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ABSTRACT. Let G be a finite group. The automorphism o of a group G
is said to be an absolute central automorphism, if for all x € G, x~1z% €
L(G), where L(G) be the absolute centre of G. In this paper, we study
some properties of absolute central automorphisms of a given finite p-

group.
Keywords: Absolute centre, Absolute central automorphisms, Finite p-groups.

2000 Mathematics subject classification: 20D45, 20D25, 20D15.

1. INTRODUCTION

Let G be a finite group and N a characteristic subgroup of G. Suppose o
is an automorphism of G. If (Ng)? = Ng for all g in G or equivalently o in-
duces the identity automorphism on G/N, we shall say o centralizes G/N. We
let Aut™ (@) denote the group of all automorphisms of G centralizing G/N.
Clearly o € Aut™(G) if and only if z7'z° € N for all z € G. Now let M
be a normal subgroup of G. Let us denote by Cyyn () (M) the group of all
automorphisms of Aut”™ (G) centralizing M. Various authors have studied the
groups Aut? (@), the central automorphisms of G, where Z = Z(G), Aut®’ (@),
the TA-automorphisms of G, where G’ stands for the commutator subgroup of
G, and Autcb(G)7 where ® denote the Frattini subgroup of G, the intersec-
tion of all maximal subgroups of G, see for example [14, 17, 19, 20]. For any
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element ¢ € G and o € Aut(G), the element [g,0] = g~1g° is called the au-
tocommutator of g and o. Also inductively, for all o1, 09,...,0, € Aut(G),
define [g, 01,09, ...,00n] = [[g,01,02, ..., 0n_1],0n]. Hegarty [7], generalized the
concept of centre into absolute centre L(G) of a group G as

L(G)={9€G|[g,0] =1,Vo € Aut(G)}.

One can easily check that the absolute centre is a characteristic subgroup con-
tained in the centre of G. Also he introduced the concept of the absolute central
automorphism. An automorphism o of G is called an absolute central auto-
morphism if o centralizes G/L(G). We denote the set of all absolute central
automorphisms of G by Aut”(@). Singh and Gumber [18], Kaboutari Farimani
[9], also Shabani-Attar [17] have given some necessary and sufficient conditions
for a finite non-abelian p-group such that all absolute central automorphisms
are inner. In this paper, we will characterize the finite non-abelian p-groups
G such that Aut”(G) = AutG/(G). Then, we determine the finite non-abelian
p-groups G with cyclic Frattini subgroup for which Aut®(G) = Aut®(G). Fi-
nally, we classify all finite p-groups G of order p"(3 < n < 5), such that
Aut™(G) = Inn(G).

Throughout this paper all groups are assumed to be finite and p always
denotes a prime number. Most of our notation is standard, and can be found
in [5], for example. In particular, a p-group G is said to be extraspecial if
G' = Z(G) = ®(Q) is of order p. Let L1(G) = L(G) and for n > 2, define
L, (G) inductively as

L”L(G) = {g € G ‘ [970—170—27"‘70-71] = 17V01702>"‘70n S AUt(G)}

A group G is called autonilpotent of class at most n if L,(G) = G, for some
n € N. If ¢ is an automorphism of G and « is an element of GG, we write z? for
the image of z under o and o(x) for the order of z. For a finite group G, exp(G),
d(G) and cl(G), denote the exponent of G, minimal number of generators of G
and the nilpotency class of G, respectively. Recall that a group G is called a
central product of its subgroups Gi,...,G, if G = G1---G, and [G,,G,] =1,
for all 1 < ¢ < j < n. In this situation, we shall write G = G1 * --- x G,,.
For s > 1, we use the notation G*° for the iterated central product defined by
G** = G * G*~1 with G*! = G, where G is a finite p-group. We also make
the convention G*° = 1. Finally, we use X" for the direct product of n-copies
of a group X, (), for the cyclic group of order n where n > 1, as usual, Dg for
the dihedral group, Qg for the quaternion group, of order 8, respectively and
M, (n,m) and M,(n,m,1) for the minimal non-abelian p-groups of order p"+™
and p"t™+! defined respectively by

n—1

(a,b | " =" =1,a" = a'tP Y,
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where n > 2, m > 1 and

m

(a,byc|a?” =b"" =P =1,[a,b] = ¢, [a,c] = [b,d] = 1),

where n > m > 1 and if p = 2, then m 4+ n > 2.

