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1. Introduction

If p, q > 1, 1
p + 1

q = 1, an ≥ 0, bn ≥ 0, for n ≥ 1, n ∈ N and 0 <
∞∑
n=1

apn <∞,

0 <
∞∑
n=1

bqn <∞, then

∞∑
n=1

∞∑
m=1

ambn
m+ n

<
π

sin
(
π
p

) { ∞∑
n=1

apn

} 1
p
{ ∞∑
n=1

bqn

} 1
q

, (1.1)

and

∞∑
n=1

∞∑
m=1

ambn
max{m,n}

< pq

{ ∞∑
n=1

apn

} 1
p
{ ∞∑
n=1

bqn

} 1
q

, (1.2)
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88 G. Xi

where the constant π
sin π

p
and pq is best possible for each inequality respectively.

Inequality (1.1) is Hardy-Hilbert’s inequality. Inequality (1.2) is a Hilbert’s

type inequality [1].

In [5], [10] and [9], Krnic, Pecaric and Yang gave some generalization and

reinforcement of inequality (1.1). In [3], Kuang and Debnath gave a reinforce-

ment of inequality (1.2):

∞∑
n=1

∞∑
m=1

ambn
max{m,n}

<

{ ∞∑
n=1

[pq −G(p, n)]apn

} 1
p
{ ∞∑
n=1

[pq −G(q, n)]bqn

} 1
q

(1.3)

where G(r, n) =
r+ 1

3r−
4
3

(2n+1)
1
r
> 0 (r = p, q).

In [6] and [7], Xi gave a generalization and reinforcement of inequalities (1.2)

and (1.3):

∞∑
n=1

∞∑
m=1

ambn
max{mλ, nλ}

<

{ ∞∑
n=1

[
κ (λ )− 1

3qn
q+λ−2
q

]
n1−λapn

} 1
p

×

{ ∞∑
n=1

[
κ (λ )− 1

3pn
p+λ−2
p

]
n1−λbqn

} 1
q

,(1.4)

where κ(λ) = p qλ
(p+λ−2)(q+λ−2) > 0, 2−min{p, q} < λ ≤ 2.

∞∑
n=1

∞∑
m=1

ambn
max{mλ +A,nλ +B}

<

{ ∞∑
n=1

[
κ(λ)− 1

n
q+λ−2
q

(
1

3q
− B

1 +B

)]

×n1−λapn
} 1
p

{ ∞∑
n=1

[
κ(λ)− 1

n
p+λ−2
p

(
1

3p
− A

1 +A

)]
n1−λbqn

} 1
q

, (1.5)

For the reverse Hilbert’s type inequality, In [8] , Xi and Wang gave a reverse

Hilbert’s type inequality:

∞∑
n=1

∞∑
m=1

ambn
max{m2, n2}

> 2

[ ∞∑
n=1

(
1− 1

2n

)
1

n
apn

] 1
p
[ ∞∑
n=1

1

n
bqn

] 1
q

. (1.6)

In this paper, by introducing a parameter λ and using the Euler-Maclaurin

expansion for the Riemann-ζ function, we establish an inequality of a weight

coefficient. Using this inequality, we derive a reverse of the Hilbert’s type

inequality (1.4).

2. A Lemma

First, we need the following formula of the Riemann-ζ function (see [4], [12]

and [11]):
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ζ(σ) =

n∑
k=1

1

kσ
− n1−σ

1− σ
− 1

2nσ
−

l−1∑
k=1

B2k

2k

(
−σ
2k − 1

)
1

nσ+2k−1

−B2l

2l

(
−σ
2l − 1

)
ε

nσ+2l−1 , (2.1)

where σ > 0, σ 6= 1, n, l ≥ 1, n, l ∈ N , 0 < ε = ε(σ, l, n) < 1. The numbers

B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, · · · are Bernoulli numbers. In

particular, ζ(σ) =
∑∞
k=1

1
kσ (σ > 1).

Since ζ(0) = −1/2, then the formula of the Riemann-ζ function (2.1) is also

true for σ = 0 .

