

On the Properties of Balancing and Lucas-Balancing p -Numbers

Adikanda Behera, Prasanta Kumar Ray*

Department of Mathematics, Sambalpur University, Burla, India

E-mail: adikanda.math@gmail.com

E-mail: prasantamath@suniv.ac.in

ABSTRACT. The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing p -numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.

Keywords: Balancing p -numbers, Lucas-balancing p -numbers, Incomplete balancing p -numbers, Incomplete Lucas-balancing p -numbers.

2020 Mathematics subject classification: 11B37, 11B39.

1. INTRODUCTION

A number sequence closely associated to the famous Fibonacci sequence is the balancing sequence. Behera and Panda [1] in 1999 defined a natural number n as a balancing number if it is the solution of a simple Diophantine equation $1 + 2 + \cdots + (n - 1) = (n + 1) + (n + 2) + \cdots + (n + r)$, calling r as the balancer corresponding to n . In general if B_n denotes the n -th balancing number, then the balancing sequence is defined recursively as $B_n = 6B_{n-1} - B_{n-2}$, for $n \geq 2$ with seeds $B_0 = 0$ and $B_1 = 1$. The sequence companion to balancing sequence is the Lucas-balancing sequence whose recurrence relation is given by $C_n = 6C_{n-1} - C_{n-2}$, for $n \geq 2$ with seeds $C_0 = 1$ and $C_1 = 3$, where C_n denotes the n -th Lucas-balancing number. It is known that the ratio of two adjacent

*Corresponding Author

balancing numbers B_n and Lucas-balancing numbers C_n tends to a definite proportion $3 + \sqrt{8}$ as $n \rightarrow \infty$. This number $\lambda_1 = 3 + \sqrt{8}$ and its conjugate $\lambda_2 = 3 - \sqrt{8}$ are indeed the roots of the characteristic equation $x^2 - 6x + 1 = 0$. Binet's formulas are well-known in the theory of the balancing numbers, these formulas allow all balancing numbers B_n and Lucas-balancing numbers C_n to be represented by the roots of the characteristic equation as

$$B_n = \frac{\lambda_1^n - \lambda_2^n}{2\sqrt{8}} \quad (1.1)$$

and

$$C_n = \frac{\lambda_1^n + \lambda_2^n}{2}. \quad (1.2)$$

The theory of balancing numbers is broadly studied by many authors, the interested readers may see [1, 3, 4, 6, 11] for a detail review. The combinatorial forms for balancing and Lucas-balancing numbers were almost studied by Patel et al. [7]. They defined incomplete balancing and Lucas-balancing numbers as

$$B_n(k) = \sum_{j=0}^k (-1)^j \binom{n-1-j}{j} 6^{n-2j-1}; \quad 0 \leq k \leq \tilde{n}, \quad \tilde{n} = \lfloor \frac{n-1}{2} \rfloor$$

and

$$C_n(k) = 3 \sum_{j=0}^k (-1)^j \frac{n}{n-j} \binom{n-j}{j} 6^{n-2j-1}; \quad 0 \leq k \leq \hat{n}, \quad \hat{n} = \lfloor \frac{n}{2} \rfloor.$$

Balancing and Lucas-balancing sequences are generalized in many ways. For details, one can see for example [2, 5, 6, 7, 9].

In this note, we generalize balancing and Lucas-balancing sequences by introducing balancing and Lucas-balancing p -numbers and deduce some of their properties. Further, we also present some of the combinatorial forms of these number sequences.

2. BALANCING AND LUCAS-BALANCING p -NUMBERS

In this section we introduce balancing and Lucas-balancing p -numbers and establish some of their properties.

Definition 2.1. For any given non-negative integer p , the balancing p -sequence is recursively defined as

$$B_p(n) = 6B_p(n-1) - B_p(n-p-1), \quad (2.1)$$

with seeds

$$B_p(n) = 6^{n-1}; \quad \text{for } n = 1, 2, \dots, p+1 \text{ and } B_p(0) = 0. \quad (2.2)$$

For different values of p the recurrence relation (2.1) generates some interesting known sequences. For example, for the case $p = 0$, the recurrence relation (2.1) is reduced to the identity $B_0(n) = 5B_0(n - 1)$, which generates the sequence of power of five, that is $B_0(n) = \{5^0, 5^1, 5^2, 5^3, \dots\}$ for $n = 1, 2, \dots$ with the given initials $B_0(0) = 0$ and $B_0(1) = 1$.

For the case $p = 1$, the basic recurrence relation (2.1) takes the form $B_1(n) = 6B_1(n - 1) - B_1(n - 2)$, with the initials $B_1(2) = 6^1 = 6$ and $B_1(1) = 6^0 = 1$ and which generates the classical balancing sequence $B_1(n) = B_n = \{1, 6, 35, 204, 1189, 6930, \dots\}$ for all $n \in \mathbb{N}$.

Definition 2.2. For any given non-negative integer p , Lucas-balancing p -numbers are defined by the following recurrence relation:

$$C_p(n) = 6C_p(n - 1) - C_p(n - p - 1), \quad (2.3)$$

with seeds

$$C_p(p + 1) = 3 \left(6^p - \frac{p + 1}{6} \right) \text{ and } C_p(n) = 3 \cdot 6^{n-1}, \text{ for } n = 1, 2, \dots, p. \quad (2.4)$$

Notice that $C_p(0) = \frac{p+1}{2}$. Furthermore, for the initials $C_1(1) = 3$ and $C_1(2) = 17$, the recurrence relation (2.3) generates the classical Lucas-balancing numbers $C_n = C_1(n) = \{3, 17, 99, 577, \dots\}$.

