

Using a similar approach to Theorem 2.5, we can also prove the following
theorem for Lucas-balancing p-numbers

Theorem 2.6. For any given positive integers p(p > 0), Lucas-balancing p-
numbers can be written for (n = 0,+1,+2,43,---) in the form:

n n n
Cp(n) = a1y + azay + -+ + ap12y4 1,
where a1, az, -+ ,ap41 are coefficient constants and x1,%2,- - ,Tpr1 are T00tS

of the polynomial equation xPT1 —6xP 4+ 1 = 0.

3. INCOMPLETE BALANCING AND LUCAS-BALANCING p-NUMBERS

In this section we introduce incomplete balancing and Lucas-balancing p-
numbers and present some of their properties.

Definition 3.1. The incomplete balancing p-numbers denoted by B;; (n) are
defined by

k .
: n—l—m> —(pt1)j— n—1
BF(n) =) (—1) 6n Pl (=123 ;0< k< :
HO) ;:0:( >( ; ( )

(3.1)

In a similar manner incomplete Lucas-balancing p-numbers can also be de-
fined as follows:


http://dx.doi.org/10.52547/ijmsi.17.2.147
http://ijmsi.com/article-1-1448-en.html

[ Downloaded from ijmsi.com on 2025-11-28 ]

[ DOI: 10.52547/ijmsi.17.2.147 ]

On the Properties of Balancing and Lucas-Balancing p-Numbers 155

Definition 3.2. The incomplete Lucas-balancing p-numbers denoted by C’;j (n)
are defined by

Notice that BY'T 1(n) = By, ¥/ (n) = €, and BE(n) = By (k), CF(n) =
Co(k).

Some cases based on definitions 3.1 and 3.2 are

Bg =6""% foralln >1

)

1 _ pn—1 n—p—2 .
B,(n)=6"""—6"""""(n—p—1); foralln >p+2,

2 n—1 n—p—2 n—2p—4,
By(n) =6"""—(n—1-p)6" " P"=+3(n—2p—1)(n—2p—2)6""""%
forallm >2p+1,

n—

n=1
B,}”“%n) = By(n); foralln > 1,
0 _ n—1,
Cp(n)=3.6"""; foralln > 1,

1 — n—1 n—p—217.
Cp(n) =3[6""" —n6""P77]; foralln >p+1,

Cz(n) =3[6""' —n6"P2 +3n(n—2p—1)6""2P"1; for all n > 2p + 2
and
C’ptﬁj(n) = Cp(n); for alln > 1.

Proposition 3.3. The recurrence relation of the incomplete balancing p-number
is defined as:

n—p—3

k410 \ — qRk+1 k .
By (n)=6B""(n—1)-B(n—p—1); 0<k< P

(3.3)
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Proof. By using Definition 3.1, the right hand side of (3.3) can be written as

k+1 n— i —2 A k n— i 9
S I G LT S M g R PR

§=0 J j=0 J

k+1 . k+1 .
B s (=PI =2\ e (pt1)—1 - j=1 (=PI = 2\ e (pr1)i—1
= (-1 _ 6 =Y (-1 L T)e

i=0 J i=1 J

k+1 . k+1 . 9
~S(1y (" —pi- >6n—<p+1>g LY (” - >6n—<p+1>j—1

i=0 J =0 J

n—2
_ 6”—1
ey

k+1 .

72 [ pJ -2 (P 2 }(71)j6n7(p+1)j71
j—1

k+1
fz <” pj - >(_1)j6n<p+1>j1
:B§+1(n),
and the result follows. |

By virtue of Proposition 3.3 and equation (3.1), we get the following identity.

BE(n) = 6BS(n—1)~ Bl (n—p—1)+(~1)" (“ A 2) 6r =411
(3.4)

Proposition 3.4.

h

> ( ) 6B (n+p(j — 1)) =Byt (n+ (p+ Dh—p); (3.5
7=0

(0 <k< Lh—l)

p+1

Proof. We shall prove this property by using principle of mathematical induc-
tion on h. The above sum (3.5) clearly holds for h = 0 and h = 1. Let us assume
it holds for certain h > 1. We will show that it holds for » — h 4+ 1, now we
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have
h+1
h+1 4 —_ .
Z( ) )(—1>J+h+16ﬂB,’f+ﬂ<n+p<g—1))
=0