2. PRELIMINARY RESULTS

In this section we give some results which will be used in the rest of the
paper.

Let G and H be any two groups. We denote by Hom(G, H) the set of
all homomorphisms from G into H. Clearly, if H is an abelian group, then
Hom(G, H) forms an abelian group under the following operation (fg)(z) =
f(z)g(x), for all f,g € Hom(G, H) and = € G.

The following lemma is a well-known.

Lemma 2.1. Let A, B and C be finite abelian groups. Then
(i) Hom(A x B,C) = Hom(A, C) x Hom(B, C);
(ii) Hom(A, B x C) = Hom(A, B) x Hom(A, C);
(iii) Hom(Cy,, Cp) = C,, where e is the greatest common divisor of m and
n.

We have the following theorem due to Miiller [14].

Theorem 2.2. [14, Theorem] If G is a finite p-group which is neither elemen-
tary abelian nor extraspecial, then Aut®(G)/Inn(G) is a non-trivial normal
p-subgroup of the group of outer automorphisms of G.

The following preliminary lemma is well-known result [19, Lemma 2.2].

Lemma 2.3. Let G be a group and M, N be normal subgroups of G with
N <M and Cn(M) < Z(G). Then Cpyn (g (M) = Hom(G/M,Cn(M)).

Corollary 2.4. If G is a finite group, then
Cawie (e (Z(G)) = Hom(G/Z(G), L(G)),
where L = L(G).
Moghaddam and Safa [12], proved that for a finite group G,
Aut? (@) = Hom(G/L(G), L(G)).
The following theorem states a useful result for finite p-groups.

Theorem 2.5. Let G be a finite p-group different from Cy. Then AutL(G) ~
Hom(G, L(G)).


http://dx.doi.org/10.52547/ijmsi.17.2.97
http://ijmsi.com/article-1-1424-en.html

[ Downloaded from ijmsi.com on 2026-01-30 ]

[ DOI: 10.52547/ijmsi.17.2.97 ]

100 R. Soleimani

Proof. Let 0 € Aut”(G). We define the map fy : G — L(G) by fo(g9) = g~ '¢°.
It is easy to see that fy is a homomorphism, and 6 — fy is an injective map
from Aut”(G) to Hom(G, L(G)). Conversely, assume that f € Hom(G, L(G)).
Then we define § = 07 : G — G by ¢ = gf(g). Since by [11, Corollary 3.7],
g g% € L(G) < ®(@), for every element g € G, we may write G as the product
of the image of # and the Frattini subgroup of G and so the image of § must
be G itself. Hence  is an automorphism of G. Now 0 = 6; € Aut”(G) and
Jo, = f. Finally, suppose that «, 3 € Aut”(G). Then for any z € G,

1 1

fap(x) =27 2% = 27V (zx ™ 2™)P = o7 2P 2 = x7 a2 0P,

since z7 1z € L(G). Thus fop(x) = fo(z)fs(x) and so 6 — fp is a homomor-
phism, which completes the proof. O

We next give a necessary and sufficient condition on a finite p-group G for
the group Aut’(G) to be elementary abelian.

Corollary 2.6. Let G be a finite p-group. Then AutL(G) is elementary abelian
if and only if exp(G/G') = p or exp(L(G)) = p.