Proposition 2.3. For any particular positive integer p the sum of the balancing p -numbers $B_p(n)$ for all non-negative integers n is

$$\sum_{i=0}^n B_p(i) = \frac{1}{4} \{ B_p(n + 1) - \sum_{i=0}^{p-1} B_p(n - i) - B_p(p + 1) + (6^p - 1) \}.$$

Proof. We will prove this by using the principle of mathematical induction on n . Clearly the result is true for $n = 0, 1$ and 2 . Let us assume the statement is true for $n = k$, and is

$$\sum_{i=0}^k B_p(i) = \frac{1}{4} \{ B_p(k + 1) - \sum_{i=0}^{p-1} B_p(k - i) - B_p(p + 1) + 6^p - 1 \}.$$

Now $\sum_{i=0}^{k+1} B_p(i)$ can be written as

$$\begin{aligned}
 \sum_{i=0}^{k+1} B_p(i) &= \sum_{i=0}^k B_p(i) + B_p(k+1) \\
 &= \frac{1}{4} \{B_p(k+1) - \sum_{i=0}^{p-1} B_p(k-i) - B_p(p+1) + 6^p - 1\} + B_p(k+1) \\
 &= \frac{1}{4} \{5B_p(k+1) - \sum_{i=0}^{p-1} B_p(k-i) - B_p(p+1) + 6^p - 1\} \\
 &= \frac{1}{4} \{6B_p(k+1) - B_p(k-p+1) - B_p(k+1) - \sum_{i=0}^{p-2} B_p(k-i) \\
 &\quad - B_p(p+1) + 6^p - 1\} \\
 &= \frac{1}{4} \{6B_p(k+1) - B_p(k-p+1) - \sum_{i=0}^{p-1} B_p(k+1-i) \\
 &\quad - B_p(p+1) + 6^p - 1\} \\
 &= \frac{1}{4} \{B_p(k+2) - \sum_{i=0}^{p-1} B_p(k+1-i) - B_p(p+1) + 6^p - 1\},
 \end{aligned}$$

which proves the result. \square

Proposition 2.4. *For any particular positive integer p the sum of the Lucas-balancing p -numbers $C_p(n)$ for all positive integer n is*

$$\sum_{i=1}^n C_p(i) = \frac{1}{4} \{C_p(n+1) - \sum_{i=0}^{p-1} C_p(n-i) - C_p(p+1) + 3(6^p - 1)\}.$$

Proof. The proof has similar approach to the above. \square

As the limit of the ratio of two adjacent balancing and Lucas-balancing p -numbers $B_p(n)$ and $C_p(n)$ respectively tends to a definite proportion, we have

$$\lim_{n \rightarrow \infty} \frac{B_p(n)}{B_p(n-1)} = x.$$

Which imply by recurrence formula that

$$\begin{aligned}
 \frac{B_p(n)}{B_p(n-1)} &= \frac{6B_p(n-1) - B_p(n-p-1)}{B_p(n-1)} \\
 &= 6 - \frac{1}{\frac{B_p(n-1)}{B_p(n-p-1)}}.
 \end{aligned}$$

It follows that

$$\frac{B_p(n)}{B_p(n-1)} = 6 - \frac{1}{\frac{B_p(n-1)B_p(n-2)\cdots B_p(n-p)}{B_p(n-2)B_p(n-3)\cdots B_p(n-p-1)}}.$$

Taking $\lim_{n \rightarrow \infty}$ on both sides, we get the result

$$x^{p+1} - 6x^p + 1 = 0. \quad (2.5)$$

The result (2.5) is the algebraic equation of $(p+1)$ -th degree and has $(p+1)$ roots namely be $x_1, x_2, x_3, \dots, x_{p+1}$. Now we examine the equation (2.5) for different values of p . By taking $p = 0$, (2.5) is the trivial equation $x = 5$, and for $p = 1$, (2.5) becomes $x^2 - 6x + 1 = 0$. After solving this equation, we get two defined roots λ_1 and λ_2 , and has Binet's formulas (1.1) and (1.2).

Now we derive the Binet's formula for $B_p(n)$ and $C_p(n)$. Let $x_1, x_2, \dots, x_p, x_{p+1}$ be roots of the polynomial equation $x^{p+1} - 6x^p + 1 = 0$, then the Binet's formulas for balancing and Lucas-balancing p -numbers with $p > 0$, are of the forms

$$B_p(n) = k_1 x_1^n + k_2 x_2^n + \dots + k_{p+1} x_{p+1}^n \quad (2.6)$$

and

$$C_p(n) = a_1 x_1^n + a_2 x_2^n + \dots + a_{p+1} x_{p+1}^n, \quad (2.7)$$

respectively, where k_1, k_2, \dots, k_{p+1} and a_1, a_2, \dots, a_{p+1} are coefficient constants.