Lemma 2.1. If 0 < p < 1, 1
p + 1

q = 1, 2− p < λ ≤ 2, n ≥ 1 and n ∈ N , then

ω(n, λ, q) =

∞∑
k=1

1

max {kλ, nλ}

(n
k

) 2−λ
q

>
qn 1−λ

q + λ− 2
, (2.2)

and

ω(n, λ, p) =

∞∑
k=1

1

max{kλ, nλ}

(n
k

) 2−λ
p

< n1−λ

[
κ(λ)− p+ 2

2(p+ λ− 2)n
p+λ−2
p

]
, (2.3)

where κ(λ) = pqλ
(p+λ−2)(q+λ−2) .

Proof. Equalities (2.2) and (2.3) define the weight coefficient. When 2 − p <
λ ≤ 2, taking σ = 2−λ

p ≥ 0, l = 1, in (2.1), we obtain

ζ

(
2− λ
p

)
=

n∑
k=1

1

k
2−λ
p

− pn
p+λ−2
p

p+ λ− 2
− 1

2n
2−λ
p

+
2− λ

12pn1+
2−λ
p

ε1, (2.4)

where 0 < ε1 < 1.

Since 2
q + λ

p = 2 + λ−2
p = 2p+λ−2

p > 0(p + λ − 2 > 0). Taking σ = λ
p + 2

q ,

l = 1, we obtain

ζ

(
2

q
+
λ

p

)
=

n−1∑
k=1

1

k
2
q+

λ
p

+
pn−

p+λ−2
p

p+ λ− 2
+

1

2n
2
q+

λ
p

+
qλ+ 2p

12pqn1+
2
q+

λ
p

ε2, (2.5)

where 0 < ε2 < 1.

Since 2
p+ λ

q = 2+ λ−2
q = 2q+λ−2

q > 0(q+λ−2 < 0, q < 0). Taking σ = 2
p+ λ

q ,

l = 1, we obtain

ζ

(
2

p
+
λ

q

)
=

n−1∑
k=1

1

k
2
p+

λ
q

+
qn−

q+λ−2
q

q + λ− 2
+

1

2n
2
p+

λ
q

+
pλ+ 2q

12pqn1+
2
p+

λ
q

ε3, (2.6)
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where 0 < ε3 < 1.

In addition,

ω(n, λ, q) =

∞∑
k=1

1

max{kλ, nλ}

(n
k

) 2−λ
q

=

n∑
k=1

1

max{kλ, nλ}

(n
k

) 2−λ
q − 1

nλ
+

∞∑
k=n

1

max{kλ, nλ}

(n
k

) 2−λ
q

=

n∑
k=1

1

nλ

(n
k

) 2−λ
q − 1

nλ
+

∞∑
k=n

1

kλ

(n
k

) 2−λ
q

=
1

n
(q+1)λ−2

q

n∑
k=1

1

k
2−λ
q

− 1

nλ
+ n

2−λ
q

∞∑
k=n

1

k
λ
p+

2
q

>
1

n
(q+1)λ−2

q

− 1

nλ
+ n

2−λ
q

∞∑
k=n

1

k
λ
p+

2
q

.

By (2.5) and 2
q + λ

p = qλ+2p
pq > 0

ω(n, λ, q) >
1

n
(p+1)λ−2

p

− 1

nλ
+ n

2−λ
q

[
pn−

p+λ−2
p

p+ λ− 2
+

1

2n
2
q+

λ
p

+
qλ+ 2p

12pqn1+
2
q+

λ
p

ε2

]

>
1

n
(p+1)λ−2

p

− 1

nλ
+ n

2−λ
q

[
pn−

p+λ−2
p

p+ λ− 2
+

1

2n
2
q+

λ
p

]

=
1

n
(p+1)λ−2

p

− 1

nλ
+

qn 1−λ

q + λ− 2
+

1

2nλ

=
1

n
(p+1)λ−2

p

− 1

2nλ
+

qn 1−λ

q + λ− 2

>
qn 1−λ

q + λ− 2
.

Using the last result and the inequality for ω(n, λ, q) above, we obtain (2.2).