Proof. 1t is straightforward by Lemma 2.1 and Theorem 2.5. O

3. MAIN RESULTS

For a finite abelian p-group G, |L(G)| = 1,2 by [11, Lemma 4.4] and so
|Aut™(G)| = 1 or Aut™(G) = C¢, with d = d(G). Thus we may assume that
G is a non-abelian p-group. In this section, first we characterize the finite
non-abelian p-groups G such that Aut”(G) = AutGl(G). Then, we deter-

mine the finite non-abelian p-groups G with cyclic Frattini subgroup for which
Aut?(G) = Aunt? (G).

In [9], Kaboutari Farimani proved the following two results giving some
information of absolute central automorphisms of a finite p-group.

Lemma 3.1. Let G be a finite non-abelian p-group. Then Cpyr (o) (Z(GQ)) =
Inn(G) if and only if G/L(G) is abelian and L(G) is cyclic.

Theorem 3.2. Let G be a finite non-abelian p-group. Then Aut®(G) = Inn(G)
if and only if G/L(G) is abelian, L(G) is cyclic and Z(G) = L(G)GP" where
exp(L(G)) = p".

Note that the Theorem 3.2 yields the following corollary that is the Corollary
1 of Singh and Gumber [18].

Let G be a finite non-abelian p-group such that G’ < L(G). Let G/Z(G) =
Cper X Cpag X -+ X Cpar, where a1 > g > -+ > o, > 1. Also let G/L(G) =

> >
Cpor X Cpsy X --- X Cpp,, where 81 > 3 > -+ > f, > 1 and L(G) = Cpm X
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Cpva X - -+ X Cpw, where 41 > 5 > --- >, > 1. Since G/Z(G) is a quotient
group of G/L(G) by [2, Section 25], r < s and o; < §; for all 1 <i <.

By the above notation, we prove the following corollary:

Corollary 3.3. [18, Corollary 1] Let G be a finite non-abelian p-group. Then
Aut™(G) = Inn(QG) if and only if G' < L(G), L(G) is cyclic and either L(G) =
Z(G) or d(G/L(G)) = d(G/Z(@)), s =1 for 1 <i <k and a; = f; for
k+1<i<r, where k is the largest integer such that By > 1.

Proof. First assume that Aut”(G) = Inn(G). Hence by Theorem 3.2, G/ <
L(G) and L(G) is cyclic. If exp(G/L(G)) < exp(L(G)), then

G/Z(G) = Aut”(G) = Hom(G/L(G), L(G)) = G/L(G),

because L(G) is cyclic and by [12, Proposition 1]. Therefore L(G) = Z(G).
Next, let exp(G/L(G)) > exp(L(G)) and k is the largest integer such that
Br > 7. Since L(G) and G/L(QG) are abelian,

d(G/2(G)) = d(Hom(G/L(G), L(G))) = d(G/L(G))d(L(G)) = d(G/L(G)).

Now we have Hom(G/L(G), L(G)) = Cpn XCpoi X+ + - X Cpt XC gy X+ X Cpse
and Hom(G/L(G), L(G)) 2 G/Z(G) = Cpar X Cpaz X - -+ X Cpor. Hence oy =
ay=--+=qap =7 and o; = §; for k+ 1 < i < r, as required.

Conversely if L(G) = Z(QG), then exp(G/Z(G)) = exp(G’)|exp(Z(G)), since
G’ < L(G) and by [13, Lemma 0.4]. Now

Hom(G/L(G), L(G)) = Hom(G/Z(G), Z(G)) = G/Z(G),

because Z(G) is cyclic and so Aut”(G) = Inn(G). Next assume that L(G) <
Z(G), s =d(G/L(G)) = d(G/Z(G)) =71, a; =71 for 1 <i <k and o; = ;
for kK 4+ 1 < ¢ < r, where k is the largest integer such that gx > 1. We claim
that Z(G) = L(G)GP". Since exp(G/Z(G)) = exp(L(G)), we have L(G) <
L(G)GP" < Z(@). Tt follows that G/Z(G) is a quotient group of G/L(G)G?™.
Now let G/L(G)GP" = Cyn x Cpsy X +++ x Cps,, where §; =1 > 6 > -+ >
5, > 1, since d(G/L(G)) = d(G/L(G)GP™") and exp(G/L(G)GP™) = p.
Therefore vy = a; < §; < 7 for 1 < ¢ < k, whence we have §; = 71 = «;
for 1 <i<k AsfBi = a; < < pB; for k+1 < i < r, it follows that
6; = a; = f3; for k+1 < i < r. Hence G/Z(G) = G/L(G)GP™" and consequently
Z(G) = L(G)GP™. Therefore by Theorem 3.2, Aut“(G) = Inn(G). This
completes the proof. O