By considering the balancing p -numbers given by the recurrence relation (2.1) and by using (2.2) and (2.6), we will get a set of following results.

$$\begin{aligned} B_p(0) &= k_1 + k_2 + \dots + k_{p+1} = 0; \\ B_p(1) &= k_1 x_1 + k_2 x_2 + \dots + k_{p+1} x_{p+1} = 1; \\ B_p(2) &= k_1 x_1^2 + k_2 x_2^2 + \dots + k_{p+1} x_{p+1}^2 = 6; \\ &\dots \\ B_p(p) &= k_1 x_1^p + k_2 x_2^p + \dots + k_{p+1} x_{p+1}^p = 6^{p-1}. \end{aligned} \quad (2.8)$$

Similarly by considering (2.3) and by using (2.4) and (2.7), we get

$$\begin{aligned} C_p(0) &= a_1 + a_2 + \dots + a_{p+1} = \frac{p+1}{2}; \\ C_p(1) &= a_1 x_1 + a_2 x_2 + \dots + a_{p+1} x_{p+1} = 3; \\ C_p(2) &= a_1 x_1^2 + a_2 x_2^2 + \dots + a_{p+1} x_{p+1}^2 = 18; \\ &\dots \\ C_p(p) &= a_1 x_1^p + a_2 x_2^p + \dots + a_{p+1} x_{p+1}^p = 3 \cdot 6^{p-1}. \end{aligned} \quad (2.9)$$

Solving the above sets of equations, we get the approximate values of all constants k_1, k_2, \dots, k_{p+1} and a_1, a_2, \dots, a_{p+1} .

For the case $p = 1$, the characteristic equation $x^{p+1} - 6x^p + 1 = 0$ is $x^2 - 6x + 1 = 0$, which implies the roots $x_1 = \lambda_1 = 3 + \sqrt{8}$ and $x_2 = \lambda_2 = \frac{1}{\lambda_1} = 3 - \sqrt{8}$. Hence for $p = 1$, equation (2.6) becomes the Binet's formula for balancing 1-number and is

$$B_1(n) = k_1 x_1^n + k_2 x_2^n = k_1 (3 + \sqrt{8})^n + k_2 (3 - \sqrt{8})^n \quad (2.10)$$

To find out the values of k_1 and k_2 , use equation (2.8) and get $k_1 = \frac{1}{2\sqrt{8}}$ and $k_2 = \frac{-1}{2\sqrt{8}}$. Hence by manipulating k_1 and k_2 in (2.10), we get the desired Binet's formula (1.1).

In a similar way we find the Binet's formula for Lucas-balancing 1-numbers $C_1(n)$, equation (2.7) implies

$$C_1(n) = a_1 x_1^n + a_2 x_2^n = a_1(3 + \sqrt{8})^n + a_2(3 - \sqrt{8})^n. \quad (2.11)$$

To find out the values of a_1 and a_2 , use equation (2.9) and get $a_1 = \frac{1}{2}$ and $a_2 = \frac{1}{2}$. Hence by manipulating a_1 and a_2 in (2.11), we get the desired Binet's formula (1.2).

For $p = 2$, from the algebraic equation $x^{p+1} - 6x^p + 1 = 0$ we get $x^3 - 6x^2 + 1 = 0$, which gives $x_1 = -0.39543$, $x_2 = 0.42347$ and $x_3 = 5.9720$. Again for $p = 2$, the Binet's formula (2.6) and equation (2.8) become

$$B_2(n) = k_1 x_1^n + k_2 x_2^n + k_3 x_3^n \quad (2.12)$$

and

$$\begin{aligned} k_1 + k_2 + k_3 &= 0; \\ k_1 x_1 + k_2 x_2 + k_3 x_3 &= 1; \\ k_1 x_1^2 + k_2 x_2^2 + k_3 x_3^2 &= 6, \end{aligned}$$

respectively, and solving this system of equations, we get $k_1 = -0.0758435$, $k_2 = -0.0931908$ and $k_3 = 0.169034$.

Finally, (2.12) can be written as

$$\begin{aligned} B_2(n) &= (-0.0758435)(-0.39543)^n + (-0.0931908)(0.42347)^n \\ &\quad + (0.169034)(5.9720)^n, \end{aligned}$$

which is the Binet's formula for balancing 2-numbers for any integers $n = 0, \pm 1, \pm 2, \pm 3, \dots$

Similarly we can calculate the Binet's formula for the Lucas-balancing 2-numbers. Put $p = 2$ in the algebraic equation $x^{p+1} - 6x^p + 1 = 0$, we get the desired equation $x^3 - 6x^2 + 1 = 0$, which acquire same roots $x_1 = -0.39543$, $x_2 = 0.42347$ and $x_3 = 5.9720$. Again by using $p = 2$, the Binet's formula (2.7) and equation (2.9) become

$$C_2(n) = a_1 x_1^n + a_2 x_2^n + a_3 x_3^n \quad (2.13)$$

and

$$\begin{aligned} a_1 + a_2 + a_3 &= \frac{3}{2}; \\ a_1 x_1 + a_2 x_2 + a_3 x_3 &= 3; \\ a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 &= 18, \end{aligned}$$

respectively and solving this system of equations, we get $a_1 = 0.499979$, $a_2 = 0.500028$ and $a_3 = 0.499993$.

Finally, (2.13) can be written as

$$C_2(n) = (0.499979)(-0.39543)^n + (0.500028)(0.42347)^n + (0.499993)(5.9720)^n,$$

which is the Binet's formula for the Lucas-balancing 2-numbers for any integers $n = 0, \pm 1, \pm 2, \pm 3, \dots$.