Z’il(—l)j*h“((}?) +< h ))B;;H(n—l-p(j—l))ﬁj

o J J—1
h+1 ) h ) h+1 h
Z(I)J+h+1( _>B§+J (n +p(j — 1)>6j + Z(,l)gﬁrhﬂ ( )
— J — 7j—1
7=0 7=0
x Bkt (n+p(j - 1))6j
h
, h , ,
=— B (n+(p+Dh—p)+ Y (—1)7H (j.)B,’.f”“ (n erj)6j+1
j=—1
h _ L _ _
=B (n+ (p+Dh—p)+ ) (1) <j>B§“+l (n +pj)6J-6
=0
1 h+1 h Bk
+(=D" ) Bp(n—p)

h
=—Bff"(n+ (p+1)h—p)+6) (—1)J+h<j>35”“(n+m)63
i=0

_ k+h k+h+1
=—-B;""(n+(p+1)h—p)+6B; (n+ (p+1)h)
=Byt (n+ (p+1)h + 1),

which follows the result. O

Proposition 3.5. Let k be a non-negative integer. For n = (p+ 1)k +p+ 2,
we have
h—1
> 6" '"IBE(n —p+j) =6"Bit (n) - Byt (n+ h). (3.6)
§=0
Proof. We shall prove this by using mathematical induction on h. The result
is obvious for h =1 and h = 2 by using (3.3).
Let us assume the given statement (3.6) is true for h = ¢ that is
t—1
> 6Bl (n—p+j) = 6"BE (n) — Bit (n +1).
§=0
Now it is enough to show that the sum (3.6) is true for h=¢t+1:

t
ZGt_ng(n —p+j)= 6t+1B§+1(n) - B;f"'l(n +t+1).
5=0
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This implies
t—1

626t_1_]B£(n —p+Jj)+ B}I;(n —p+t)= 6t+1B§+1(n) — B§+1(n +t+1).
j=0

The above equality gives
6" BM T (n) — 6By (n+t) + BE(n —p+t) = 6T BE (n) — BET (n+t +1).
Further simplification results

BS+1(n +t+1)= 6B§+1(n +1t) — B;f(n —p+t).
This completes the result in view of (3.3). O

Proposition 3.6.

2Ck(n) = 6BE(n) — (p+ 1)BE (n—p); 0< k< |

Proof. The right hand side of (3.7) can be written as

62 <n pi = >6n<p+1)j1 _ (p+1)]§(71)j <n—p—_pj— 1)

j=0
x gn—P—(p+1)i—1

762 (n p] >6n (p+1)j p+1 Z i < J[i]11>

Jj=1
w gn—(p+1)i

E ) k
N (M —P)] — n—(p+1)j n—p] n—(p+1)j
= -1/ , 6" T 4 (p+1) ( )6

S (") S (",

J

LT el Yo
k .
=6 Z(—l)j% (" B pJ) gn—(p+1)i—1

J

and then the result follows. O

Proposition 3.7. The recurrence relation of the incomplete Lucas-balancing
p-numbers CJ(n) is
n—p-—2

C;f“(n):605“(71—1)—05(71—1)—1); (OSk‘S o

). (3.8)
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Proof. Applying (3.3) and (3.7), we have
2C’§+1(n)
=6(6BE" (n— 1) = (p+ DBE( —p—1)) = (6Bin—p—1) = (p+1)
X B]’f_l(n —2p— 1))
:6(20};“@ - 1)) —2Ck(n —p—1).
Hence, C¥*1(n) = 6CET (n—1) - Ck(n—p—1) . O

Here we observe that by applying (3.2), the above relation (3.8) can be
transformed into the non-homogeneous relation

n—p—1
n—(k+1)p—1

y (n —(k+1)p— 1> g (k+1)p—k—2. (3.9)

C’I’f(n) =6C§(n -1) - C’I]f(n —p—1)+3(-1)*

k

Proposition 3.8. For 0 <k < ”;ﬁ;h, we have

h
h . . .
> ( ) (=16 R (n 4 p( = 1)) = CE (04 (p+ 1)k = p).
i=o M

Proof. The proof is similar to Proposition 3.4. O

Proposition 3.9. Let k be a non-negative integer. Forn > (p+1)(k+1), the
identity

h—1
> 6" (= p ) = 6" Cpt (n) = Oyt (n+ h)
j=0
holds.
Proof. The proof is analogous to Proposition 3.5. O

The following result which has already proved in [8] is useful while finding
the generating functions of Bf(n) and Cf(n).

Lemma 3.10. Let {s,}>2, be a complex sequence satisfying the non-homogeneous
recurrence relation

Sn = 637171 — Sp—p—1 +rn, n>p,

where T, s a given complex sequence. Then the generating function S;;(t) of
the sequence {s,}22 is

Sk(t) = s0 =10+ Yy t'(si = 6si1 —71i) + G(t)
P 1 — 6t + tr+1 ’

where G(t) denotes the generating function of {ry,}.
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Theorem 3.11. The generating function of the incomplete balancing p-numbers
B]’,f(n) (k=0,1,2,3,...) is given by

f: B} (k)t!