As an application of Theorem 3.2, we get another proof of the main result
of [15].

Theorem 3.4. [15, Theorem 3.2] Let G be a non-abelian autonilpotent finite
p-group of class 2. Then Aut™(G) = Inn(G) if and only if L(G) = Z(G) and
L(G) is cyclic.
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Proof. Suppose that Aut’(G) = Inn(G). Hence L(G) is cyclic and Z(G) =
L(G)GP", where exp(L(G)) = p". Now by [15, Proposition 2.13], exp(G/L(G))
divides exp(L(G)) and so Z(G) = L(G)GP" = L(G). Conversely, assume that
L(G) = Z(G) and L(G) is cyclic. Since G be a non-abelian autonilpotent p-
group of class 2, Aut”(G) = Aut(G), by [15, Lemma 2.11]. Therefore Inn(G) <
Aut? (@), G’ < L(G) and G/L(G) is abelian. Obviously, Z(G) = L(G) =
L(G)G?P", where exp(L(G)) = p", and so Aut”(G) = Inn(G), by Theorem 3.2,
as required. O

Corollary 3.5. Let G be an extraspecial p-group.
(i) If p > 2, then L(G) and Aut™(G) is trivial.
(ii) If p =2, then L(G) = Cy and Aut™(G) = Inn(G).

Proof. Let G be an extraspecial p-group. First assume that p > 2. By [10,
Theorem 3], L(G) is trivial and so Aut”(G) = 1.

To prove (ii), since |G'| = 2, and G’ is a characteristic subgroup of G, we have
G' < L(G) < Z(G). Thus G' = L(G) = Z(G) = ®(G) is cyclic of order 2. Now
by Theorem 3.2, Aut™(G) = Inn(G). O

Let G be a finite non-abelian p-group such that G/L(G) is abelian. Then G
is of class 2 and Aut®’ (@) < Aut®(@). Let G/G’" = Cpar x Cpas X -+ x Cpor,
where a; > az > --- > ap > 1. Also let L(G) = Cppy x Cppy X -+ X Cpors
where by > by > -+ > b > 1 and G' = Cper X Cpea X -+ X Cpen, where
e1 > ey > - >e, > 1. Since G’ < L(G), by [2, Section 25] we have n <[
and e; < b; for all 1 < j < n. By the above notation, we prove the following
theorem:

Theorem 3.6. Let G be a finite non-abelian p-group. Then Aut®(G) =
AW (G) if and only if G' = L(G) or G' < L(G), d(G") = d(L(G)) and

a1 = eq, where t is the largest integer between 1 and n such that by > e;.

Proof. Suppose that Aut”(G) = Aut®’ (G) and G’ # L(G). By Theorem 2.5
and Lemma 2.3, we have |Hom(G/G’', L(G))| = |Hom(G/G’,G’")|. First, we
claim that d(G’") = d(L(G)). Suppose, for a contradiction, that d(G') = n <
I =d(L(G)). Since b; > e; for all j such that 1 < j < n, by Lemma 2.1,

|Aut® (@) = |Hom(G/G',G")| = [Hom(G/G', Cper X Cpes X -+ X Cpen )|
< |H0m(G/G’, Cpbl XCpb2 X 'chbn)| < |HOH1(G/G/, Cpbl chb2 X 'XCpbn)|
X[Hom(G/G", C ppyy X -+ x Cppy )| = [Hom(G/G', Cpoy X oy X -+ x Cpoy )|

= [Hom(G/G', L(G))| = [Aut™(G),
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which is a contradiction. So n = I, as required. Next, since |Aut’(G)| =
|Aut® (G)], we have

H pmin{ai,bj} _ H pmin{ai,ej-}.