In this way we can find out the Binet's formulas for all remaining balancing and Lucas-balancing p -numbers for occurrence of $p = 3, 4, \dots$. In general the Binet's formulas for balancing and Lucas-balancing p -numbers are of the form given by (2.6) and (2.7) in which the coefficients k_1, k_2, \dots, k_{p+1} and a_1, a_2, \dots, a_{p+1} can be calculated by using the equations (2.8) and (2.9).

Before going to prove the following theorem it is better to discuss one more thing, that is, if $x_1, x_2, x_3, \dots, x_{p+1}$ are roots of the characteristic equation $x^{p+1} - 6x^p + 1 = 0$, then these roots can be written in balancing and Lucas-balancing p -numbers as in form:

$$x_k^n = 6 \cdot x_k^{n-1} - x_k^{n-p-1} = x_k(6 \cdot x_k^{n-2} - x_k^{n-p-2}) = x_k \cdot x_k^{n-1}, \quad (2.14)$$

for all integer values n and $k = 1, 2, 3, \dots, p+1$.

Theorem 2.5. *For any given positive integers $p (p > 0)$, balancing p -numbers can be written for ($n = 0, \pm 1, \pm 2, \pm 3, \dots$) in the form:*

$$B_p(n) = k_1 x_1^n + k_2 x_2^n + \dots + k_{p+1} x_{p+1}^n, \quad (2.15)$$

where k_1, k_2, \dots, k_{p+1} are coefficient constants and x_1, x_2, \dots, x_{p+1} are roots of the polynomial equation $x^{p+1} - 6x^p + 1 = 0$.

Proof. We can easily find out the first p -terms for $n = 0, 1, 2, \dots, p$ of the balancing p -numbers by using (2.6), (2.8) and algebraic equation $x^{p+1} - 6x^p + 1 = 0$. Now our seek is to prove $B_p(n) = k_1 x_1^n + k_2 x_2^n + \dots + k_{p+1} x_{p+1}^n$ for remaining positive integers. For the case $n = p+1$, we have

$$\begin{aligned} B_p(p+1) &= k_1 x_1^{p+1} + k_2 x_2^{p+1} + \dots + k_{p+1} x_{p+1}^{p+1} \\ &= 6[k_1 x_1^p + k_2 x_2^p + \dots + k_{p+1} x_{p+1}^p] - [k_1 x_1^0 + k_2 x_2^0 + \dots \\ &\quad + k_{p+1} x_{p+1}^0]. \end{aligned}$$

Therefore according to (2.8), we have

$$B_p(p+1) = 6B_p(p) - B_p(0),$$

which is the basic recurrence relation (2.1) for $n = p+1$.

Similarly it is easy to prove that equation (2.15) is true for all remaining positive values from $n = p+2$.

Finally, we have to prove equation (2.15) is true for all negative values of n . For the case $n = -1$:

$$B_p(-1) = k_1 x_1^{-1} + k_2 x_2^{-1} + \dots + k_{p+1} x_{p+1}^{-1}. \quad (2.16)$$

Let write (2.14) in the form:

$$x_k^{n-p-1} = 6 \cdot x_k^{n-1} - x_k^n. \quad (2.17)$$

By putting $n = p$ in (2.17), we get

$$x_k^{-1} = 6 \cdot x_k^{p-1} - x_k^p. \quad (2.18)$$

Apply (2.18) in (2.16), we get

$$B_p(-1) = 6[k_1 x_1^{p-1} + k_2 x_2^{p-1} + \cdots + k_{p+1} x_{p+1}^{p-1}] - [k_1 x_1^p + k_2 x_2^p + \cdots + k_{p+1} x_{p+1}^p]. \quad (2.19)$$

Using (2.8), expression (2.19) will become

$$B_p(-1) = 6B_p(p-1) - B_p(p) = 0,$$

which is the balancing p -number $B_p(-1) = 0$.

Similarly, for negative values of $n = -2, -3, -4, \dots$, we will get all balancing p -numbers. Hence the equation (2.15) is true for all $n = 0, \pm 1, \pm 2, \pm 3, \dots$. This completes the proof. \square

Using a similar approach to Theorem 2.5, we can also prove the following theorem for Lucas-balancing p -numbers

Theorem 2.6. *For any given positive integers $p (p > 0)$, Lucas-balancing p -numbers can be written for ($n = 0, \pm 1, \pm 2, \pm 3, \dots$) in the form:*

$$C_p(n) = a_1 x_1^n + a_2 x_2^n + \cdots + a_{p+1} x_{p+1}^n,$$

where a_1, a_2, \dots, a_{p+1} are coefficient constants and x_1, x_2, \dots, x_{p+1} are roots of the polynomial equation $x^{p+1} - 6x^p + 1 = 0$.

3. INCOMPLETE BALANCING AND LUCAS-BALANCING p -NUMBERS

In this section we introduce incomplete balancing and Lucas-balancing p -numbers and present some of their properties.