Jj=0

Ry(t)

= t’“(P“)“HB (k(p+1)+1) + Zt’ (k(p+1)+i+1)—

6B, (k(p +1) +1)) (1 = 61)"+1 + (—1)e+1]
[(1 — 6t + (1 — 6t)k+1} B

Proof. We prove this theorem by using Lemma 3.10. Let k£ be a fixed positive
integer, from (3.1) and (3.4), we have

k .
By(n)=0; if0<n<k(p+1)+1

and
Bi(k(p+1)+1) = By(k(p+1) + 1),
Bi(k(p+1)+2) = By(k(p+1) +2),
Bi(k(p+1)+p+1)=By(k(p+1) +p+1),
and that

Bﬁ(n) = 6B§(n— 1) —B]I;(n—p— 1)

—plk+1)—2 _ —p—
_1k, n p( n—k(p+1)—p—2
e ( k1) -p-2)° ’

ifn>k(p+1)+p+2.
We let

S0 = Bj;(k(p+ 1)+1), 81 = Bj;(k(p+ 1) +2), .8 = B;f(k(p—k )+p+1)

and s, = BF(n + k(p+1) + 1). Suppose that ro =71 =719 =--- =7, =0 and
= n-—= (p+ 1) +k (71)k6n7(p+1).
n—(p+1)

Thus we can easily derive that the generating function of the sequence r,, is
(see p.355 of [10] )
(_1)ktp+1

G(t) = (g
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Then in view of Lemma 3.10, the generating function

(_1)k‘tp+1

k _ p+1y _ 7 -
SE(£)(1-6t + 7+1) T

=Bi(k(p+1)+1)+ iti(Bp(k(p +1)+i+1)

— 6B, (k(p+1) +1)),

which implies
skw) = [{Bhkp+1)+1)+ iti(Bp(k(p 1) i+ 1) = 6By (k(p+1) +

-1
)1 — 6t)Rt 4 (—1)’%17“} [(1 — 6t + tPT1)(1 — st)’fﬂ .
Finally, we conclude that
ki — tk(p+1)+1 gk
RE(t) = PP DTLGR (),
This completes the proof. O

Theorem 3.12. The generating function of the incomplete Lucas-balancing
p-numbers C}’;(n) (k=0,1,2,3,...) is given by

CJ (k)
j=0

Wy (#)

— kD) [{Cp(k(p +1)+ zp: tH(Cp(k(p+1) +14) — 6C,(k(p+ 1) +

i — 1))}(1 — 6 4 (—1)R3P L (p(1 — ) + 1)} [(1 — 6t + P+ -
1- 6t)k+1}71.

Proof. We prove this theorem by using Lemma 3.10. Let k be a fixed positive
integer, from (3.2) and (3.9), we have

Cr(n)=0; if0<n<k(p+1)

and

Cy(k(p+1)) = Cp(k(p+1)),

Cp(k(p+1)+1) = Cp(k(p+1) + 1),
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and that
n—p—1
n—(k+1)p—1

( n—pk+1) -1 >6n—k(p+1)—p—2.

CE(n) =6C(n—1) — Ch(n—p—1)+3(-1)"

—k(p+1)—p-1

ifn>k(p+1)+p+1. Welet

Ch(k(p+1)), s1 = Cylk(p+1)+1), -+, s, = Ch(k(p+1) +p) and
—ij(n—i—k(p-i—l)).
Suppose that 1o =71 =719 =---=7r, =0 and

o n+klp+l)—-p—1/n—(p+1)+k kpn—(p+2)
n = 3(—1)k6 .
n+k—p-—1 n—(p+1)

Then the generating function of the sequence 7, is (p.355, [10] )

—1)F3trH(p(1 —t) + 1)
(1 — 6t)~+1

Gy =

By virtue of Lemma 3.10, the generating function

_1)kap+1 _
Syl — ot + or+1) — L1 gfl_(é;()iﬂtwrl)
= Cy(k(p+1)) +Ztl (k(p+1) +) — 6C,(k(p+ 1) +i — 1)).
i=1
Further simplification gives
sk = [{Chkp+1)) Zt’ (k(p+1) +1i) — 6Cy(k(p+1) +i — 1))}

(1= 66)%+1 4 (—1)%3P+ (p(1 — ¢) + 1)} [(1 — 6t + tPT1) .
(1- 6t)k+1} B
Finally, we conclude that
Wk(t) = tFPt gk (),

and hence the proof. O
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