1<i<k,1<j<l 1<i<k,1<5<1

Since b; > e; for all j such that 1 < j <, we have min{a,,b;} > min{a;,e;},
where 1 < i < k,1 < j <[. Thus min{a,;,b;} = min{a,,e;}, for all 1 < i <
k,1 < j <. Next, since G’ < L(G), there exists some 1 < j < [ such that
ej < bj. Let t be the largest integer between 1 and n such that e, < b,. We
show that a; < e;. Suppose, on the contrary, that a; > e;. Then by the above
equality, we must have min{ay,b;} = min{a1,e;} = e;, which is impossible.
Hence a; < e;. Let exp(G/Z(G)) = p/, where f € N. Since cl(G) = 2, by
[13, Lemma 0.4], f = e;. But a3 <e; <e;q <--- <e; = f < a;. Whence
a1 = €.

Conversely, if G/ = L(G), then Aut® (G) = Aut’(G). Assume that G’ <
L(G), d(G") = n = d(L(G)) =l and a; = e, where ¢ is the largest integer
between 1 and n such that b; > e;. Now by Lemma 2.3,

Aut® (G)] = [Hom(G/G', ¢ =[]  pointeeesd,

B

and by Theorem 2.5,

Aut"(G)] = [Hom(G/G', L(G)| =[]  pminlestsd,
1<i<k,1<5<
Since a; = e, we have 1 < ap < - <ag<a; =€ <e1 <--- < ey <ey.

Thus b; > e; > a; for all 1 < ¢ < k and 1 < j < ¢, which shows that
min{a;, e;} = a; = minf{a;, b;} for 1 <i < kand1 < j <t. Since e; = b; for all
j > t+1, we have min{a;, e;} = min{a;,b;} forall 1 <i<kandt+1<j <l
Thus min{a;,e;} = min{a;,b;} for all 1 <7 < k and 1 < j < [. Therefore
\AutGl(G)\ = |Aut™(@)|. Since G’ < L(G) we have AutGl(G) = Aut’ (@),
which completes the proof. O

In [11], Meng and Guo proved that for a finite group G, if Cs is not a direct
factor of G, then L(G) < ®(G). We end this section by characterizing the finite
non-abelian p-groups G with cyclic Frattini subgroup for which Aut’(@) =
Aut®(@).

First, we give some basic results about the finite non-abelian p-groups G

with cyclic Frattini subgroup.

Let n > 1. Following [1], we denote by D;‘HS and Q;nw the 2-groups of
order 2"*3 defined by the following presentations.

D}, .5 = (a,b,c| == =10 =a 1" af = a2 b, = 1),
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nt1 b . n n n
Q;H ={a,b,c|a® =b"=1,a"=a"1* a°=a'""?* a* =% b, =1).

Note that if G is either D;LH or Q;LH, then cl(G) =n + 1.

In [1], Berger, Kovécs and Newman proved the following result.

Theorem 3.7. [1, Theorem 2] If G is a finite p-group with Z(®(G)) cyclic,
then
G=FEXx (GyxGyx--xGy),

where E is an elementary abelian, Gy, ...,Gs are non-abelian of order p3, of
exponent p for p odd and dihedral for p = 2, while Go > 1 if E > 1, |G| > 2
if s > 0, and Gy is one of the following types: cyclic, non-abelian with a cyclic
mazimal subgroup, Don+2 * Zy, Son+2 * Z4,D;n+3,Q;+3,D;n+3 x L4, all with
n > 1. Conversely, every such group has cyclic Frattini subgroup.

Theorem 3.8. [20, Theorem 2.3] Let G be a finite non-abelian p-group with
cyclic Frattini subgroup ®(G).