Definition 3.1. The incomplete balancing p -numbers denoted by $B_p^k(n)$ are defined by

$$B_p^k(n) = \sum_{j=0}^k (-1)^j \binom{n-1-pj}{j} 6^{n-(p+1)j-1}, \quad (n = 1, 2, 3, \dots; 0 \leq k \leq \lfloor \frac{n-1}{p+1} \rfloor). \quad (3.1)$$

In a similar manner incomplete Lucas-balancing p -numbers can also be defined as follows:

Definition 3.2. The incomplete Lucas-balancing p -numbers denoted by $C_p^k(n)$ are defined by

$$C_p^k(n) = 3 \sum_{j=0}^k (-1)^j \frac{n}{n-pj} \binom{n-pj}{j} 6^{n-(p+1)j-1}, \quad (3.2)$$

$$\left(n = 1, 2, 3, \dots ; 0 \leq k \leq \lfloor \frac{n}{p+1} \rfloor \right).$$

Notice that $B_1^{\lfloor \frac{n-1}{2} \rfloor}(n) = B_n$, $C_1^{\lfloor \frac{n}{2} \rfloor}(n) = C_n$ and $B_1^k(n) = B_n(k)$, $C_1^k(n) = C_n(k)$.

Some cases based on definitions 3.1 and 3.2 are

$$B_p^0 = 6^{n-1}; \text{ for all } n \geq 1,$$

$$B_p^1(n) = 6^{n-1} - 6^{n-p-2}(n-p-1); \text{ for all } n \geq p+2,$$

$$B_p^2(n) = 6^{n-1} - (n-1-p)6^{n-p-2} + 3(n-2p-1)(n-2p-2)6^{n-2p-4};$$

$$\text{for all } n \geq 2p+1,$$

$$B_p^{\lfloor \frac{n-1}{p+1} \rfloor}(n) = B_p(n); \text{ for all } n \geq 1,$$

$$C_p^0(n) = 3 \cdot 6^{n-1}; \text{ for all } n \geq 1,$$

$$C_p^1(n) = 3[6^{n-1} - n6^{n-p-2}]; \text{ for all } n \geq p+1,$$

$$C_p^2(n) = 3[6^{n-1} - n6^{n-p-2} + 3n(n-2p-1)6^{n-2p-4}]; \text{ for all } n \geq 2p+2$$

and

$$C_p^{\lfloor \frac{n}{p+1} \rfloor}(n) = C_p(n); \text{ for all } n \geq 1.$$

Proposition 3.3. The recurrence relation of the incomplete balancing p -number is defined as:

$$B_p^{k+1}(n) = 6B_p^{k+1}(n-1) - B_p^k(n-p-1); \quad 0 \leq k \leq \frac{n-p-3}{p+1}. \quad (3.3)$$

Proof. By using Definition 3.1, the right hand side of (3.3) can be written as

$$\begin{aligned}
& 6 \sum_{j=0}^{k+1} (-1)^j \binom{n-pj-2}{j} 6^{n-(p+1)j-2} - \sum_{j=0}^k (-1)^j \binom{n-p-pj-2}{j} 6^{n-p-(p+1)j-2} \\
&= \sum_{j=0}^{k+1} (-1)^j \binom{n-pj-2}{j} 6^{n-(p+1)j-1} - \sum_{j=1}^{k+1} (-1)^{j-1} \binom{n-pj-2}{j-1} 6^{n-(p+1)j-1} \\
&= \sum_{j=0}^{k+1} (-1)^j \binom{n-pj-2}{j} 6^{n-(p+1)j-1} + \sum_{j=0}^{k+1} (-1)^j \binom{n-pj-2}{j-1} 6^{n-(p+1)j-1} \\
&\quad - \binom{n-2}{-1} 6^{n-1} \\
&= \sum_{j=0}^{k+1} \left[\binom{n-pj-2}{j} + \binom{n-pj-2}{j-1} \right] (-1)^j 6^{n-(p+1)j-1} \\
&= \sum_{j=0}^{k+1} \binom{n-pj-1}{j} (-1)^j 6^{n-(p+1)j-1} \\
&= B_p^{k+1}(n),
\end{aligned}$$

and the result follows. \square

By virtue of Proposition 3.3 and equation (3.1), we get the following identity.

$$B_p^k(n) = 6B_p^k(n-1) - B_p^k(n-p-1) + (-1)^k \binom{n-p(k+1)-2}{k} 6^{n-(p+1)(k+1)-1}. \quad (3.4)$$

Proposition 3.4.

$$\begin{aligned}
& \sum_{j=0}^h \binom{h}{j} (-1)^{j+h} 6^j B_p^{k+j}(n+p(j-1)) = B_p^{k+h}(n+(p+1)h-p); \quad (3.5) \\
& \left(0 \leq k \leq \frac{n-p-h-1}{p+1} \right).
\end{aligned}$$

Proof. We shall prove this property by using principle of mathematical induction on h . The above sum (3.5) clearly holds for $h = 0$ and $h = 1$. Let us assume it holds for certain $h > 1$. We will show that it holds for $h \rightarrow h + 1$, now we