ω(n, λ, p) =

∞∑
k=1

1

max{kλ, nλ}

(n
k

) 2−λ
p

=

n∑
k=1

1

max{kλ, nλ}

(n
k

) 2−λ
p − 1

nλ
+

∞∑
k=n

1

max{kλ, nλ}

(n
k

) 2−λ
p

=

n∑
k=1

1

nλ

(n
k

) 2−λ
p − 1

nλ
+

∞∑
k=n

1

kλ

(n
k

) 2−λ
p

=
1

n
(p+1)λ−2

p

n∑
k=1

1

k
2−λ
p

− 1

nλ
+ n

2−λ
p

∞∑
k=n

1

k
2
p+

λ
q

.
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By (2.4) and (2.6)

ω(n, λ, p) <
1

n
(p+1)λ−2

p

[
ζ

(
2− λ
p

)
+

pn
p+λ−2
p

p+ λ− 2
+

1

2n
2−λ
p

]
− 1

nλ

+n
2−λ
p

[
qn−

q+λ−2
q

q + λ− 2
+

1

2n
2
p+

λ
q

+
pλ+ 2q

12p qn1+
2
p+

λ
q

]

=
1

n
(p+1)λ−2

p

ζ

(
2− λ
p

)
+

pn 1−λ

p+ λ− 2
+

1

2nλ
− 1

nλ
+

qn 1−λ

q + λ− 2

+
1

2nλ
+

pλ+ 2q

12p qn1+λ

=
1

n
(p+1)λ−2

p

ζ

(
2− λ
p

)
+

pq λ n 1−λ

(p+ λ− 2)(q + λ− 2)
+

pλ+ 2q

12pqn1+λ

= n1−λ
{

pq λ

(p+ λ− 2)(q + λ− 2)
− 1

n
p+λ−2
p

[
−ζ
(

2− λ
p

)
− pλ+ 2q

12p qn
p−λ+2
p

]}
.

In (2.4), taking n = 1, by 2− p < λ ≤ 2, we obtain

ζ

(
2− λ
p

)
= 1− p

p+ λ− 2
− 1

2
+

(2− λ)ε1
12p

<
1

2
− p

p+ λ− 2
+

2− λ
12p

= − (λ− 2− 3p)(λ− 2− 2p)

12p(p+ λ− 2)

< 0.

So for n ≥ 1, n ∈ N , 2− p < λ ≤ 2, we have

−ζ
(

2− λ
p

)
+

2− λ
12pn1+

2−λ
p

≤ −ζ
(

2− λ
p

)
+

2− λ
12p

=
(λ− 2− 3p)(λ− 2− 2p)

12p(p+ λ− 2)
+

2− λ
12p
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=
(λ− 2− 3p)(λ− 2− 2p) + (2− λ)(p+ λ− 2)

12p(p+ λ− 2)

=
(λ− 2)2 + (−5p− p− λ+ 2)(λ− 2) + 6p2

12p(p+ λ− 2)

=
6p(2− λ) + 6p2

12p(p+ λ− 2)

=
(2− λ) + p

2(p+ λ− 2)

≤ 2 + p

2(p+ λ− 2)
.

Using the last result and the inequality for ω(n, λ, p) above, we obtain (2.3).

�

3. Main Results

Theorem 3.1. If 0 < p < 1, 1
p + 1

q = 1, 2 − p < λ ≤ 2, an ≥ 0, bn ≥ 0, for

n ≥ 1, n ∈ N and 0 <
∞∑
n=1

apn <∞, 0 <
∞∑
n=1

bqn <∞, then

∞∑
n=1

∞∑
m=1

ambn
max{mλ, nλ}

>

{ ∞∑
n=1

q

q + λ− 2
n1−λapn

} 1
p

×

{ ∞∑
n=1

[
κ(λ)− p+ 2

2(p+ λ− 2)n
p+λ−2
p

]
n1−λbqn

} 1
q

, (3.1)

where κ(λ) = p qλ
(p+λ−2)(q+λ−2) > 0.