(i) If p>2, or p=2 and cl(G) = 2, then ®(G) < Z(G).

(ii) If cl(G) > 2, then G' = ®(G).

Lemma 3.9. [20, Lemma 2.4] Let G be a finite group with ®(G) < Z(G). Then
there is a bijection from Hom(G/G', ®(@)) onto Aut®(G) associating to every
homomorphism f : G — ®(G) the automorphism x — xf(x) of G. In particu-
lar, if G is a p-group and exp(®(G)) = p, then Aut®(G) = Hom(G/G’, ®(Q)).

In the following theorem, we will make use Theorem 3.7, which is the struc-
tural theorem for p-groups with cyclic Frattini subgroup.

Theorem 3.10. Let G be a finite non-abelian p-group with cyclic Frattini
subgroup. Then Aut™(Q) = Aut®(G) if and only if G is one of the following
types: CJ* X D;(SH) or C¥* x (D§® x Qg), where s,m > 0.

Proof. Let Aut”(G) = Aut®(G). Hence Aut® (@) is abelian, G is of class 2 and
by Theorem 3.8, ®(G) < Z(G). It follows that exp(G') = exp(G/Z(G)) = p
and so |G| = p. Assume that |®(G) : G'| = p*. Then ®(G) = Cpa+1 and
we observe that exp(G/G’) < p®*! = |®(G)|. Together with Lemma 3.9, we
have |Aut®(G)| = [Hom(G, ®(G))| = |G|/p. Next, we note that G' N L(G) #
1; otherwise, G’ N L(G) = 1 and G’ x L(G) would be a subgroup of ®(G).
Hence either G’ =1 or L(G) = 1, a contradiction. Whence G’ < L(G). Now
we are able to show that G’ = L(G) = Cp. To do this, first assume that
L(G) # ®(G). By similar argument that was applied for Theorem 3.6, we have
exp(G/G’) < exp(L(G)), which implies that exp(G/L(G)) < exp(G/G’) <
exp(L(@)) = |L(G)|. If L(G) = ®(G), then exp(G/L(G)) = exp(G/®(G)) <
exp(L(G)) = |L(G)|. Thus [Aut”(G)| = |G/L(G)| = [Aut®(G)| = |G/, by
[12, Proposition 1] and so G’ = L(G) = C,. Now, we will make use of the
notation of Theorem 3.7.
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Since cl(G) = 2, by Theorem 3.7 and [5, Theorems 5.4.3 and 5.4.4], Gy is one
of the groups M,(n, 1), where n > 3, if p = 2; Dg or Qs.

We claim that G’ = G, and ®(G) = ®(Gy). To see this, since G, (G} # 1
for 1 <i < s and |G}| = p, we have G} < G{, and so G’ = Gj. Also ®(G) =
G'GP = GHEPGHGY --- GE = G{GE = ®(Gp). To continue the proof, we may
consider two cases:

Casel. £ =1.

Let G = Go * T, where T be one of the groups M,(1,1,1)**, while p > 2
or D§®, where all s > 0. Note that if s = 0, then G = Gy and Z(G) =
Z(Go) = ©(Go) = ®(G); otherwise, since 1 # Go(\T = Z(T) < Z(Gyp), then
Z(G) = Z(Gy), because |Z(T)| = p, which implies that ®(G) = ®(Gy) =
Z(Go) = Z(G). We claim that G is an extraspecial p-group. To see this, since
G’ = L(G) = Cp, by Theorem 3.2, Aut®(G) = Aut’(G) = Inn(G). This shows
that G is an extraspecial p-group, by Theorem 2.2. If p > 2, then by Corollary
3.5, L(G) = 1, which is impossible. Whence p = 2. If Gg & My(n,1),n > 3,
then by [5, Theorem 5.4.3], Z(G) = ®(G) is of order 2"~1. This yields that
n = 2, since |Z(G)| = 2, a contradiction. Therefore Gy is isomorphic either to
Dg or Qg, and G be one of the groups: Dg(sﬂ) or Qs * D3®, for some s > 0.