have

$$\begin{aligned}
& \sum_{j=0}^{h+1} \binom{h+1}{j} (-1)^{j+h+1} 6^j B_p^{k+j} (n + p(j-1)) \\
&= \sum_{j=0}^{h+1} (-1)^{j+h+1} \left(\binom{h}{j} + \binom{h}{j-1} \right) B_p^{k+j} (n + p(j-1)) 6^j \\
&= \sum_{j=0}^{h+1} (-1)^{j+h+1} \binom{h}{j} B_p^{k+j} (n + p(j-1)) 6^j + \sum_{j=0}^{h+1} (-1)^{j+h+1} \binom{h}{j-1} \\
&\quad \times B_p^{k+j} (n + p(j-1)) 6^j \\
&= -B_p^{k+h} (n + (p+1)h - p) + \sum_{j=-1}^h (-1)^{j+h+2} \binom{h}{j} B_p^{k+j+1} (n + pj) 6^{j+1} \\
&= -B_p^{k+h} (n + (p+1)h - p) + \sum_{j=0}^h (-1)^{j+h+2} \binom{h}{j} B_p^{k+j+1} (n + pj) 6^j \cdot 6 \\
&\quad + (-1)^{h+1} \binom{h}{-1} B_p^k (n - p) \\
&= -B_p^{k+h} (n + (p+1)h - p) + 6 \sum_{j=0}^h (-1)^{j+h} \binom{h}{j} B_p^{k+j+1} (n + pj) 6^j \\
&= -B_p^{k+h} (n + (p+1)h - p) + 6 B_p^{k+h+1} (n + (p+1)h) \\
&= B_p^{k+h+1} (n + (p+1)h + 1),
\end{aligned}$$

which follows the result. \square

Proposition 3.5. *Let k be a non-negative integer. For $n \geq (p+1)k + p + 2$, we have*

$$\sum_{j=0}^{h-1} 6^{h-1-j} B_p^k (n - p + j) = 6^h B_p^{k+1} (n) - B_p^{k+1} (n + h). \quad (3.6)$$

Proof. We shall prove this by using mathematical induction on h . The result is obvious for $h = 1$ and $h = 2$ by using (3.3).

Let us assume the given statement (3.6) is true for $h = t$ that is

$$\sum_{j=0}^{t-1} 6^{t-1-j} B_p^k (n - p + j) = 6^t B_p^{k+1} (n) - B_p^{k+1} (n + t).$$

Now it is enough to show that the sum (3.6) is true for $h = t + 1$:

$$\sum_{j=0}^t 6^{t-j} B_p^k (n - p + j) = 6^{t+1} B_p^{k+1} (n) - B_p^{k+1} (n + t + 1).$$

This implies

$$6 \sum_{j=0}^{t-1} 6^{t-1-j} B_p^k(n-p+j) + B_p^k(n-p+t) = 6^{t+1} B_p^{k+1}(n) - B_p^{k+1}(n+t+1).$$

The above equality gives

$$6^{t+1} B_p^{k+1}(n) - 6 B_p^{k+1}(n+t) + B_p^k(n-p+t) = 6^{t+1} B_p^{k+1}(n) - B_p^{k+1}(n+t+1).$$

Further simplification results

$$B_p^{k+1}(n+t+1) = 6 B_p^{k+1}(n+t) - B_p^k(n-p+t).$$

This completes the result in view of (3.3). \square

Proposition 3.6.

$$2C_p^k(n) = 6B_p^k(n) - (p+1)B_p^{k-1}(n-p); \quad 0 \leq k \leq \lfloor \frac{n-1}{p+1} \rfloor. \quad (3.7)$$

Proof. The right hand side of (3.7) can be written as

$$\begin{aligned} & 6 \sum_{j=0}^k (-1)^j \binom{n-pj-1}{j} 6^{n-(p+1)j-1} - (p+1) \sum_{j=0}^{k-1} (-1)^j \binom{n-p-pj-1}{j} \\ & \quad \times 6^{n-p-(p+1)j-1} \\ & = 6 \sum_{j=0}^k (-1)^j \binom{n-pj-1}{j} 6^{n-(p+1)j-1} - (p+1) \sum_{j=1}^k (-1)^{j-1} \binom{n-pj-1}{j-1} \\ & \quad \times 6^{n-(p+1)j} \\ & = \sum_{j=0}^k (-1)^j \binom{n-pj-1}{j} 6^{n-(p+1)j} + (p+1) \sum_{j=0}^k (-1)^j \binom{n-pj-1}{j-1} 6^{n-(p+1)j} \\ & \quad - (p+1) \binom{n-1}{-1} 6^n \\ & = \sum_{j=0}^k \left[\binom{n-pj-1}{j} + (p+1) \binom{n-pj-1}{j-1} \right] (-1)^j 6^{n-(p+1)j} \\ & = 6 \sum_{j=0}^k (-1)^j \frac{n}{n-pj} \binom{n-pj}{j} 6^{n-(p+1)j-1} \\ & = 2C_p^k(n), \end{aligned}$$

and then the result follows. \square

Proposition 3.7. *The recurrence relation of the incomplete Lucas-balancing p -numbers $C_p^k(n)$ is*

$$C_p^{k+1}(n) = 6C_p^{k+1}(n-1) - C_p^k(n-p-1); \quad \left(0 \leq k \leq \frac{n-p-2}{p+1}\right). \quad (3.8)$$

Proof. Applying (3.3) and (3.7), we have

$$\begin{aligned} & 2C_p^{k+1}(n) \\ &= 6 \left(6B_p^{k+1}(n-1) - (p+1)B_p^k(n-p-1) \right) - \left(6B_p^k(n-p-1) - (p+1) \right. \\ &\quad \times B_p^{k-1}(n-2p-1) \Big) \\ &= 6 \left(2C_p^{k+1}(n-1) \right) - 2C_p^k(n-p-1). \end{aligned}$$