Proof. By the reverse Hölder ’s inequality [2], we have

∞∑
n=1

∞∑
m=1

ambn
max{mλ, nλ}

=

∞∑
n=1

∞∑
m=1

[
am

max{mλ, nλ}
1
p

(m
n

) 2−λ
pq

]

×

[
bn

max{mλ, nλ}
1
q

(
n

m
)

2−λ
pq

]

≥

{ ∞∑
n=1

∞∑
m=1

[
apm

max{mλ, nλ}
(
m

n
)

2−λ
q

]} 1
p

×

{ ∞∑
n=1

∞∑
m=1

[
bqn

max{mλ, nλ}
(
n

m
)

2−λ
p

]} 1
q

=

{ ∞∑
m=1

ω(m,λ, q)apm

} 1
p
{ ∞∑
n=1

ω(n, λ, p)bqn

} 1
q

.
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Since 0 < p < 1 and q < 0. By (2.2), (2.3), we obtain (3.1). Theorem 3.1 is

proved. �

Theorem 3.2. If 0 < p < 1, 1
p + 1

q = 1, 2 − p < λ ≤ 2, an ≥ 0, bn ≥ 0, for

n ≥ 1, n ∈ N and 0 <
∞∑
n=1

n1−λbqn <∞, then

∞∑
n=1

(
q

q + λ− 2
n1−λ

)1−q
( ∞∑
m=1

bm
max{mλ, nλ}

)q

>

∞∑
n=1

[
κ(λ)− p+ 2

2(p+ λ− 2)n
p+λ−2
p

]
n1−λbqn. (3.2)

where κ(λ) = p qλ
(p+λ−2)(q+λ−2) > 0.

Inequalities (3.2) and (3.1) are equivalent.

Proof. Let

an =

(
q

q + λ− 2
n1−λ

)1−q
[ ∞∑
m=1

bm
max{mλ, nλ}

]q−1
, n ∈ N.

By (3.1), we have

{ ∞∑
n=1

q

q + λ− 2
n1−λapn

}q
=

{ ∞∑
n=1

(
q

q + λ− 2
n1−λ

)1−q

×

( ∞∑
m=1

bm
max{mλ, nλ}

)q}q

=

{ ∞∑
n=1

∞∑
m=1

anbm
max{mλ, nλ}

}q

>

{ ∞∑
n=1

q

q + λ− 2
n1−λapn

}q−1{ ∞∑
n=1

[κ(λ)

− p+ 2

2(p+ λ− 2)n
p+λ−2
p

]
n1−λbqn

}
.

Then we obtain

∞∑
n=1

q

q + λ− 2
n1−λapn =

∞∑
n=1

(
q

q + λ− 2
n1−λ

)1−q
( ∞∑
m=1

bm
max{mλ, nλ}

)q

>

∞∑
n=1

[
κ(λ)− p+ 2

2(p+ λ− 2)n
p+λ−2
p

]
n1−λbqn.
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On the other-hand, by the reverse Hölder ’s inequality [2], we have

∞∑
n=1

∞∑
m=1

anbm
max{mλ, nλ}

=

∞∑
n=1

[(
q

q + λ− 2
n1−λ

)− 1
p
∞∑
m=1

bm
max{mλ, nλ}

]

×

[(
q

q + λ− 2
n1−λ

) 1
p

an

]

≥

[ ∞∑
n=1

(
q

q + λ− 2
n1−λ

)1−q
( ∞∑
m=1

bm
max{mλ, nλ}

)q] 1
q

×
∞∑
n=1

[
q

q + λ− 2
n1−λapn

] 1
p

.

From (3.2), it follows that

∞∑
n=1

∞∑
m=1

anbm
max{mλ, nλ}

>

∞∑
n=1

[
q

q + λ− 2
n1−λapn

] 1
p

×

[ ∞∑
n=1

(
κ(λ)− p+ 2

2(p+ λ− 2)n
p+λ−2
p

)
n1−λbqn

] 1
q

.

Then, (3.2) and (3.1) are equivalent. Theorem 3.2 is proved. �

In inequality (3.1), taking λ = 2, we obtain:

Corollary 3.3. If 0 < p < 1, 1
p + 1

q = 1,an ≥ 0, bn ≥ 0, for n ≥ 1, n ∈ N and

0 <
∞∑
n=1

apn <∞, 0 <
∞∑
n=1

bqn <∞, then

∞∑
n=1

∞∑
m=1

ambn
max{m2, n2}

>

{ ∞∑
n=1

1

n
apn

} 1
p

×

{ ∞∑
n=1

[
1− p+ 2

2pn

]
1

n
bqn

} 1
q

. (3.3)
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