Case II. E # 1.
In this case G > 1 and G = F X (Go * T'), where T be one of the groups lying
in Case L.

We claim that Aut®@* 1) (Gy « T) = Aut?(E*T) (G, « T). Choose a non-
trivial element o of Aut®@*T)(Gy * T). Then the map & defined by (ef)” =
ef?, foralle € E, f € Go*T denotes an automorphism of Aut®(G) = Aut”(G).
Since G'NL(Go+T) # 1, then L(G) < L(Go+T) and so o is in Aut“(Eo* D) (G«
T). This shows that Aut® @) (G« T) = AutX(E*D (G, « T), as required.
Next, by a similar argument as mentioned for the previous case, Gy be one of
the groups: Ds or Qs. Therefore G has one of the following types: C3* x Dy (s+1)
or C" x (D§° % Qg), where s > 0,m > 0.

Conversely, assume that G be of the groups in Theorem 3.10. Hence G’ =
L(G) = Cy. Now the proof is complete, since [Aut”(G)| = [Auwt®(G)| =
|G|/2. O

4. CLASSIFY ALL FINITE p-GROUPS G OF ORDER p"(3 < n < 5), SUCH THAT
Aut?’ (@) = Inn(G)

Let G be a non-abelian group of order p3. Then by Corollary 3.5, Aut” (@) =
Inn(G) if and only if p = 2. In the following corollaries, we use Theorems 4.7
and 5.1 of [11] and classify all finite p-groups G of order p"(4 < n < 5), such
that Aut”(G) = Inn(G). First we recall the following concept, which was
introduced by Hall in [6].
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Definition 4.1. Two finite groups G and H are said to be isoclinic if there
exist isomorphisms ¢ : G/Z(G) — H/Z(H) and 6 : G' — H' such that, if
(212(G))® = pZ(H) and (222(G))® = y2Z(H), then [z1,22)" = [y1,12).
Notice that isoclinism is an equivalence relation among finite groups and the
equivalence classes are called isoclinism families.

Corollary 4.2. Let G be a non-abelian group of order p*. Then AutL(G) =
Inn(G) if and only if p = 2 and G is one of the following types: M5(3,1) or
Ms(2,1,1).

Proof. Assume that |G| = p* and Aut”(G) = Inn(G). We claim that |Z(G)| =
p?. Suppose for a contradiction, that |Z(G)| = p. We observe that G’ <
Z(G) = C), by Theorem 3.2 and so G is an extraspecial p-group, a contradiction
since the order of G is not of the form p?"*!, for some natural number n.

Therefore G/Z(G) = C2, and hence |G'| = p. We consider two cases:

Case I. p an odd prime. It is straightforward to see that the map o0 : G — G
by 2° = 2P| is an automorphism of G. Hence for any element z of L(G),
r =2° = 2P and so 2” = 1. Thus exp(L(G)) = p and so G’ = L(G) = C,,
by Theorem 3.2. If G/L(G) = Cps, then by [3, Theorem 2.2], G is cyclic, a
contradiction. Next, we assume that G/L(G) = Cp2 x C,. Then G is an abelian
group by [11, Theorem 5.1], which is impossible. Finally, if G/L(G) = C3, then
L(G) = ®(G) and so Aut®(G) = Inn(G). Therefore by Theorem 2.2, G is an
extraspecial p-group, a contradiction.

Case IL. p = 2. Since |G'| = 2, and G’ be a characteristic subgroup of G, we have
G' < L(G) < Z(G). Thus |L(G)| =2 or 4. If |L(G)| = 4, then L(G) = Z(G)
and G/L(G) = C3. Hence by [11, Theorems 5.1 and 4.7], G = M5(2,2), and
L(G) = C3, which is a contradiction by Theorem 3.2. Next we assume that
|L(G)| = 2. So G' = L(G) and |G/L(G)| = 8. By a similar argument, G is
isomorphic to one of the following groups: M(3,1) or M3(2,1,1). The converse
follows at once from Theorem 3.2. (]

Corollary 4.3. Let G be a non-abelian group of order p°. Then AutL(G) =
Inn(G) if and only if p = 2 and G is one of the following types: Ms(3,2),
M2(4, 1), M2(272, 1), D§2 or Dg * Qg.