Hence, $C_p^{k+1}(n) = 6C_p^{k+1}(n-1) - C_p^k(n-p-1)$. \square

Here we observe that by applying (3.2), the above relation (3.8) can be transformed into the non-homogeneous relation

$$\begin{aligned} C_p^k(n) &= 6C_p^k(n-1) - C_p^k(n-p-1) + 3(-1)^k \frac{n-p-1}{n-(k+1)p-1} \\ &\quad \times \binom{n-(k+1)p-1}{k} 6^{n-(k+1)p-k-2}. \end{aligned} \quad (3.9)$$

Proposition 3.8. For $0 \leq k \leq \frac{n-p-h}{p+1}$, we have

$$\sum_{j=0}^h \binom{h}{j} (-1)^{j+h} 6^j C_p^{k+j}(n+p(j-1)) = C_p^{k+h}(n+(p+1)h-p).$$

Proof. The proof is similar to Proposition 3.4. \square

Proposition 3.9. Let k be a non-negative integer. For $n \geq (p+1)(k+1)$, the identity

$$\sum_{j=0}^{h-1} 6^{h-1-j} C_p^k(n-p+j) = 6^h C_p^{k+1}(n) - C_p^{k+1}(n+h)$$

holds.

Proof. The proof is analogous to Proposition 3.5. \square

The following result which has already proved in [8] is useful while finding the generating functions of $B_p^k(n)$ and $C_p^k(n)$.

Lemma 3.10. Let $\{s_n\}_{n=0}^{\infty}$ be a complex sequence satisfying the non-homogeneous recurrence relation

$$s_n = 6s_{n-1} - s_{n-p-1} + r_n, \quad n > p,$$

where r_n is a given complex sequence. Then the generating function $S_p^k(t)$ of the sequence $\{s_n\}_{n=0}^{\infty}$ is

$$S_p^k(t) = \frac{s_0 - r_0 + \sum_{i=1}^p t^i (s_i - 6s_{i-1} - r_i) + G(t)}{1 - 6t + t^{p+1}},$$

where $G(t)$ denotes the generating function of $\{r_n\}$.

Theorem 3.11. *The generating function of the incomplete balancing p -numbers $B_p^k(n)$ ($k = 0, 1, 2, 3, \dots$) is given by*

$$\begin{aligned} R_p^k(t) &= \sum_{j=0}^{\infty} B_p^j(k) t^j \\ &= t^{k(p+1)+1} \left[\left\{ B_p(k(p+1)+1) + \sum_{i=1}^p t^i (B_p(k(p+1)+i+1) - \right. \right. \\ &\quad \left. \left. 6B_p(k(p+1)+i)) \right\} (1-6t)^{k+1} + (-1)^k t^{p+1} \right] \\ &\quad \left[(1-6t+t^{p+1})(1-6t)^{k+1} \right]^{-1}. \end{aligned}$$

Proof. We prove this theorem by using Lemma 3.10. Let k be a fixed positive integer, from (3.1) and (3.4), we have

$$B_p^k(n) = 0; \quad \text{if } 0 \leq n < k(p+1)+1$$

and

$$B_p^k(k(p+1)+1) = B_p(k(p+1)+1),$$

$$B_p^k(k(p+1)+2) = B_p(k(p+1)+2),$$

.....,

$$B_p^k(k(p+1)+p+1) = B_p(k(p+1)+p+1),$$

and that

$$\begin{aligned} B_p^k(n) &= 6B_p^k(n-1) - B_p^k(n-p-1) \\ &\quad + (-1)^k \binom{n-p(k+1)-2}{n-k(p+1)-p-2} 6^{n-k(p+1)-p-2}, \end{aligned}$$

if $n \geq k(p+1)+p+2$.

We let

$$s_0 = B_p^k(k(p+1)+1), \quad s_1 = B_p^k(k(p+1)+2), \dots, s_p = B_p^k(k(p+1)+p+1)$$

and $s_n = B_p^k(n+k(p+1)+1)$. Suppose that $r_0 = r_1 = r_2 = \dots = r_p = 0$ and

$$r_n = \binom{n-(p+1)+k}{n-(p+1)} (-1)^k 6^{n-(p+1)}.$$

Thus we can easily derive that the generating function of the sequence r_n is (see p.355 of [10])

$$G(t) = \frac{(-1)^k t^{p+1}}{(1-6t)^{k+1}}.$$

Then in view of Lemma 3.10, the generating function

$$\begin{aligned} S_p^k(t)(1-6t+t^{p+1}) - \frac{(-1)^k t^{p+1}}{(1-6t)^{k+1}} \\ = B_p^k(k(p+1)+1) + \sum_{i=1}^p t^i (B_p(k(p+1)+i+1) \\ - 6B_p(k(p+1)+i)), \end{aligned}$$

which implies

$$\begin{aligned} S_p^k(t) = & \left[\left\{ B_p^k(k(p+1)+1) + \sum_{i=1}^p t^i (B_p(k(p+1)+i+1) - 6B_p(k(p+1)+i)) \right\} (1-6t)^{k+1} + (-1)^k t^{p+1} \right] \left[(1-6t+t^{p+1})(1-6t)^{k+1} \right]^{-1}. \end{aligned}$$