Proof. Let G be a finite group such that |G| = p° and Aut”(G) = Inn(G). We
consider two cases:

Case I. p > 2. These groups lying in the isoclinism families (5), (4) or (2) of
8, 4.5] and we show that Aut”(G) # Inn(G).

First, let G denote one of the groups in the isoclinism family (5). Hence
|Z(G)] = p and G = Z(G) = ®(G) = Cp, by Theorem 3.2. So G is an
extraspecial p-group and by Corollary 3.5, |L(G)| = 1, a contradiction.

Next, let G be one of the groups in the isoclinism family (4). Then G’ & Cg ,
which is a contradiction, since G’ is cyclic.
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Finally, let G denote one of the groups in the isoclinism family (2). Then
G/Z(G) = C2 and so d(G/L(G)) > 1. We observe that G' = L(G) = C,
and Z(G) = ®(G), by using Theorems 2.2, 3.2, [3, Theorem 2.2] and [11,
Theorem 5.1]. So d(G) = 2 and by [16], G is a minimal non-abelian p-group.
If G/L(G) = Cps x Cp, then G is an abelian group, by [11, Theorem 5.1], a
contradiction. If G/L(G) = CZ, then by [16], G = M, (3,2) or G = M,(2,2,1).
Thus L(G) = 1, by [11, Theorem 4.7], a contradiction. Finally, assume that
G/L(G) = Cp2 x C2 or G/L(G) = C;. In this cases, Aut? (@) # Inn(G), by
Theorem 2.5.

Case II. p = 2. We can see that |L(G)| = 2,4, by [3, Theorem 2.2] and [11,
Theorem 5.1]. First, we assume that |L(G)| = 4. Since G is a non-cyclic group,
by [3, Theorem 2.2|, d(G/L(G)) > 1. It follows that G/L(G) is one of the
groups C3 or Cy x Cy. Now in the first case, L(G) = ®(G) and so G is an
extraspecial 2-group by Theorem 2.2. Hence G’ = L(G) = Cy, a contradiction.
Therefore G/L(G) = Cy x Cy and by [11, Theorems 5.1 and 4.7], G is one of the
groups: M3(2,3) or M2(3,1,1), and L(G) = C3, a contradiction by Theorem
3.2. Now we may suppose that |L(G)| = 2. So G’ = L(G) = Cy. We discuss
the following cases.

If G/L(G) = C4, then L(G) = ®(G) and so Aut®(G) = Inn(G). Therefore
by Theorem 2.2, G is an extraspecial 2-group. Thus G is one of the groups
D3? or Dg x Qs, by [21]. Next, suppose that G/L(G) = C; x C3. Hence
G/L(G) = {(a,b,c), where @ = aL(G),b = bL(G), ¢ = cL(G) and o(a) = 4,
o(b) = 0(¢) = 2. Therefore G = (a,b,c, L(G)) = (a,b,c), by [11, Corollary 3.7].
Since (a?) x G’ < Z(G), we have either Z(G) = Cy x Cy or C3. If Z(G) =
Oy x Oy, then Aut”(G) # Inn(G), by Theorem 2.5. Therefore Z(G) = C3. Now
by using GAP [4], we find that there are no such groups. Next, if G/L(G) =
Cs x Cy, then G = M>5(4,1), by [11, Theorem 5.1]. Finally, suppose that
G/L(G) = C%. Then d(G) = 2, by [11, Corollary 3.7] and G’ = L(G) = Cs.
Hence by [16], G is a minimal non-abelian 2-group. Thus G is isomorphic to
the group M>(3,2) or M3(2,2,1). The converse follows at once from Theorem
3.2. (]
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