Finally, we conclude that

$$R_p^k(t) = t^{k(p+1)+1} S_p^k(t).$$

This completes the proof. \square

Theorem 3.12. *The generating function of the incomplete Lucas-balancing p -numbers $C_p^k(n)$ ($k = 0, 1, 2, 3, \dots$) is given by*

$$\begin{aligned} W_p^k(t) = & \sum_{j=0}^{\infty} C_p^j(k) t^j \\ = & t^{k(p+1)} \left[\left\{ C_p(k(p+1)) + \sum_{i=1}^p t^i (C_p(k(p+1)+i) - 6C_p(k(p+1)+i-1)) \right\} (1-6t)^{k+1} + (-1)^k 3t^{p+1} (p(1-t)+1) \right] \left[(1-6t+t^{p+1}) \cdot \right. \\ & \left. (1-6t)^{k+1} \right]^{-1}. \end{aligned}$$

Proof. We prove this theorem by using Lemma 3.10. Let k be a fixed positive integer, from (3.2) and (3.9), we have

$$C_p^k(n) = 0; \quad \text{if } 0 \leq n < k(p+1)$$

and

$$C_p^k(k(p+1)) = C_p(k(p+1)),$$

$$C_p^k(k(p+1)+1) = C_p(k(p+1)+1),$$

.....,

$$C_p^k(k(p+1)+p) = C_p(k(p+1)+p),$$

and that

$$C_p^k(n) = 6C_p^k(n-1) - C_p^k(n-p-1) + 3(-1)^k \frac{n-p-1}{n-(k+1)p-1} \cdot \binom{n-p(k+1)-1}{n-k(p+1)-p-1} 6^{n-k(p+1)-p-2};$$

if $n \geq k(p+1) + p + 1$. We let

$$s_0 = C_p^k(k(p+1)), s_1 = C_p^k(k(p+1)+1), \dots, s_p = C_p^k(k(p+1)+p) \text{ and} \\ s_n = C_p^k(n+k(p+1)).$$

Suppose that $r_0 = r_1 = r_2 = \dots = r_p = 0$ and

$$r_n = \frac{n+k(p+1)-p-1}{n+k-p-1} \binom{n-(p+1)+k}{n-(p+1)} 3(-1)^k 6^{n-(p+2)}.$$

Then the generating function of the sequence r_n is (p.355, [10])

$$G(t) = \frac{(-1)^k 3t^{p+1}(p(1-t)+1)}{(1-6t)^{k+1}}.$$

By virtue of Lemma 3.10, the generating function

$$S_p^k(t)(1 - 6t + t^{p+1}) - \frac{(-1)^k 3t^{p+1}(p(1-t)+1)}{(1-6t)^{k+1}} \\ = C_p^k(k(p+1)) + \sum_{i=1}^p t^i (C_p^k(k(p+1)+i) - 6C_p^k(k(p+1)+i-1)).$$

Further simplification gives

$$S_p^k(t) = \left[\left\{ C_p^k(k(p+1)) + \sum_{i=1}^p t^i (C_p^k(k(p+1)+i) - 6C_p^k(k(p+1)+i-1)) \right\} \cdot (1-6t)^{k+1} + (-1)^k 3t^{p+1}(p(1-t)+1) \right] \left[(1-6t + t^{p+1}) \cdot (1-6t)^{k+1} \right]^{-1}.$$

Finally, we conclude that

$$W_p^k(t) = t^{k(p+1)} S_p^k(t),$$

and hence the proof. \square

ACKNOWLEDGMENTS

The authors are grateful to the referees for their valuable comments and suggestions which improved the presentation of this paper.

REFERENCES

1. A. Behera, G. K. Panda, On the Square Roots of Triangular Numbers, *Fibonacci Quarterly*, **37**(2), (1999), 98-105.
2. A. Bérczes, K. Liptai, I. Pink, On Generalized Balancing Sequences, *Fibonacci Quarterly*, **48**(2), (2010), 121-128.
3. P. Catarino, H. Campos, P. Vasco, On Some Identities for Balancing and Cobalancing Numbers, *Annales Mathematicae et Informaticae*, **45**, (2015), 11-24.
4. T. Kovacs, K. Liptai, P. Olajos, On (a, b) -Balancing Numbers, *Publicationes Mathematicae Debrecen*, **77**(3-4), (2010), 485-498.
5. K. Liptai, F. Luca, A. Pintér, L. Szalay, Generalized Balancing Numbers, *Indagationes Mathematicae*, **20**(1), (2009), 87-100.
6. G. K. Panda, P. K. Ray, Cobalancing Numbers and Cobalancers, *International Journal of Mathematics and Mathematical Sciences*, **2005**(8), (2005), 1189-1200.
7. B. K. Patel, N. Irmak, P. K. Ray, Incomplete Balancing and Lucas-Balancing Numbers, *Mathematical Reports*, **20**(1), (2018), 59-72.
8. A. Pintér, H. M. Srivastava, Generating Functions of the Incomplete Fibonacci and Lucas Numbers, *Rendiconti del Circolo Matematico di Palermo*, **48**(3), (1999), 591-596.
9. P. K. Ray, Balancing Polynomials and Their Derivatives, *Ukrainian Mathematical Journal*, **69**(4), (2017), 646-663.
10. H. M. Srivastava, H. L. Manocha, *A Treatise on Generating Functions*, Halsted pres (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
11. T. Szakács, Multiplying Balancing Numbers, *Acta Universitatis Sapientiae, Mathematica*, **3**(1) (2011), 90-96.